
CLARA: Circular Linked-List Auto and Self Refresh
Architecture

Aditya Agrawal
adityaa@nvidia.com

Mike O’Connor
moconnor@nvidia.com

Evgeny Bolotin
ebolotin@nvidia.com

Niladrish Chatterjee
nchatterjee@nvidia.com

Joel Emer
jemer@nvidia.com

Stephen Keckler
skeckler@nvidia.com

ABSTRACT
With increasing DRAM densities, the performance and energy over-
heads of refresh operations are increasingly significant. When the
system is active, refresh commands render DRAM banks unavail-
able for increasing periods of time. These refresh operations can
interfere with regular memory operations and hurt performance. In
addition, when the system is idle, DRAM self-refresh is the domi-
nant source of energy consumption, and it directly impacts battery
life and standby time. Prior refresh reduction techniques seek to
reduce active-mode auto-refresh energy, reduce self-refresh energy,
improve performance, or some combination thereof. In this paper,
we present CLARA, a circular linked-list based refresh architecture
which meets all three goals with very low overheads and without
sacrificing DRAM capacity. This approach exploits the variation in
retention time at a chip granularity as opposed to a DIMM-wide,
rank granularity in prior work. CLARA reduces auto- and self-
refresh by 86.2%, independent of workload. Auto refresh reduc-
tion improves average CPU performance by 3.1% and 6.5% in the
normal and extended temperature range, respectively. GPU perfor-
mance improves by 2.1% on average in the extended temperature
range. DRAM idle power during self-refresh is reduced by 44%.
The area overhead of CLARA in the DRAM is about 0.085% and
negligible in the memory controller.

CCS Concepts
•Hardware→ Dynamic memory; •Computer systems organi-
zation→ Architectures;

Keywords
DRAM, Auto refresh, Self refresh

1. INTRODUCTION
DRAM is a dynamic memory technology which requires peri-

odic refresh operations to maintain data integrity. These refresh
operations incur energy and performance costs, however. When
the system is active, auto-refresh commands render one or more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS ’16, October 03-06, 2016, Alexandria, VA, USA
c© 2016 ACM. ISBN 978-1-4503-4305-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2989081.2989084

DRAM banks unavailable for some time, delaying processor re-
quests requiring those banks and reducing performance. When the
system is idle, the DRAM is responsible for refreshing itself. These
self-refresh operations are a significant fraction of the energy of an
idle system, and this energy consumption directly impacts battery
life and standby time in mobile devices. As DRAM densities con-
tinue to increase, more refresh operations have to be performed in
a given time period. As a result, the impact of refresh on system
performance and power are also increasing. DRAMs are increas-
ingly operating at higher temperatures due to close proximity to
high-power processors in 2.5D/3D integrated systems as well. Op-
erating in the extended temperature range (85−95 ◦C) doubles the
required refresh rate, further increasing the performance and energy
costs of refresh operations.

It is well-known that different DRAM cells/rows have different
charge retention times and, hence, different refresh requirements
[24, 31]. This property has been effectively exploited to reduce the
cost of refreshes and improve yields in a number of earlier propos-
als [47, 34, 40, 6, 16, 10, 48]. These techniques typically profile
the retention time of each DRAM row, store that information in
main memory, memory controller, external EPROM device, or OS
page table, and then refresh each row at its required rate. The in-
formation can be stored in a variety of data structures such as a
bloom filter, array, linked list, fat tree, or binary tree. For example,
a bloom filter [34] can be used to test the presence of a DRAM row
in a set before sending a refresh request. A linked-list [48] can be
used to create an arbitrary refresh sequence of DRAM rows. These
techniques aim to reduce auto-refresh energy, reduce self-refresh
energy, improve performance, or some combination of these.

We propose a linked-list based refresh scheme, CLARA, which
also takes advantage of retention time variation to reduce the num-
ber of refresh operations required and improve performance. It
achieves these goals with very low overheads and without sacrific-
ing DRAM capacity. Our approach exploits the fact that a refresh
operation implicitly accesses the data in the row being refreshed
in order to both store the refresh characterization in area-efficient
DRAM cells, and to access that information on a refresh to indicate
the next row to be refreshed. This approach enables the following
key benefits:
• Reduces the number of active mode auto refresh commands that

must be sent to the DRAM, improving energy efficiency and per-
formance.
• Reduces the number of self-refresh operations in the low-power

standby mode, saving energy.
• Exploits fine-grained retention time variation within a device.
• Very low hardware overheads (<0.1% area).

The CLARA architecture reduces both auto- and self- refresh by
86.2%, independent of the workload. The auto-refresh reduction

http://dx.doi.org/10.1145/2989081.2989084


�������� ����������������	


������ ���

������ ���

����� ����� �����

�����	
 �����	
 �����	


����� ����� �����

�������������������������������

���	��������

���	��������

�����

����


�����

�������

����

������

������

���������

���

Figure 1: A DRAM channel organization. The circular inset shows the CLARA refresh data as described in Sec. 3.

improves CPU performance by 3.1% and 6.5% in the normal and
extended temperature range, respectively. GPU performance im-
proves by 2.1% in the extended temperature range. CLARA saves
44% of DRAM idle power due to the reduction of self-refresh op-
erations.

2. BACKGROUND

2.1 DRAM Organization
The DRAM main memory is organized into channels. As shown

in Fig. 1, each channel has independent command, address and data
signals. Each channel contains one or more independent ranks.
Each rank typically consists of multiple DRAM chips, often 4, 8
or 16. A DRAM chip is also referred to as a DRAM device. Each
DRAM device, in turn, has one or more independent banks, hence-
forth referred to as device banks. Each device bank typically has
thousands of rows, henceforth referred to as device rows.

The DRAM devices in a rank work in unison and appear as a
single entity to the memory controller. As shown in Fig. 1, multiple
device banks together constitute a Rank-wide bank and multiple
device rows together constitute a Rank-wide row.

2.2 Refresh Mechanism
According to DDR standards [17, 18, 20, 36] each row should

be refreshed once every 64 ms in the normal temperature range
(< 85 ◦C) and once every 32 ms in the extended temperature range
(85−95 ◦C). For the following discussion, we will assume the nor-
mal temperature range of operation. Let N, be the number of rows
in a bank. In the past, the time interval between refresh requests
to a bank, tREFI , was 64 ms/N, and each request refreshed 1 row.
With increasing DRAM densities the number of rows per bank (N)
has also increased. The value of tREFI has been held constant, how-
ever, at 64 ms/8192 ≈ 7800 µs, requiring multiple rows, M, to be
refreshed with every request.

Each refresh request lasts for a refresh cycle time, tRFC, which
includes the time to refresh M rows, precharge the bank and recover
the charge pump. Refreshing multiple rows allows the DRAM ven-

dor to optimize the process and amortize precharging and recover-
ing the charge pump over several row-refresh operations.

Serial and Parallel Refresh. While DRAM vendors do not dis-
close their specific implementation of multi-row refresh, timing pa-
rameters suggest that the mechanism is serial when M ≤ 4 and par-
allel when M > 4. Table 1 shows the refresh cycle time, tRFC when
different number of rows, M are refreshed using the DDR4 Fine
Granularity Refresh (FGR) [20] mode. Let tRC

1, be the time to re-
fresh a single row and trec, be the recovery time. When M ≤ 4,
tRFC = M× tRC + trec. This suggests that the rows are refreshed
sequentially. However, when M > 4, tRFC < M× tRC + trec. This
suggests that multiple rows in different subarrays, are refreshed in
parallel.

Capacity N FGR M M.tRC + trec tRFC
Mode

4 Gb 32 K 4x 1 110 ns 110 ns
4 Gb 32 K 2x 2 160 ns 160 ns
4 Gb 32 K 1x 4 260 ns 260 ns
8 Gb 64 K 1x 8 460 ns 350 ns
16 Gb 128 K 1x 16 860 ns 480 ns

Table 1: Serial and parallel multi-row refresh.2

Auto and Self Refresh Schemes. To maintain data, DRAM
rows must be refreshed in both active (auto-refresh) and idle (self-
refresh) modes. Different DDR standards use different auto-refresh
schemes such as all-bank, per-bank and single-bank refresh. In the
all-bank scheme [18], a refresh command refreshes multiple rows
in every bank of the rank. The entire rank is unavailable for tRFC.
In the per-bank scheme [36], a refresh command refreshes multiple
rows in a single DRAM bank. However, the banks are refreshed in

1tRC is the row cycle time and is equal to the row activate time,
tRAS plus the row precharge time, tRP.

2Number of rows, N is for a DDR4 x8 device. tRC = 50 ns
for the slowest DDR4 part i.e. DDR4-1600 (12-12-12). trec was
estimated to be 60 ns. tRFC values are from DDR4 standard [20].



2.0 2.5 3.0 3.5 4.0

−
5

−
4

−
3

−
2

−
1

0
1

2

log10 (Tret in msec)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(σ
)

●

●

●

●

●

●

●

●

Main Distribution

Tail Distribution

● Silicon Data
Cell Distribution Model
Device Row Distribution

Figure 2: DRAM cell [24] and device row Tret distribution.

a strict round robin order. In the single-bank scheme [25], the banks
can be refreshed in any order. This allows the memory controller
to schedule refresh operations to otherwise idle-banks, optimizing
performance. DDR4’s Fine Granularity Refresh (FGR) [20] is sim-
ilar to all-bank refresh except that it allows refreshing one-half and
one-quarter number of rows on each refresh command, reducing
the period for which the rank is unavailable.

In all the above schemes the refresh row address is maintained
internally by the DRAM devices and is not sent by the memory con-
troller. Earlier DRAMs provided a RAS-only refresh scheme which
allow the memory controller to specify a row address for the refresh
operation. This refresh mode in no longer supported in the most
recent DRAM families. A regular DRAM ‘activate’ operation fol-
lowed by a ‘precharge’ can still allow the memory controller to ef-
fectively refresh a given row, however. These targeted-row refresh
operations are used by the refresh reduction approaches in [23, 34].

2.3 Retention Time Variation
It is well known that different DRAM cells have different charge

retention times. Kim and Lee [31] obtained the distribution for
100, 60 and 50 nm and have projections for 10 nm. A model for the
cell retention time distribution was first proposed by Hamamoto
et al. [24]. The retention time of a cell, Tret can be expressed
as Tret = A× e(Ea/kT ) where, Ea is the trap activation energy, k is
the Boltzmann constant, T is the absolute temperature, and A is
the constant of proportionality. A normal distribution in the trap
activation energy produces a log-normal distribution of cell Tret .

As shown in Fig. 2, the cumulative distribution function (CDF)
of the cell retention time consists of a Main Distribution and a Tail
Distribution. Hamamoto et al. determined that µ(Ea) = 0.68 eV
and σ(Ea) = 0.008 eV for the main distribution; and µ(Ea) =
0.77 eV and σ(Ea) = 0.039 eV for the tail distribution.

The retention time of a device row can be obtained by determin-
ing the minimum Tret of all cells constituting the row. Fig. 2 also
shows the device row Tret distribution. As shown in the plot and
tabulated below, the percentage of device rows with 64 ms<=Tret<
128 ms is only about 0.03%. More than 90% of device rows have a
Tret>= 512 ms. However, current DRAM devices refresh each row
every 64 ms. This is very pessimistic and results in performance
and power loss. We exploit this variation to reduce both auto and
self-refresh, thereby improving performance and power.

3. CLARA ARCHITECTURE

Tret Percentage
64 ms ∼ 0.03

128 ms ∼ 0.60
256 ms ∼ 7.5
512 ms ∼ 91

Table 2: DRAM device row Tret distribution.

CLARA exploits the variation in retention time at a DRAM de-
vice level to reduce both auto and self refresh. In order to take ad-
vantage of this variation, the retention characteristics of each device
row must first be profiled. We discuss this profiling and associated
guard-banding in detail in Sec. 4.1. For the purposes of this section,
we assume the device rows have been profiled. We describe how
the device rows are categorized according to their retention time,
and then we describe the linked-list architecture that enables only
the necessary rows to be refreshed at the required rates.

3.1 Categorizing the Rows
In order to simplify the hardware, we group rows with similar

retention times into groups that will be refreshed at the same rate.
Depending on the Tret , we bin the device row into one of 4 cate-
gories viz. 64 ms, 128 ms, 256 ms or 512 ms. We call the number
of rows in a device bank with Tret of 64 ms, 128 ms and 256 ms as α ,
β , and γ respectively. If the total number of rows in a device bank is
N, the number of device rows with Tret of 512 ms = N−α−β −γ .

We call an interval of 64 ms an epoch. Thus, a device row with
Tret = 64 ms will require a refresh every epoch, a device row with
Tret = 128 ms will require a refresh every alternate epoch, and so
on, as summarized in Table 3.

From the table, we observe that in epochs 0, 2, 4 and 6, only
rows with Tret = 64 ms, i.e. α rows, require refresh; in epochs 1
and 5, rows with Tret = 64 ms and 128 ms, i.e. α +β rows, require
refresh; and in epoch 3, rows with Tret = 64 ms, 128 ms and 256 ms,
i.e. α+β +γ rows, require refresh. Finally, in epoch 7, all rows, i.e.
N rows, require refresh, and is the same as the conventional refresh
scheme. The different epochs have different refresh requirements.
Overall, by refreshing only the required rows in each epoch, we can
reduce refresh overheads. Our proposed linked list based refresh
architecture achieves this goal.

Epoch Tret = Tret = Tret = Tret = # Refresh
(64 ms) 64 ms 128 ms 256 ms 512 ms Required

0 Y α

1 Y Y α +β

2 Y α

3 Y Y Y α +β + γ

4 Y α

5 Y Y α +β

6 Y α

7 Y Y Y Y N

Table 3: Variable refresh requirements.

3.2 Linked List Architecture
The key insight behind the CLARA architecture is that when a

row in a DRAM device is refreshed, the data in the row is read
into the sense-amplifiers in order to be restored back into the bit-
cells. We take advantage of this implicit read operation in order to
traverse a linked-list of rows with identical refresh requirements. In
this section we describe how the linked-list is stored and organized
in the device bank, and then explain how the refresh logic in the



���������

�	
���

����

��	���

	����

������

� �������

����� �������

� �������

����� ���	
����

� �������

����� ��	�����

Figure 3: Circular linked-list in a device bank.

device bank uses this linked-list to refresh only the required device
rows in each epoch, during both auto and self refresh.

Linked List Storage and Organization. Fig. 1 shows a device
bank with device rows. We propose to add a few bits to each device
row. These additional bits are called refresh-data bits. The data and
refresh-data bits share the same access logic such as word lines, row
decoders etc., and are activated/refreshed at the same time. We ex-
ploit the fact that a row refresh operation effectively reads the entire
row (data and refresh-data). In addition to being written back to the
array, the refresh-data is used internally by the device bank refresh
logic to determine the next refresh row address. The refresh-data
bits are not read or written by the memory controller except during
configuration.

As shown in the circular inset in Fig. 1 and in greater detail in
Fig. 3, the refresh-data within each bank is organized so as to form
a circular linked list of rows. The refresh-data bits hold only the
address offset to the next node (row). The first row of each device
bank, i.e. address = 0, is assumed to have a Tret of 64 ms and
serves as the head of the linked list. As shown in Fig. 3, we first
link all rows with Tret = 64 ms, then link all rows with Tret = 128 ms
and then link all rows with Tret = 256 ms. The last row with Tret
= 256 ms points to the first row. In Fig. 3 the refresh-data has
been replicated for clarity. In Sec. 3.5, we describe in detail how to
generate this linked list.

In addition, there are three registers which hold the count of rows
with Tret = 64 ms, 128 ms and 256 ms, i.e. the values α , β , and γ

respectively. It follows that α +β + γ is equal to the length of the
linked list.

From Table 3, in epoch 7, when rows with Tret = 512 ms are
refreshed, all other rows are refreshed as well. This is the same as
conventional refresh and no refresh-data is used. Therefore, there
is no need to include rows with Tret = 512 ms in the linked list or
provide a register to hold the count of rows with Tret = 512 ms.

Basic Operation. The linked-list organization allows us to re-
fresh only the required device rows in each epoch. In epochs 0, 2,
4 and 6, only rows with Tret = 64 ms require refresh, which are the
first α entries in the linked list; in epochs 1 and 5, rows with Tret =
64 ms and 128 ms require refresh, which are the first α +β entries
in the linked list; and in epoch 3, rows with Tret = 64 ms, 128 ms
and 256 ms require refresh, which are the first α +β + γ entries in
the linked list. In epoch 7, all N rows are refreshed and the linked
list is not used. At the beginning of each epoch we start at the head
of the linked list. Also, since the organization is a linked list and
is circular, it can easily handle additional requests in any epoch. A
few additional requests can arrive in the case of multi-row refresh
and when the system has multiple banks and devices, as explained
below.

For self-refresh, the control logic in the bank uses the three reg-
ister values (α, β , γ) to generate the appropriate number of refresh
commands in every epoch. For auto-refresh, the memory controller
maintains a copy of the same three register values, and sends the ap-
propriate number of auto-refresh commands in every epoch. Note
that the self-refresh logic and the memory controller do not need
to know which device-rows require refresh, only how many require
refresh in a particular epoch.

Supporting Multi-Row Refresh. In conventional gigabit de-
vices, each request typically refreshes 2, 4, 8 or more rows. In
CLARA, we refresh the same number of rows in every command.
However, we obtain the row addresses from the linked list.

Assuming, each command refreshes M rows, it follows that the
device bank should receive at least dα/Me requests in epochs 0, 2,
4 and 6; at least d(α +β )/Me requests in epochs 1 and 5; and at
least d(α +β + γ)/Me requests in epoch 3. In epoch 7, it should
receive dN/Me requests.

A refresh request can arrive from either the memory controller
or the internal self-refresh logic. On receiving a refresh request,
the bank refreshes M rows of the linked list following the steps in
Procedure 1, where N is the number of rows in a device bank, row
is the array of rows in the bank, refreshdata is the associated array
of refresh-data in the bank, epoch is the current refresh epoch, and
address is the refresh row address. address is reset to zero, at the
beginning of every epoch.

Procedure 1 Linked-list based device bank refresh logic.

count = 0
while count < M do

Refresh row[address]
if epoch = 7 then

address = address+1
else

address = address+1+ refreshdata[address]
end if
address = address mod N
count = count +1

end while

3.3 Supporting Multiple Banks & Devices
The description above focused on a single bank within a single

device. In practice, a memory channel consists of multiple ranks
each with multiple devices and multiple banks. However, it is im-
portant to note that all banks in all devices have the same statistical
distribution (mean and variance) of retention times. Therefore, the
values of α , β and γ are similar for all device banks. For example,
the number of rows with Tret = 64 ms is similar across all device
banks.

Therefore in CLARA for auto-refresh, the memory controller
stores and uses only the values of max(α), max(β ) and max(γ).
This results in a small number of additional refresh operations in
some device-banks. This is easily handled by the circular linked-
list design. However, the big advantage is very small storage and
control overheads in the memory controller, as explained below
with the help of an example. For self-refresh, the control logic in
every device bank uses the local values of α , β , and γ , as already
explained.

Let’s assume there are two devices P and Q in a rank, each with 2
banks (0 and 1). Let the distribution of Tret i.e. values of α , β and γ ,
for the 4 device banks be as shown in Table 4. These values are for
a bank with N = 64 K rows and follow the distribution as obtained
in [24]. For these values, max(α) = A = 28, max(β ) = B = 440



and max(γ) = Γ = 5225. Also, assume each auto-refresh command
refreshes M = 8 rows. Given the values of A, B, Γ, N and M, we
can calculate the number of auto-refresh commands in each epoch.

Count P0 Q0 P1 Q1
64 ms (α) 17 28 23 18
128 ms (β ) 407 386 396 440
256 ms (γ) 5080 5179 4997 5225
512 ms 60032 59943 60120 59853
Total 65536 65536 65536 65536

Table 4: Example Tret distribution of 4 device banks.
The memory controller sends dA/8e i.e. 4 requests in epochs

0, 2, 4 and 6; d(A+B)/8e i.e. 59 requests in epochs 1 and 5;
and d(A+B+Γ)/8e i.e. 712 requests in epoch 3. In epoch 7,
all rows are refreshed and the controller sends the usual 8 K re-
quests. Overall, in 8 epochs, the CLARA memory controller sends
4×4+2×59+712+8192= 9038 requests. A conventional mem-
ory controller will send 8 K requests every epoch and 64 K overall.
This is a significant reduction in the number of auto-refresh com-
mands over the conventional scheme.

These values can be used for all refresh schemes such as all-
bank, per-bank, single-bank, and Fine Granularity Refresh (FGR).
In FGR, the memory controller can setup the banks to refresh one-
half or one-quarter rows every auto-refresh command. In this mode,
the memory controller can repeat the above calculations using M =
4 or M = 2, instead of M = 8; or simply double or quadruple the
previously calculated values. Using per bank α , β , and γ values
instead of A, B, and Γ values would further reduce the single-bank
refresh by≈ 0.27% and the all-bank refresh by≈ 0.03%. The stor-
age and complexity reduction in the memory controller by using
just 3 values far outweigh these additional savings.

3.4 Hardware Implementation
Fig. 4 shows the hardware implementation of the linked-list

based refresh logic in the device bank. The additional blocks re-
quired by our scheme are shown in gray, and consist of a 3-bit
epoch counter, an adder and a multiplexer. Every epoch i.e. 64 ms,
the timer increments the epoch counter as well as resets the row
address to zero. Depending on the epoch, the multiplexer chooses
the address from either the linked list or the conventional address
incrementor.

Timing Overhead. As it is in conventional devices, this address
generation logic is used when the row is being written back from
the sense amplifiers to the array, and it is not in the critical path
of the refresh operation. The delay introduced by an adder and a
multiplexer is insignificant compared to the row precharge time,
tRP, which is about 15 ns [20, 2, 19] and hence, there is no timing
overhead.

Area Overhead. As mentioned in Sec. 3.2, the refresh-data bits
are stored as additional bits with every row. The refresh-data stor-
age overhead is, however, very small. Consider, for example, a
state of the art DDR4, 8 Gb, x8 device [20]. Each device bank has
N = 65536 rows, with a device row size of 2 KB. If the number
of refresh-data bits, L = log2N = 16 bits, the storage overhead is
(16/16384) = 0.098%. This is an insignificant overhead. In Sec-
tion 6.1, we show that we can reduce this overhead even more.

The area overheads in the memory controller are three 16-bit
registers, an adder, a shifter and some control logic to send the ap-
propriate number of auto-refresh commands in every epoch. These
are very small overheads. CLARA uses the same auto-refresh com-
mand as in conventional systems and does not introduce any new
refresh commands.

���������		

�
��
�
�

�
�
�
�	





��

����

�����
��	��

����������

�����	�

����
�����	��

����

Figure 4: Linked-list based device bank refresh logic.
Power Overhead. Accessing 16 extra bits for every 16K bits has

insignificant power overhead of 0.098% during activate, precharge
and refresh. There is no overhead on read, write or bus power.
Overall, power saved during active (2-6%) and idle (44%) far out-
weigh the overheads. (See evaluation).

3.5 Device Bank Linked-List Generation
As mentioned in Sec. 3.2, the refresh-data within each device

bank is organized so as to form a circular linked-list of rows. The
refresh-data bits hold the address offset to the next node. Let offset
be the address offset between two nodes of the linked list. If the
number of refresh-data bits is L, then the maximum offset distance,
D = 2L, (1 through 2L). If N is the number of rows in a bank and if
L= log2N, then D=N, i.e. the maximum offset distance is equal to
the number of rows in a bank. In this case, constructing the linked
list as described in Sec. 3.2 is always possible and straightforward.

When L < log2N, three cases arise. We will explain the linked
list construction for each case using an example. For these exam-
ples, let N = 20, L = 3, and D = 8.
Case 1: offset ≤ D
As shown in Fig. 5a, the offset between rows with Tret = 64 ms;
between the last row with Tret = 64 ms and the first row with Tret
= 128 ms; between rows with Tret = 128 ms and so on is less than
D. In this case, a linked list can be easily formed.

Case 2: offset > D
As shown in Fig. 5b, the offset between the third and fourth rows
with Tret = 64 ms is larger than D. In this case we find a victim row
whose offset ≤ D and Tret is larger than the current Tret value be-
ing linked, in this case 64 ms. We then demote its Tret value to the
current Tret value being linked, in this case 64 ms. Effectively, we
use victim rows as stepping stones to aid the linked list construc-
tion. Obviously, the number of victim rows falls with increasing
D.
When it is possible to pick a victim row from among multiple
eligible rows, we heuristically select the one which maximizes
the offset, as shown in Fig. 5b. In some cases we might need to
find multiple victim rows between a pair of rows. Again, we select
victim rows which maximize the offset so that the total number of
victim rows between the pair of rows is minimized.
If the offset between, say the last row with Tret = 64 ms and the



�
�
�
��

�

(a) Case 1

������

�

�
�
�
��

�

(b) Case 2

� �

�

�

�
�
�
��

�

(c) Case 3

������

�����

	�����

�	����

Figure 5: Device bank linked-list generation.

first row with Tret = 128 ms is larger than D, then we find a victim
row whose offset ≤ D and Tret is larger than 128 ms. We then
demote its Tret to the higher of the two endpoints, in this case
128 ms.

Case 3: (offset > D) && (!victim row)
As shown in Fig. 5c, the offset between the first and second rows
with Tret = 128 ms is larger than D. In addition, we cannot find a
victim row as all the intermediate rows have Tret = 64 ms. In this
case, we demote all rows of the current Tret value being linked to
the next lower Tret value. In our example, we demote all rows with
Tret = 128 ms to 64 ms. We then have to redo the linked list for Tret
= 64 ms, as shown in Fig. 5c. If we now continue to link rows with
Tret = 256 ms, we will encounter the same issue and those rows
will also need to be demoted to 64 ms. This case happens when
the maximum offset, D is almost equal to the number of retention
time bins. In our proposal, this happens when D = 4 i.e. L = 2.

In our evaluation we show the trade-off between the number of
refresh-data bits and refresh reduction.

4. RELATED ISSUES

4.1 Profiling and Configuration
Initialization. At power-on, the DRAM module and memory

controller are set by default to the traditional mode of refreshing
all DRAM rows at the default maximum rate. The system software
or BIOS is responsible for reading the refresh profile linked-list
information from disk or non-volatile memory and populating the
refresh linked-list held in each DRAM row via a new DRAM com-
mand (an extension of the existing MRS commands). This com-
mand writes specified refresh-data to the currently activated row.

At the time the system is first commissioned or after any DRAM
module is replaced, which can be detected utilizing serial num-
ber data in the SPD data, no refresh profile data is available. The
system software manages refresh characterization of the module(s)
and the construction of the linked-list, as described below. Note
that this characterization and linked-list construction has to be done
only once.

Profiling and Linked-List Construction. The first step towards
exploiting variation is to profile the Tret of each device row. A
variety of proposals discussing variation in DRAMs [34, 47, 31,
24] and eDRAMs [29, 32, 49, 15, 4, 5] have used and/or proposed
Tret profiling schemes.

Profiling and linked-list construction cannot be done on a tester
as the information would be lost soon after. In-situ profiling of the
refresh characteristics of the module may not represent the worst-
case temperature and voltage, however, the behavior of DRAM

cells under different temperature and voltage conditions is reason-
ably well characterized. These effects and others can be accounted
for analytically and with the application of appropriate guard-bands.

Profiling under DPD and VRT. For CLARA, to protect against
DPD effects, we use the test patterns in [33]. The profiling temper-
ature is obtained from the on-chip temperature sensor and then the
Tret value at 85 ◦C is obtained using the equation in [4, 14]. We
apply a guard band to protect against worst-case voltage. Finally,
to protect against VRT effects, we apply a guardband of 4x. This is
because experimental data in [33] shows that the maximum change
in Tret due to VRT is ∼ 4x.

Note that the memory vendor guarantees that all lines have Tret
>= 64 ms at 85 ◦C even under worst-case voltage and VRT. There-
fore, even if we apply a very large guard band (voltage and VRT)
on the measured values, all rows will have a Tret of 64 ms but not
lower.

Binning. Depending on the precision of the profiling routine, the
measured Tret values can take a large number of distinct values. To
simplify the hardware implementation, we use only a finite set, S of
Tret values. We choose, S ={64 ms, 128 ms, 256 ms, 512 ms}. Us-
ing a larger set by adding a bin for 1024 ms offers only marginally
more savings as shown in Sec. 6.1. Note that there are no rows with
Tret less than 64 ms at 85 ◦C.

4.2 Tester & Testing Time
A tester checks the functionality of DRAM array bits and pe-

ripheral logic at the worst case temperature and voltage. Some
repairs, using spare rows and/or columns, are also performed to
improve yields. CLARA’s overhead in the DRAM array is only
about 0.098%. The additional blocks introduced in the peripheral
logic are an adder, a multiplexer and a counter. Hence, the testing
overheads are minimal.

Note that profiling or linked-list construction is not done on the
tester. Also chips which pass are guaranteed to have a Tret>= 64 ms
at 85 ◦C even under Data Pattern Dependence (DPD) and Variable
Retention Time (VRT) effects.

4.3 Serial and Parallel Refresh
Let M be the number of rows refreshed every command. If the

rows are refreshed sequentially (typically when M ≤ 4) the linked
list organization and the refresh logic are as described in the sec-
tions above. If rows from multiple subarrays are refreshed in paral-
lel (likely when M≥ 8), multiple linked lists can be maintained and
traversed. For example, assume the upper and lower half of a bank
each refresh 4 lines sequentially. Also assume the upper and lower
halves work in parallel to refresh M = 8 rows every command. In
this case we maintain and traverse two smaller linked lists, one each



CPU Parameters
Chip 4 core CMP
Core 3.2 GHz, 4 issue Out-of-Order
Instruction L1 32 KB, 2 way, Private, Write through
Data L1 32 KB, 2 way, Private, Write through
L2 256 KB, 8 way, Private, Write back
L3 4 MB, 4 banks, Shared, Write back
Coherence Snoopy MESI Protocol at L2
Line Size 64 Bytes
Main Memory 32 GB, DDR3L-1600, 25.6 GB/s

CPU Memory Parameters
Channels 2
Ranks per Channel 2
Device Width 8 bits
Devices per Rank 8
Device Density 8 Gb
Banks per Device 8
Rows per Bank 64 K
Columns per Bank 2 K

Device Timing Parameters
Device Micron MT41K1G8 [19]
tREFI (< 85 ◦C) 7800 ns
tREFI (85−95 ◦C) 3900 ns
tRFC 350 ns
tRCD− tRP−CL 11-11-11 DRAM clocks

Table 5: CPU architectural parameters.

for the upper and lower half. The upper and lower halves each will
have the logic as in Fig. 4.

4.4 Soft Error Detection and Recovery
According to [44] ∼ 50% of DRAM errors are single bit errors.

We can efficiently detect these common bit errors in the linked-
list values using a parity. Alternatively, stronger error detection
and correction could be added to reliability conscious systems with
little overhead — even the extreme of triple-redundancy for all
linked-list values increases the overhead from 0.098% to 0.294%.

The linked list value is checked for errors in parallel with the
next row address generation in Fig. 4. If the check fails during
auto-refresh, the refresh logic can notify the MC using a dedicated
pin. The memory controller can then set the bank or the entire
rank (depending on ‘single-bank’ or ‘all-bank’ scheme) to operate
in epoch 7 (conventional) and refresh all rows every epoch, until
it reloads the correct refresh-data to rebuild the linked list. If the
check fails during self-refresh, the refresh logic can switch to epoch
7 and refresh all rows every epoch. It can notify the memory con-
troller immediately or on exit from self-refresh mode.

4.5 Temperature Adaptation
In the extended temperature range (85−95 ◦C), the refresh rate

is doubled. In this range, CLARA reduces the epoch length from
64 ms to 32 ms. The MC and the self-refresh logic initiate the
same number of refreshes, as obtained in Sec. 3.3 and Sec. 3.2,
respectively, but in half the time. The timer in Fig. 4 increments
the epoch and resets the row address every 32 ms instead of 64 ms.

5. EVALUATION SETUP

5.1 Architectural Parameters
We evaluate CLARA on a simulated 4 core chip multi-processor

(CMP). Each core has a 4 issue, out-of-order execution engine run-

GPU Parameters
Number of SMs 30
Threads per SM 1024
Warp Size 32
L1/L2/Cacheline Size 32 KB / 786 KB / 128 B
Main Memory GDDR5

GPU Memory Parameters
Channels 6
Ranks per Channel 1
Device Width 32 bits
Devices per Rank 2
Device Density 16 Gb
Banks per Device 16 banks in 4 bank-groups
Rows per Bank 64 K
Row Size 2 KB

Device Timing Parameters
Device Hynix H5GQ1H24AFR [1]
tREFI 3900 ns
tRFC 350 ns
tRCD− tRP−CL 12-12-12 ns

Table 6: GPU architectural parameters.

ning at 3.2 GHz. Each core also has a private instruction L1 cache,
a data L1 cache and a unified L2 cache. The cores share a L3 cache,
which is divided into 4 banks. The chip employs a snoopy MESI
coherence protocol between the L2s. The L3 cache is connected to
the off chip main memory.

The CPU main memory is organized as 2 channels of DDR3L-
1600, with a peak bandwidth of 25.6 GB/s. Each channel has 2
ranks and each rank has 8 banks. The total memory capacity is
32 GB. In normal operating conditions (< 85 ◦C), the memory con-
troller issues a refresh request every 7800 ns (tREFI). In extended
temperature range (85−95 ◦C), the memory controller issues a re-
fresh request every 3900 ns (tREFI). Higher temperatures are likely
in server environments, 3D stacked organizations, automotive sys-
tems etc. The architectural parameters are summarized in Table 5.
Detailed DRAM timing parameters were obtained from [19].

We evaluate the impact of CLARA on a throughput processing
environment using the GPGPUSim [7] simulator. We simulate a
GTX-480-like system that has 30 SMs, each with 1024 threads
(warp-size of 32) and a 32 KB L1 cache. We simulate 6 mem-
ory partitions, each with a 128KB L2, and a 64-bit DRAM channel
comprised of two x32 GDDR5 devices. Each channel has 16 banks
organized into 4 bank groups. We assume a futuristic 16 Gb de-
vice with 64 K rows and tRFC = 350 ns. A GDDR5 device issues
a refresh request every 3900 ns (tREFI). The GPU architectural
parameters are summarized in Table 6. DRAM timing parameters
were obtained from [1].

5.2 Applications and Tools
We evaluate CPU performance using applications from NAS Par-

allel Benchmarks (NPB) [39], SPEC CPU2006 [26], and HPC Chal-
lenge (HPCC) Benchmark [27]. The applications and their prob-
lem sizes in parenthesis are as follows: BT (small), CG (worksta-
tion), IS (workstation), LU (small), MG (workstation), SP (small),
astar (test), bzip2 (test), gromacs (test), h264ref (test), lbm (test),
libquantum (train), mcf (test), milc (test), povray (test), DGEMM
(1024×1024), STREAM2 (default), PTRANS (4096×4096), and
Jacobi (500× 500). All applications from NAS parallel bench-
marks and HPCC benchmarks (except STREAM2), and Jacobi have
4 threads; while applications from SPEC suite are single threaded.



We evaluate GPU performance using applications from the Ro-
dinia benchmark suite [13]. The applications are as follows: Back
Propagation, Breadth First Search, B+ Tree, CFD Solver, Gaussian
Elimination, Heart Wall, HotSpot, Kmeans, LavaMD, LU Decom-
position, Needleman-Wunsch, Particle Filter and SRAD.

We use the DRAM cell Tret distribution in [24] to generate the
Tret values of 128 device banks, each with 1 G (230) cells. The re-
fresh reduction reported in Sec. 6 is the average across 128 device
banks. To estimate CPU system performance we use SESC [42] in-
tegrated with DRAMSim2 [43, 21]. To estimate GPU performance
we use GPGPUSim [7]. We use R [41] for statistical analysis.

5.3 Comparison with Prior Work
We compare CLARA against the following schemes for auto and

self refresh reduction and performance improvement:
Baseline. The conventional refresh scheme where the memory

controller issues 8 K auto refresh commands every 64 ms. Each
command refreshes 8 rows, thereby refreshing 64 K rows every
64 ms.

RAIDR. A recently proposed scheme [34], which bins the Tret
of a ‘rank-wide row’ into one of 3 retention categories i.e., 64 ms,
128 ms or 256 ms. It reduces the number of refresh commands,
however, each command refreshes only 1 rank-wide row by using
the deprecated ‘RAS-only-refresh’ mode. RAIDR logic overhead
increases with number of retention categories (bins). With 4 bins,
most refresh requests (> 90%) require 3 bloom filter checks. There-
fore, RAIDR uses 3 bins. We will, however, also compare against
a RAIDR implementation which uses 4 bins i.e. 64 ms, 128 ms,
256 ms and 512 ms.

Ideal. A refresh scheme where the Tret of each device row can
be measured, and each device row can be refreshed, with arbitrary
precision.

Among schemes which exploit variation, RAPID [47] and RIO [6]
trade off DRAM capacity for refresh reduction. In addition, they re-
quire operating system modifications. DTail-R [16] uses the DRAM
physical address space to store refresh-data but that refresh-data
has to be accessed once every 128 refresh decisions. VRA [40] is
similar to CLARA only in the part that it stores additional bits per
DRAM row. However, as discussed in Sec. 7, the area and layout is-
sues of VRA makes it unrealistic for current systems. RAIDR [34]
is a hardware only scheme that does not require software modifica-
tion or result in DRAM capacity loss. Hence, we compare against
it. REFLEX [10] is similar to RAIDR w.r.t. auto-refresh reduction.
Please see Sec. 7 for a detailed discussion. We will do the evalu-
ation in both the normal (< 85 ◦C) and the extended (85− 95 ◦C)
temperature range.

6. EVALUATION

6.1 Refresh Data Length
Fig. 6 shows the number of refreshes in a bank as a function

of number of refresh-data bits per row. The bank has N = 64 K
rows and each row has 16384 bits. The X-axis shows the number
of refresh-data bits per row, L which varies from 0 i.e. no refresh-
data bits to log2N = 16 i.e. the maximum number of bits required
to store an offset. The Y-axis shows the total number of refreshes
in 8 epochs i.e. 512 ms.

L = 0 corresponds to the baseline and the total number of re-
freshes is equal to 64 K×8 = 524288. As we increase L, the num-
ber of refreshes drops very quickly. This is because the number
of victim rows reduce exponentially. With just 5 bits, the number
of refreshes is less than 20% of the baseline. With 10 bits, it is
13.79% of the baseline. As discussed in Sec. 3.5, when L = 16

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●

0 5 10 15

0
10

0
20

0
30

0
40

0
50

0

Refresh data bits per row

To
ta

l r
ef

re
sh

es
 in

 5
12

 m
s 

(x
10

3 )

●

Baseline
CLARA
Ideal

Figure 6: Total refreshes vs refresh data bits per row.

the linked list can be constructed without any victim rows. In this
case each row can be refreshed at its required rate and we perform
the minimum number of refreshes i.e. 71956, which is 13.72% of
the baseline. The ideal scheme requires 40508 refreshes, which is
7.72% of the baseline. From the data we observe that there are no
victim rows even with 14 or 15 bits. Therefore, the area overhead
of CLARA in the DRAM array is only 14/16384×100 = 0.085%.
The peripheral logic area overhead is only an epoch counter, an
adder and a multiplexer.

Adding a bin of 1024 ms reduces the number of refreshes by an
additional 2.5% i.e. to 11.2% of the baseline. These are diminish-
ing returns with additional hardware.

6.2 Auto and Self Refresh
Fig. 7 shows the auto- and self-refresh reduction using different

refresh schemes. The X-axis shows two sets of bars, one for the
auto-refresh mode and one for the self-refresh mode. Each mode
is evaluated at the baseline, RAIDR, CLARA and the ideal refresh
schemes. The Y-axis shows the reduction w.r.t. the baseline. All

73.58

86.27

92.27

 0

 50

 100

Auto Refresh Self Refresh

R
e
fr

e
s
h
 R

e
d
u
c
ti
o
n
 (

in
 %

)

RAIDR = 0

RAIDR CLARA Ideal

Figure 7: Auto and self refresh reduction comparison.



 0

 1

 2

 3

 4

 5

 6

 7

 8

BT C
G

IS LU M
G

SP astar

bzip2

grom
acs

h264ref

lbm
libquantum

m
cf

m
ilc

povray

D
G
EM

M

STR
EAM

2

PTR
AN

S

Jacobi

M
ean

P
e
rf

o
rm

a
n
c
e
 G

a
in

 (
in

 %
)

RAIDR CLARA Ideal

Figure 8: CPU performance gains comparison in normal temperature range (< 85 ◦C).

 0

 2

 4

 6

 8

 10

 12

 14

 16

BT C
G

IS LU M
G

SP astar

bzip2

grom
acs

h264ref

lbm
libquantum

m
cf

m
ilc

povray

D
G
EM

M

STR
EAM

2

PTR
AN

S

Jacobi

M
ean

P
e
rf

o
rm

a
n
c
e
 G

a
in

 (
in

 %
)

RAIDR CLARA Ideal

Figure 9: CPU performance gains comparison in extended temperature range (85−95 ◦C).

 0

 2

 4

 6

 8

 10

 12

 14

 16

Back Prop.

BFS
B+ Tree

C
FD

G
aussian

H
eart W

all

H
otSpot

Km
eans

LavaM
D

LU N
W

P. Filter

SR
AD

M
ean

P
e
rf

o
rm

a
n
c
e
 G

a
in

 (
in

 %
)

RAIDR CLARA Ideal

Figure 10: GPU performance gains comparison in extended temperature range (85−95 ◦C).

schemes are hardware based and the refresh reduction is applica-
tion agnostic. In the extended temperature range, the refresh rate
doubles for all the schemes and hence, the percentage reduction is
the same as in the normal temperature range.

CLARA stores refresh data within the DRAM devices and hence,
as explained in Sec. 3.2 and Sec. 3.3, can be used during both
auto- and self-refresh modes. On the other hand, RAIDR stores
refresh data in the memory controller which can be used only in
auto-refresh mode. CLARA’s simple hardware allows us to use 4
retention bins as opposed to 3 in RAIDR. In addition, CLARA ex-
ploits variation at a finer ‘device-row’ granularity as opposed to the
coarser ‘Rank-wide-row’ granularity used in RAIDR.

Overall, CLARA achieves a reduction of 86.2% in both auto- and
self-refresh while RAIDR reduces auto-refresh by 73.5%. RAIDR
with 4 bins reduces auto-refresh by 79.0%. RAIDR does not reduce
self-refresh at all. Auto-refresh reduction leads to performance im-
provements and is quantified in the following section. A reduction
of 86.2% in self-refresh reduces DRAM idle power by 44%.

VRT Guard Band. Even with a VRT guard band of 2x and 4x,
CLARA achieves a refresh reduction of 77.7% and 56.1% respec-
tively, during both auto- and self-refresh. Using the same guard
bands, RAIDR only reduces auto-refresh by 59.7% and 24.7% re-

spectively.

6.3 Performance
Figures 8 and 9 show the CPU performance gain of applications,

using different refresh schemes, in the normal and extended tem-
perature range respectively. Figure 10 shows the GPU performance
gain in the extended temperature range. In all plots, the X-axis is
divided into multiple sets, one for each application and one for the
geometric mean. Each application is run on the baseline, RAIDR,
CLARA, and the ideal refresh schemes. The Y-axis shows the per-
formance gain w.r.t. the baseline. In active mode, a reduction in
auto-refresh commands increases DRAM bank availability which
in turn improves performance. When the DRAM is in self-refresh,
the CPU/GPU is either working from its caches or is also sleeping
and hence there is no performance impact.

We observe that CPU applications which are either compute in-
tensive or whose working set fits within the last level cache are
not affected by the main memory subsystem and do not show any
performance gains. On the other hand, memory intensive applica-
tions can exhibit a performance improvement of up to 7.5% in the
normal temperature range. As shown in Fig. 8, on average across
all 19 applications, CLARA performs better than RAIDR and im-



Improves Tret /Validity No Program # Refreshes No DRAM
Auto Self Perfor Device Data in and/or OS Program CapacityExploits Scheme

Refresh Refresh mance Granularity Device Modification Independent Loss
Variation CLARA 3 3 3 3 3 3 3 3

REFLEX [10] 3 3 3 7 7 3 3 3
RAIDR [34] 3 7 3 7 7 3 3 3
RAPID [47] 3 3 * 7 7 7 7 7
VRA [40] 3 3 7 3* 3 3 3 3
RIO [6] 3 3 3 7 7 7 3 7
DTail-R [16] 3 7 3 7 7 7 3 7
Wang patent [48] 7 7 7 7 3* 3 3 7*

Access Pattern Smart Refresh [23] 3 7 3 7 7 3 7 3

Non-critical/ Flikker [35] 3 3 7 7 3 7 7 3
Invalid Data SRA [40] 3 3 7 7 3 7 7 3

ESKIMO [28] 3 3* * 7 3 7 7 3
PARIS [6] 3 7 3 7 7 7 7 3
DTail-V [16] 3 7 3 7 7 7 7 7

Scheduling Ref. Pausing [38] 7 7 3 n/a n/a 3 n/a 3
Elastic Ref. [46] 7 7 3 n/a n/a 3 n/a 3
DARP&SARP [11] 7 7 3 n/a n/a 3 n/a 3
CREAM [50] 7 7 3 n/a n/a 3 n/a 3
Adaptive [37] 7 7 3 n/a n/a 3 n/a 3
Coordinated [8] 7 7 3 n/a n/a 3 n/a 3

Legend: Yes(3), No(7), Not evaluated(*), Not applicable(n/a)

Table 7: CLARA compared with existing DRAM refresh management techniques.

proves performance by 3.1% in the normal temperature range.
In the extended temperature range, the refresh rate and the bank

unavailability doubles and hence the performance penalty in the
baseline is higher. The same reduction (86.2%) in auto-refresh
commands, therefore leads to higher performance gains. As shown
in Fig. 9, on average across all 19 applications, CLARA performs
better than RAIDR and improves performance by 6.5%.

GPU applications benefit from reducing the refresh frequency,
however the performance improvements vary depending on the ap-
plication (maximum 11% over the baseline with CLARA). Due
to high thread-level-parallelism, GPUs are relatively insensitive to
small variations in DRAM latency [3], and so the impact of refresh
interruptions are most visible in bandwidth-bound workloads such
as Kmeans. In all cases however, CLARA outperforms RAIDR as
expected.

Energy. In active mode, a performance improvement of 2-6.5%,
proportionally reduces system energy by 2-6.5%. In idle-mode,
when the CPU/GPU is powered down, we reduce DRAM energy
by 44% and hence system energy by 44%.

7. RELATED WORK
A variety of techniques have been proposed for refresh manage-

ment in DRAMs. These techniques either reduce auto-refresh, re-
duce self-refresh, improve performance or a combination thereof.
For example, techniques which reduce auto-refresh often (not al-
ways) result in better performance, while refresh scheduling tech-
niques only result in better performance. These techniques vary
in their granularity, application and/or Operation System (OS) sup-
port, information storage location, capacity loss and so on.

These techniques exploit either the variation in retention time
(similar to CLARA), data access patterns, data criticality/validity
or scheduling flexibility. We have classified all techniques into
these categories as shown in Table 7. For each technique we tab-
ulate its ability to reduce auto-refresh, reduce self-refresh and im-
prove performance. In addition, we catalog if the technique, works
at a DRAM device granularity, stores row Tret /validity data in the

DRAM device, does not requires application and/or OS modifica-
tions, and does not result in DRAM capacity loss. If the technique
reduces auto- and/or self-refresh we note if the reduction is appli-
cation agnostic. A good overview of existing refresh schemes can
also be found in [9].

An ideal refresh scheme should have all the above properties.
It should reduce auto- and self-refresh and improve performance.
The refresh reduction should be application agnostic. It should not
require application and/or OS modification for maximum portabil-
ity or result in DRAM capacity loss. For maximum benefits, the
scheme should be able to exploit Tret variation/validity information
at a ‘device-row’ level instead of a ‘Rank-wide row’ level. For a
scheme to be useful in self-refresh and to reduce storage overhead,
the scheme should store Tret variation/validity information in the
DRAM device.

Variation. Amongst the schemes which exploit Tret variation,
RAPID [47] and RIO [6] trade off DRAM capacity for refresh re-
duction (auto and self). Both schemes operate on an OS-page gran-
ularity and remove the leakiest pages from the pool of physical
pages which can be used by the OS. DTail-R [16] stores Tret data
in a reserved space in the DRAM physical address space. The Tret
data has to be accessed every 128 refresh decisions but was shown
to improve auto-refresh and performance. RAIDR [34] stores Tret
data in bloom filters and can improve auto-refresh and performance
but not self-refresh. The only similarity between CLARA and VRA
[40] is that both store Tret information per row in the DRAM de-
vice. VRA needs a comparator per row as well. While CLARA
stores the bits within the DRAM array, the VRA design stores the
additional bits in registers (flip-flops). The area overhead for VRA
is more than 20% for a 8 bit register and comparator per row.

REFLEX [10] reduces auto-refresh by introducing a new ‘dummy
refresh’ command which skips refreshes and increments the in-
ternal counter. It can also reduce self-refresh by refreshing weak
rows before entering self-refresh(SR) mode. However, the tech-
nique works only if the time spent in SR mode is less than 64 ms.
After 64 ms it will have to wake up the memory controller, exit SR,



refresh the appropriate rows and go back to SR. For systems with
long idle times (mobile environments) the periodic wake ups is a
concern. Furthermore, REFLEX works on a ‘rank-wide-row’ gran-
ularity and not ‘device-row’ granularity. Also, the storage overhead
of REFLEX is 2 KB per rank in the memory controller as opposed
to 6 bytes for the entire memory in CLARA.

In the patent[48], the inventor proposed a circular linked list de-
sign to store the refresh sequence of memory rows. Rows (or blocks
containing rows) with shorter retention appear in the linked list
more often, thus causing them to be refreshed more frequently. The
described scheme targets improving yield in the presence of weak-
retention cells, thus the total number of refresh commands issued is
kept the same and hence the scheme neither reduces refresh (auto or
self) nor improves performance. One could imagine applying this
scheme to reducing refresh rate, however. The described scheme
exploits variation at a ‘Rank-wide block’ granularity as opposed
to CLARA’s ‘device row’ granularity. The patent describes stor-
ing the refresh sequence in an external chip or in separate DRAM
rows unlike CLARA, which stores the refresh sequence within the
DRAM row which is implicitly available on a row refresh.

Access Pattern. Smart Refresh [23] exploits memory access
pattern to prevent a recently accessed line from begin refreshed.
It reduces auto-refresh and improves performance but does not re-
duce self-refresh. It does not require any SW support. However,
the refresh reduction is contingent on the application footprint and
access pattern.

Criticality/Validity. Techniques which skip refreshing invalid
OS pages or reduce refresh rate to error-tolerant / non-critical data
[35] require operating system support for conveying page alloca-
tion/deallocation events and language / runtime support for appli-
cation annotation. Flikker [35] and SRA [40] reduce auto- and self-
refresh, while PARIS [6] and DTail-V [16] reduce auto-refresh and
improve performance. However, the benefits are highly applica-
tion dependent. In the worst case when the application is either
not annotated, has little or no error-tolerant data, or has a large
memory footprint, these techniques offer little refresh savings or
performance improvement.

Scheduling. Schemes which schedule refreshes improve perfor-
mance but do not reduce auto- and self-refresh. These are part of
the memory controller scheduler and do not require any software
changes. These are orthogonal to our scheme and can be used in
conjunction with CLARA. For example, in epoch 7, when all rows
have to be refreshed, CLARA can benefit from refresh scheduling.

Embedded DRAM (eDRAM) is increasingly being adopted into
mainstream processors [30, 45]. eDRAM capacity is about 3 or-
ders of magnitude smaller than main memory. However, the Tret of
eDRAMs is also 3 orders of magnitude smaller than that of DRAMs
[5]. Therefore, refresh operations are a concern for eDRAMs as
they are for DRAMs. Various techniques for refresh reduction
in eDRAMs have been proposed as well. These techniques ex-
ploit variation [4], dead line prediction [12], access pattern [5] and
ECC [22, 49].

8. CONCLUSION
In this paper we presented CLARA, a technique which reduces

auto-refresh and improves performance in active mode, as well as
reduces self-refresh in idle mode. It does so without dicarding any
rows in the DRAM. CLARA is also the first technique to exploit
variation in retention time at a device(chip) granularity as opposed
to rank granularity in prior work. It is a hardware only solution and
does not require any software (application or OS) modifications.
CLARA is extremely frugal in its hardware requirements. The area
overhead of CLARA in the DRAM is <0.1%, and negligible in the

memory conttroller.
CLARA reduces auto- and self-refresh by 86.2%, and is inde-

pendent of the workload. Auto-refresh reduction improves average
CPU performance by 3.1% and 6.5% in the normal and extended
temperature range, respectively. It improves average GPU perfor-
mance by 2.1% in the extended temperature range. Reduction in
self-refresh improves DRAM idle power by 44%.

Acknowledgment
This research was developed, in part, with funding from the United
States Department of Energy and, in part, with funding from the
Defense Advanced Research Projects Agency (DARPA). The views,
opinions, and/or findings contained in this article/presentation are
those of the author/presenter and should not be interpreted as repre-
senting the official views or policies of the Department of Defense
or the U.S. Government.

9. REFERENCES
[1] 1 Gb GDDR5 SGRAM H5GQ1H24AFR. [Online].

Available: http://www.hynix.com/datasheet/pdf/graphics/
H5GQ1H24AFR(Rev1.0).pdf

[2] Micron DDR4 SDRAM. [Online]. Available: http:
//www.micron.com/products/dram/ddr4-sdram

[3] N. Agarwal et al., “Page Placement Strategies for GPUs
within Heterogeneous Memory Systems,” in International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2015.

[4] A. Agrawal, A. Ansari, and J. Torrellas, “Mosaic: Exploiting
the Spatial Locality of Process Variation to Reduce Refresh
Energy in On-Chip eDRAM Modules,” in International Sym-
posium on High Performance Computer Architecture, Feb.
2014.

[5] A. Agrawal, P. Jain, A. Ansari, and J. Torrellas, “Refrint: In-
telligent Refresh to Minimize Power in On-Chip Multiproces-
sor Cache Hierarchies,” in International Symposium on High
Performance Computer Architecture, Feb. 2013.

[6] S. Baek, S. Cho, and R. Melhem, “Refresh Now and Then,”
IEEE Transactions on Computers, Dec. 2014.

[7] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt,
“Analyzing CUDA Workloads Using a Detailed GPU Simula-
tor,” in IEEE International Symposium on Performance Anal-
ysis of Systems and Software, Apr. 2009.

[8] I. Bhati, Z. Chishti, and B. Jacob, “Coordinated Refresh: En-
ergy Efficient Techniques for DRAM Refresh Scheduling,”
in IEEE International Symposium on Low Power Electronics
and Design, Sep. 2013.

[9] I. Bhati, M.-T. Chang, Z. Chishti, S.-L. Lu, and B. Jacob,
“DRAM Refresh Mechanisms, Penalties, and Trade-Offs,” in
IEEE Transactions on Computers, 2015.

[10] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob, “Flexible Auto-
Refresh: Enabling Scalable and Energy-Efficient DRAM Re-
fresh Reductions,” in International Symposium on Computer
Architecture, Jun. 2015.

[11] K.-W. Chang et al., “Improving DRAM Performance by Par-
allelizing Refreshes with Accesses,” in IEEE International
Symposium on High Performance Computer Architecture,
Feb. 2014.

[12] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and B. Jacob, “Technol-
ogy Comparison for Large Last-Level Caches (L3Cs): Low-
Leakage SRAM, Low Write-Energy STT-RAM, and Refresh-
Optimized eDRAM,” in IEEE International Symposium on
High Performance Computer Architecture, Feb. 2013.

http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf
http://www.hynix.com/datasheet/pdf/graphics/H5GQ1H24AFR(Rev1.0).pdf
http://www.micron.com/products/dram/ddr4-sdram
http://www.micron.com/products/dram/ddr4-sdram


[13] S. Che et al., “Rodinia: A Benchmark Suite for Hetero-
geneous computing,” in IEEE International Symposium on
Workload Characterization, Oct. 2009.

[14] J.-H. Choi, K.-S. Noh, and Y.-H. Seo, “Methods of operating
DRAM devices having adjustable internal refresh cycles that
vary in response to on-chip temperature changes,” Patent US
8 218 137, Jul., 2012.

[15] K. C. Chun, W. Zhang, P. Jain, and C. Kim, “A 700 MHz
2T1C Embedded DRAM Macro in a Generic Logic Process
with No Boosted Supplies,” in International Solid-State Cir-
cuits Conference, Feb. 2011.

[16] Z. Cui, S. A. McKee, Z. Zha, Y. Bao, and M. Chen, “DTail: A
Flexible Approach to DRAM Refresh Management,” in ACM
International Conference on Supercomputing, Jun. 2014.

[17] (2009) DDR2 SDRAM Standard. [Online]. Available:
http://www.jedec.org/standards-documents/docs/jesd-79-2e

[18] (2012) DDR3 SDRAM Standard. [Online]. Available:
http://www.jedec.org/standards-documents/docs/jesd-79-3d

[19] DDR3L SDRAM MT41K1G8. [Online]. Avail-
able: http://www.micron.com/~/media/documents/products/
data-sheet/dram/ddr3/8gb_ddr3l.pdf

[20] (2013) DDR4 SDRAM Standard. [Online]. Avail-
able: http://www.jedec.org/standards-documents/results/
jesd79-4%20ddr4

[21] DRAMSim2. [Online]. Available: http://www.eng.umd.edu/
~blj/dramsim/

[22] P. Emma, W. Reohr, and M. Meterelliyoz, “Rethinking Re-
fresh: Increasing Availability and Reducing Power in DRAM
for Cache Applications,” IEEE Micro, Nov.-Dec. 2008.

[23] M. Ghosh and H.-H. S. Lee, “Smart Refresh: An Enhanced
Memory Controller Design for Reducing Energy in Conven-
tional and 3D Die-Stacked DRAMs,” in IEEE International
Symposium on Microarchitecture, Dec. 2007.

[24] T. Hamamoto, S. Sugiura, and S. Sawada, “On the Reten-
tion Time Distribution of Dynamic Random Access Mem-
ory (DRAM),” IEEE Transactions on Electron Devices, Jun.
1998.

[25] (2013) High Bandwidth Memory (HBM) Standard. [On-
line]. Available: http://www.jedec.org/standards-documents/
results/jesd235

[26] J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,”
SIGARCH Computer Architecture News, Sep. 2006.

[27] HPC Challenge Benchmark. [Online]. Available: http:
//icl.cs.utk.edu/hpcc/index.html

[28] C. Isen and L. John, “ESKIMO: Energy savings using Se-
mantic Knowledge of Inconsequential Memory Occupancy
for DRAM subsystem,” in IEEE/ACM International Sympo-
sium on Microarchitecture, Dec. 2009.

[29] S. S. Iyer et al., “Embedded DRAM: Technology platform for
the Blue Gene/L chip,” IBM Journal of Research and Devel-
opment, Mar. 2005.

[30] R. Kalla, “POWER7: IBM’s Next Generation POWER Mi-
croprocessor,” in Hot Chips: A Symposium on High Perfor-
mance Chips, Aug. 2009.

[31] K. Kim and J. Lee, “A New Investigation of Data Retention
Time in Truly Nanoscaled DRAMs,” IEEE Electron Device
Letters, Aug. 2009.

[32] W. Kong, P. Parries, G. Wang, and S. Iyer, “Analysis of Reten-
tion Time Distribution of Embedded DRAM - A New Method
to Characterize Across-Chip Threshold Voltage Variation,” in
IEEE International Test Conference, Oct. 2008.

[33] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An
Experimental Study of Data Retention Behavior in Modern
DRAM Devices: Implications for Retention Time Profiling
Mechanisms,” in International Symposium on Computer Ar-
chitecture, Jun. 2013.

[34] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR:
Retention-Aware Intelligent DRAM Refresh,” in Interna-
tional Symposium on Computer Architecture, Jun. 2012.

[35] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn,
“Flikker: Saving DRAM Refresh-power through Critical
Data Partitioning,” in International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, Mar. 2011.

[36] (2013) Low Power DDR3 SDRAM Standard. [On-
line]. Available: http://www.jedec.org/standards-documents/
results/jesd209-3

[37] J. Mukundan et al., “Understanding and Mitigating Refresh
Overheads in High-density DDR4 DRAM Systems,” in Inter-
national Symposium on Computer Architecture, Jun. 2013.

[38] P. Nair, C.-C. Chou, and M. Qureshi, “A Case for Refresh
Pausing in DRAM Memory Systems,” in IEEE International
Symposium on High Performance Computer Architecture,
Feb. 2013.

[39] NAS Parallel Benchmarks. [Online]. Available: http:
//www.nas.nasa.gov/publications/npb.html

[40] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the
DRAM Refresh Count for Merged DRAM/Logic LSIs,” in
International Symposium on Low Power Electronics and De-
sign, Aug. 1998.

[41] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, 2014.
[Online]. Available: http://www.R-project.org/

[42] J. Renau et al. (2005, Jan.) SESC simulator. [Online].
Available: http://sesc.sourceforge.net

[43] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2:
A Cycle Accurate Memory System Simulator,” Computer Ar-
chitecture Letters, 2011.

[44] V. Sridharan and D. Liberty, “A Study of DRAM Failures in
the Field,” in International Conference on High Performance
Computing, Networking, Storage and Analysis, Nov. 2012.

[45] J. Stuecheli, “Next Generation POWER microprocessor,” in
Hot Chips: A Symposium on High Performance Chips, Aug.
2013.

[46] J. Stuecheli, D. Kaseridis, H. C.Hunter, and L. K. John, “Elas-
tic Refresh: Techniques to Mitigate Refresh Penalties in High
Density Memory,” in IEEE/ACM International Symposium on
Microarchitecture, Dec. 2010.

[47] R. K. Venkatesan, S. Herr, and E. Rotenberg, “Retention-
Aware Placement in DRAM (RAPID): Software Methods for
Quasi-Non-Volatile DRAM,” in International Symposium on
High Performance Computer Architecture, Feb. 2006.

[48] D. Wang, “DRAM Refresh Method and System,” Patent US
8 711 647, Apr., 2014.

[49] C. Wilkerson et al., “Reducing Cache Power with Low-Cost,
Multi-bit Error-Correcting Codes,” in International Sympo-
sium on Computer Architecture, Jun. 2010.

[50] T. Zhang, M. Poremba, C. Xu, G. Sun, and Y. Xie, “CREAM:
A Concurrent-Refresh-Aware DRAM Memory Architecture,”
in IEEE International Symposium on High Performance Com-
puter Architecture, Feb. 2014.

http://www.jedec.org/standards-documents/docs/jesd-79-2e
http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/8gb_ddr3l.pdf
http://www.micron.com/~/media/documents/products/data-sheet/dram/ddr3/8gb_ddr3l.pdf
http://www.jedec.org/standards-documents/results/jesd79-4%20ddr4
http://www.jedec.org/standards-documents/results/jesd79-4%20ddr4
http://www.eng.umd.edu/~blj/dramsim/
http://www.eng.umd.edu/~blj/dramsim/
http://www.jedec.org/standards-documents/results/jesd235
http://www.jedec.org/standards-documents/results/jesd235
http://icl.cs.utk.edu/hpcc/index.html
http://icl.cs.utk.edu/hpcc/index.html
http://www.jedec.org/standards-documents/results/jesd209-3
http://www.jedec.org/standards-documents/results/jesd209-3
http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.R-project.org/
http://sesc.sourceforge.net

	Introduction
	Background
	DRAM Organization
	Refresh Mechanism
	Retention Time Variation

	CLARA Architecture
	Categorizing the Rows
	Linked List Architecture
	Supporting Multiple Banks & Devices
	Hardware Implementation
	Device Bank Linked-List Generation

	Related Issues
	Profiling and Configuration
	Tester & Testing Time
	Serial and Parallel Refresh
	Soft Error Detection and Recovery
	Temperature Adaptation

	Evaluation Setup
	Architectural Parameters
	Applications and Tools
	Comparison with Prior Work

	Evaluation
	Refresh Data Length
	Auto and Self Refresh
	Performance

	Related Work
	Conclusion
	References

