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Abstract
The memory consistency model is a fundamental part of any
shared memory architecture or programming model. Modern
weak memory models are notoriously difficult to define and
to implement correctly. Most real-world programming lan-
guages, compilers, and (micro)architectures therefore rely
heavily on black-box testing methodologies. The success of
such techniques requires that the suite of litmus tests used
to perform the testing be comprehensive—it should ideally
stress all obscure corner cases of the model and of its imple-
mentation. Most litmus test suites today are generated from
some combination of manual effort and randomization; how-
ever, the complex and subtle nature of contemporary mem-
ory models means that manual effort is both error-prone and
subject to incomplete coverage.

This paper presents a methodology for synthesizing com-
prehensive litmus test suites directly from a memory model
specification. By construction, these suites contain all tests
satisfying a minimality criterion: that no synchronization
mechanism in the test can be weakened without causing
new behaviors to become observable. We formalize this no-
tion using the Alloy modeling language, and we apply it to
a number of existing and newly-proposed memory models.
Our results show not only that this synthesis technique can
automatically reproduce all manually-generated tests from
existing suites, but also that it discovers new tests that are
not as well studied.

CCS Concepts •Computer systems organization →
Multicore architectures; •Hardware→ Coverage met-
rics; •Software and its engineering→ Synchronization

Keywords memory consistency models, litmus tests, syn-
chronization, synthesis
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1. Introduction
Memory consistency models specify the set of values that
can be legally returned by memory loads. For threads or pro-
grams to communicate through shared memory, it is impera-
tive that the memory model be well defined and properly im-
plemented. Unfortunately, both tasks have proven extremely
difficult; nearly every major processor vendor has fallen vic-
tim to recall-caliber memory consistency bugs (Alglave et al.
2015a; AMD 2012; ARM 2011; Intel 2016a).

Today, memory model verification methodologies rely
heavily on testing. The basic unit of testing for a memory
model is a litmus test, a small, stylized program designed to
stress certain behaviors of the model. An example is shown
in Figure 1. Litmus tests will generally have a number of
different possible executions. The outcome of a litmus test
is the set of values returned by the loads during execution
plus the set of values stored in memory at the end of the ex-
ecution. The role of a memory model is therefore to declare
which test outcomes are legal and which are not.

A suite of litmus tests is fully useful only if it is compre-
hensive: if it stresses every possible behavior of the model
and/or implementation. Unfortunately, it is impractical to
exhaustively consider all possible programs. Memory mod-
els are becoming increasingly sophisticated, with differ-
ent ordering strength annotations (e.g., in C/C++: relaxed,
acquire, release, sequentially consistent), different scopes
(e.g., in OpenCL: work-item, work-group, kernel), differ-
ent fences (e.g., on Power: lightweight lwsync vs. heavy-
weight sync), and so on. These features provide important
(and mostly orthogonal) performance benefits and hence are
unlikely to disappear. However, the set of all possible tests
generally grows exponentially both with the number of fea-
tures and with the test size bound. Memory model testing
methodologies must therefore be fully capable of scaling up
to these increasingly large design spaces.

Existing litmus test generation techniques cannot pro-
vide any guarantee of comprehensiveness, and many strug-
gle even to attain non-trivial coverage of the design space.
Most existing test generation methodologies combine man-
ual effort with randomization, but manual effort is error-
prone, and neither technique can guarantee completeness of
coverage. Symmetry-based filtering does help, but alone it is



St [data], 1 Ld.acquire r1 = [flag]
St.release [flag], 1 Ld r2 = [data]

Legal: (r1=0,r2=0),(r1=0,r2=1),(r1=1,r2=1)
Illegal: (r1=1,r2=0)

Figure 1: Message Passing (MP) litmus test

insufficient even for simpler memory models (Mador-Haim
et al. 2010). Making matters worse is the fact that certain
bugs only appear in rare circumstances, and so external stres-
sors may need to be applied to induce the buggy behav-
iors (Alglave et al. 2010; Sorensen and Donaldson 2016).
Stressors add yet another dimension to the design space.

This paper presents a methodology for automatically
generating comprehensive-by-construction litmus test suites
specific to any axiomatically-specified memory model. We
define a litmus test minimality criterion which states that no
synchronization mechanism in a test can be weakened with-
out allowing new outcomes to become observable. Using the
Alloy model finder (Jackson 2002), we then automatically
synthesize all tests which satisfy the criterion with respect to
the rules of a given memory model. These tests can then be
fed into any existing testing infrastructure.

We applied our test generation technique to a number of
popular real-world memory models. As our results show, our
technique is able both to prune out redundant tests as well as
to identify tests that were omitted from the existing suites.
By focusing only on tests which satisfy the minimality crite-
rion, our synthesis technique therefore quantifiably increases
the effective coverage while simultaneously minimizing the
time spent executing redundant tests and mitigating the cost
of human error.

2. Background and Related Work
2.1 Litmus Tests
Litmus testing is a well-established means of stress testing
memory models and their implementations. Existing testing
infrastructures have uncovered numerous bugs in compil-
ers, architecture specifications, and microarchitectures, even
when certain outcomes only appear on the order of once
every billion executions (Alglave et al. 2015a, 2014; Han-
gal et al. 2004; Manovit et al. 2006; Owens et al. 2009;
Sarkar et al. 2011b). Previous work has also identified exter-
nal stressors which make uncommon behaviors appear more
reliably (Sorensen and Donaldson 2016). The focus of this
paper is on improving the litmus test suites themselves rather
than on improving the rest of the testing infrastructure.

Traditionally, litmus tests have been derived from three
sources. First, they may be manually generated by a de-
signer who reasoned intuitively about some particular mem-
ory model feature. Second, they may be automatically gen-
erated by a random test generator (that may use guided ran-
domness). Third, tests deemed interesting from either of the

previous two sources may be gathered into a repository and
forwarded along to future suites. These approaches have
been extremely useful in identifying many well-known pat-
terns common across a range of models, but they do not help
in automatically identifying new corner cases that can arise
due to new features of new models. Our techniques aim at
complementing these existing approaches by identifying in-
teresting tests which manual analysis and/or random gener-
ation may have missed.

The diy tool generates litmus tests by considering spe-
cific relaxations of sequential consistency (Alglave et al.
2010). This approach ties the synthesis to the particular
phrasing of the memory model, and it requires the relax-
ations to be provided as input. In contrast, our technique
automatically enumerates the complete set of interesting re-
laxations, and it ties the synthesis to ISA-specific instruction
properties rather than to patterns specific to one particular
formalization of a memory model.

2.2 Axiomatic Memory Model Specifications
Although various approaches have been used to define mem-
ory consistency models over the years, we follow the ax-
iomatic approach in this paper. Axiomatic memory models
define legal program executions as those which satisfy some
set of constraints on specific relations between the instruc-
tions in the program. This style has successfully been used
to define a wide range of memory models, including those
used by C/C++, OpenCL, x86, Power, and ARM (Alglave
et al. 2014; Batty et al. 2016; International Organization for
Standardization (ISO) 2011a,b; Mador-Haim et al. 2012).

While the specifics can and do vary by formulation,
the most fundamental relations have become more or less
standardized. “Program order” (po) relates each instruc-
tion with later instructions in the same thread. The “reads-
from” (rf) relation exists between a source write and any
read returning its value (in one particular execution). Co-
herence (co) establishes a total order (per execution) over
all stores from all threads to each address. Lastly, “from-
reads” (fr=rf−1;co), sometimes called “reads-before”,
is the inverse of rf followed by co, and po_loc relates
accesses with accesses later in the same thread and to the
same memory location. Relations between different threads
are suffixed with “e” for external (e.g., rf between threads
becomes rfe).

Axioms are defined as constraints on the relations of the
model. For example, the “Sequential Consistency (SC) per
Location” axiom is defined as follows:

acyclic(rf ∪ co ∪ fr ∪ po_loc)

These axioms are what vary from model to model.
Many tools have been built for exploring axiomatic mod-

els for the software, the architecture, and the microarchitec-
ture spaces (Alglave et al. 2014; Lustig et al. 2016; Mador-
Haim et al. 2012). In this paper, we use the more general
Alloy framework (Jackson 2002), as explained in Section 4.



St.release [data], 1 Ld.acquire r1 = [flag]
St.release [flag], 1 Ld.acquire r2 = [data]

Legal: (r1=0,r2=0),(r1=0,r2=1),(r1=1,r2=1)
Illegal: (r1=1,r2=0)

Figure 2: A flavor of MP with two releases and two acquires.
The extra synchronization as compared to Figure 1 does not
prevent any outcomes not already forbidden in the original.

3. Instruction Relaxations
Although it would be prohibitively expensive to exhaustively
cover the set of all possible litmus tests, it is unnecessary
to do so as such a suite would contain a large amount of
redundancy. Tests may use overly-strong synchronization,
may contain operations which have no effect, or may not suf-
ficiently stress the memory system. Alternatively, a test may
simply duplicate a pattern already covered by another test in
the suite. Conversely, a test is in fact useful if it covers some
pattern not already tested within the suite. Most interesting
are the tests that use the least amount of synchronization nec-
essary to prevent some particular outcome: with fewer con-
straints, new (and possibly buggy) behaviors would be more
likely to appear.

Consider the variant of MP in Figure 2. This test con-
tains extraneous synchronization: the first store and/or sec-
ond load could be demoted into a relaxed store or load, re-
spectively, without causing any changes in the set of legal
vs. illegal outcomes. In this sense it is redundant with the
test in Figure 1, and the coverage of a test suite would not be
increased by including both.

Of course, the characterization of a litmus test as being
minimally-synchronized is dependent on the rules of the
memory model being analyzed. For example, in a model
based strictly on acquire-release synchronization, the vari-
ant of MP in Figure 1 would be considered minimally syn-
chronized. On the other hand, it would not be minimal under
the ARM or Power memory models. ARM and Power CPUs
guarantee to respect orderings imposed by address and data
dependencies, and since either would be cheaper than an ac-
quire operation, neither Figure 1 nor Figure 2 would be min-
imal with respect to those models.

3.1 Instruction Relaxation Basics
We formally define our litmus test minimality criterion in
terms of instruction relaxations, which transform an input
test into an output test which is almost identical, but in which
some instruction has weaker synchronization semantics than
it did in the input.

Definition (Minimality Criterion). A litmus test satisfies the
minimality criterion with respect to a particular memory
model if and only if that test has at least one forbidden
outcome that becomes observable under every instruction
relaxation that can be applied to the test.

St [data], 1 Ld.acquire r1 = [flag]
St.release [flag], 1 Ld r2 = [data]

Legal: (r1=1, r2=0)

(a) Removing the first store

St [data], 1 Ld.acquire r1 = [flag]
St.release [flag], 1 Ld r2 = [data]

Legal: r2=0 (matches (r1=1, r2=0) with r1 removed)

(b) Removing the first load

St [data], 1 Ld.acquire r1 = [flag]
St.release [flag], 1 Ld r2 = [data]

Legal: r1=1 (matches (r1=1, r2=0) with r2 removed)

(c) Removing the second load

St [data], 1 Ld.acquire r1 = [flag]
St.release [flag], 1 Ld r2 = [data]

Legal: r2=0 (matches (r1=1, r2=0) with r1 removed)

(d) Removing the second store

Figure 3: Applying RI to the MP litmus test. In each case,
there exists at least one legal execution producing the subset
of outcome (r1=1, r2=0) that is unaffected by RI.

To see how instruction relaxations work, consider how
the Remove Instruction (RI) relaxation would affect MP
from Figure 1. As its name suggests, RI simply removes
one instruction from the input test. To check whether MP
satisfies the minimality criterion with respect to RI, we must
find an outcome that is forbidden by the input test but which
is observable after applying RI to each instruction. The only
plausible possibility1 in this case is (r1=1,r2=0).

If RI were to remove the store to [data], then the out-
put (r1=1,r2=0) would be easily observable, even under
sequential consistency (Figure 3a). If RI were to remove ei-
ther load from MP, then all remaining parts of the outcome
(r1=1,r2=0) would suddenly also become observable
(Figures 3b and 3c). The last case is more interesting: if RI
were to remove the store to [flag], the load of [flag]
would suddenly become orphaned and hence free to choose
any other value to read. In this case, we can simply choose
to once again match (r1=1,r2=0) (Figure 3d). Since the
otherwise-illegal outcome (r1=1,r2=0) becomes visible
when applying RI to any instruction in the test, the minimal-
ity criterion is satisfied.

3.2 Other Instruction Relaxations
Besides RI, we consider the following additional instruction
relaxations:

DMO (Demote Memory Order) and DF (Demote Fence):
weaken the memory ordering strength parameter of a mem-
ory access or fence. We derive the term from its usage in

1 Any other possibility would require some load to return a value neither
written by some store nor taken from the implicit initial condition.



memory_order_seq_cst
memory_order_acq_rel

memory_order_release
memory_order_acquire
memory_order_consume

memory_order_relaxed

Table 1: Memory order parameters in C11/C++11, in order
of decreasing strength (International Organization for Stan-
dardization (ISO) 2011a,b)

the C11/C++11 memory model (Table 1), but we use it in a
more general sense (e.g., also for demoting ARMv8 LDAR
load-acquire opcodes into LDR load-relaxed opcodes). In
some memory models, there may be multiple variants of
DMO and DF. For example, in C11/C++11, there may one
variant which demotes memory_order_acq_rel into
memory_order_acquire, and another which demotes
it into memory_order_release.

DRMW (Decompose Atomic Read-Modify-Write): break
an atomic read-modify-write operation or a load-linked/
store-conditional pair into a non-atomic or non-linked read-
write pair, respectively. The po_loc and data dependencies
between the load and the store remain in effect.

RD (Remove Dependency): discard any dependencies
originating from the targeted instruction. Some memory
models (notably ARM and Power) explicitly use address,
control, and data dependencies to form lightweight order-
ing enforcement primitives, and removing dependencies is
therefore equivalent to weakening a particular type of syn-
chronization. In other models, dependencies are used to de-
fine out-of-thin-air executions (Boehm and Demsky 2014),
and so removing dependencies could affect the legality of
specific outcomes even if dependencies are not directly used
for synchronization.

DS (Demote Scope): lowers the scope of an instruction.
Memory models such as OpenCL allow users to synchro-
nize within an explicit scope (i.e., set of threads), with the
idea that smaller scopes will allow for faster synchroniza-
tion (Khronos Group 2015). However, if the scopes are made
too narrow, the synchronization will be insufficient.

3.3 Applicability to Different Memory Models
Table 2 shows how the different instruction relaxations of
Section 3.2 apply to a range of different memory models.
Besides Streamlined Causal Consistency (SCC), a model we
introduce in this paper (Section 6.3), the models in the table
are all well-studied. In relatively simple models such as Total
Store Ordering (TSO) (Owens et al. 2009; SPARC Interna-
tional 1993), there are fewer degrees of freedom within the
model, and hence relatively few instruction relaxations are
applicable. On the other hand, in sophisticated models such
as the Heterogeneous System Architecture (HSA) memory
model (Alglave and Maranget 2016), all of the discussed in-
struction relaxations are relevant.

In between, there are cases in which instruction relax-
ations should be useful in theory, but which turn out not to
be in practice. Sometimes the formalization may be miss-
ing features present in the full ISA specification. For ex-
ample, the Itanium memory model was defined before the
out-of-thin-air executions were characterized, and therefore
it does not address them. Likewise, features such as eieio
on Power or dmb.st on ARM are still not axiomatically
formalized due to a lack of clarity in the architecture man-
uals (Alglave et al. 2014). For the sake of completeness,
Table 2 attempts to list all instruction relaxations, but our
experiments only use those which are directly applicable
within the available formalizations.

Other times, there may be deeper fundamental issues in-
volved. For example, formalization of “no out-of-thin-air
behavior” axioms is notoriously difficult and a major open
problem in the study of software memory models (Boehm
and Demsky 2014). Formalizations of models such as C/C++
and OpenCL therefore often simply do not attempt to ax-
iomatize it. In such situations, until the out-of-thin-air speci-
fication problem is resolved, instruction relaxations relevant
only to non-axiomatized rules must likewise be skipped.

4. Formalizing the Minimality Criterion
We put our minimality condition into practice using the
Alloy relational model finder (Jackson 2002). The details are
described below.

4.1 Defining Memory Models Using Alloy
Alloy provides a domain-specific language for defining rela-
tional models: models consisting of a set of atoms (or, for our
purposes, nodes in a graph), and relations (edges in a graph).
The relational approach makes it a natural fit for describ-
ing axiomatic memory models (Wickerson et al. 2017). Al-
loy feeds its models into the Kodkod relational model finder,
which in turn uses off-the-shelf SAT solvers to search for in-
stances of the given model (Torlak and Jackson 2007). This
flow provides a convenient front end suited for asking ques-
tions about memory models and/or about particular litmus
tests. The basic Alloy syntax is summarized in Table 3.

Figure 4 summarizes how the TSO memory model can
be defined using Alloy. This formulation adds atomic read-
modify-write operations to the formulation of Alglave et
al. (Alglave et al. 2014). Our modeling approach is very sim-
ilar to the approach used by herd and its cats language;
however, Alloy provides a much more programmable inter-
face for re-defining features hard-coded into herd. It is this
flexibility that allows us to define the litmus test minimality
criterion in the way described below.

At the top of the model, a number of type signatures
(“sigs”) are defined in a hierarchical manner. Each sig de-
fines the set of relations that originate from atoms of that
type; each relation defines its own range as appropriate. Be-
low the sig definitions are the basic memory model con-



RI DRMW DF DMO RD DS

SC X X — — — — (Lamport 1979)
TSO X X — — — — (Owens et al. 2009; SPARC International 1993)

Power X —1 X — X — (Alglave et al. 2014; Power.org 2013)
ARMv7 X —1 —1 — X — (Alglave et al. 2014; ARM Holdings 2016)
ARMv8 X —1 —1 X X — (ARM Holdings 2016)
Itanium X X — X —1 — (Intel 2002)

SCC X X X X X2 — [§6.3]
HSA X X X X X2 X (Alglave and Maranget 2016)

C/C++ X X X X —1 — (Batty et al. 2016; ISO 2011a; ISO 2011b)
OpenCL X X X X —1 X (Batty et al. 2016; Khronos Group 2015)

1Would apply if model formalizations filled in the missing features.
2Dependencies not used directly for synchronization; RD applies to no-thin-air axioms only.

Table 2: Applicability of different instruction relaxations to different hardware and software memory models.

Symbol Meaning

+ Union
& Intersection
- Set Difference
ˆ Transitive Closure (1 or more)
* Reflexive Transitive Closure (0 or more)
. Relational Join

a[b] Relational Join (= b.a) or function call
˜ Inverse Relation (a→b becomes b→a)
-> Cross Product (all edges from src set to dst set)
<: Domain restriction
:> Range restriction
=> Implication

Table 3: Alloy syntax key. Alloy uses prefix notation.

straints (“facts”). Any valid instance of the model is required
to satisfy all of the listed facts to be considered well-formed,
regardless of whether it is considered valid according to the
memory model itself. Alloy also allows for the definition
of functions (“fun”), which return relations of the specified
types, and predicates (“pred”), which return boolean truth
values. In the context of memory models, there is generally a
top-level predicate (e.g., “tso” in Figure 4) which specifies
the properties that must hold true for a well-formed execu-
tion to also be considered a valid execution.

4.2 Formalizing the Minimality Criterion in Alloy
The mathematical phrasing of the minimality criterion de-
fined in Section 3.1 is shown in Figures 5a and 5b. This
phrasing makes a precise distinction between the follow-
ing three concepts. A litmus test consists of the basic static
properties defining the test: the set of events, po, address,
dep, rmw, and so on. An outcome of that test is the set of
dynamic values that are directly observable at the conclusion
of one execution of the test: generally, rf and the final value
at each memory location. An execution consists of the out-

abstract sig Event {
po: set Event

}
abstract sig MemoryEvent {
address: one Address

}
sig Write extends MemoryEvent {
rf: set Read, co: set Write

}
sig Read extends MemoryEvent {
rmw: lone Write // lone = zero or one

}
// Alternative to fr=~rf.co that accounts for
// implicit initial writes as well
fun fr : Read->Write {
(Read <: address.~address :> Write) - ~rf.*~co

}
fact { // atomic Read/Write pairs must be adjacent
rmw in po - po.po

}
sig Fence extends Event {}
fact { rf + co + fr in address.~address }
fact { acyclic[po] }
fun po_loc : MemoryEvent->MemoryEvent {
po & (address.~address)

}
fun ppo : Event->Event { // preserved prog. order
po - (Write->Read)

}
fun fence : Event->Event { (po :> Fence).po }
pred acyclic[r: Event->Event] { some iden & *r }
pred tso {
acyclic[rf + co + fr + po_loc]//SC per Location
no fre.coe & rmw // RMW Atomicity
acyclic[rfe + co + fr + ppo + fence]//Causality

}

Figure 4: Defining TSO Using Alloy

come as well as any auxiliary relations (such as co) which
are not directly observable as part of an outcome2.

2 It may be possible to infer relations such as co by working backwards
from some particular outcome, but the fact remains that co itself cannot
be directly observed without, say, a hardware widget probing the cache
coherence protocol.



run generate { minimal[axiom] } for 5

(a) Alloy searches the set of all tests within the given test size bound
for a test satisfying the minimality criterion.

let minimal[axiom] {
// no execution produces the outcome
(all x: execution | not axiom[x, no_r])
and
// under all relaxations, there exists some
// execution which produces the outcome
(all r: RTag | all e: Event |
relaxation_applies[r, e] =>
exists x’: execution | model[x’, r->e])

}

(b) The general statement of the minimality criterion relies on
a higher-order “exists-forall” quantification that first-order solvers
such as Alloy+Kodkod cannot directly solve.

let minimal[axiom] {
// the execution is forbidden
not axiom[no_r]
and
// under all relaxations, there exists some
// execution which produces the outcome
(all r: RTag | all e: Event |
relaxation_applies[r, e] => model[r->e])

}

(c) Equating outcomes with executions removes the “exists-forall”,
but at the cost of possibly introducing false negatives.

Figure 5: Defining the minimality criterion in Alloy.

In terms of the three definitions above, the minimality cri-
terion states that given some outcome, no valid execution
produces that outcome, but every instruction relaxation ap-
plication does enable some execution to produce that out-
come. Unfortunately, the first portion of this statement con-
tains a higher-order “exists-forall” pattern of the kind which
is known to be computationally intractable in general, and
which Alloy cannot analyze without the help of experimen-
tal additions such as Alloy* (Milicevic et al. 2015).

As an alternative, we can avoid the exists-forall quantifi-
cation if we eliminate the distinction between executions and
outcomes. In other words, if we treat all dynamic relations as
being part of the directly observable outcome, then the code
of Figure 5b reduces to the code of Figure 5c, which does not
suffer from the same “exists-forall” problem. Unfortunately,
while pragmatic, this approach is not strictly sound. It effec-
tively moves the quantification over executions before the
quantification over relaxations, meaning that relaxation can-
didates are no longer as free to search for legal executions,
and this limitation can lead to false negatives.

Fortunately, for two reasons, false negatives are largely
only a theoretical concern in our experiments. First, for co
in particular, since the co-final value is already in fact part
of the observable test outcome, it would take a test with at
least three writes to the same address for co to actually be
ambiguous. Within the set of tests as small as the 6-7 instruc-
tion bound that we found tractable (see Section 6), such tests

abstract sig RTag {} // Relaxation Tag
one sig RI extends RTag {} // Remove Instruction
one sig RD extends RTag {} // Remove Dependency
fun rf_p[r: RTag->Event] {
// rf, but with the domain restricted to
// non-RI’ed Writes, and with the range
// restricted to non-RI’ed Reads
(Write - r[RI]) <: rf :> (Read - r[RI])

}
fun rmw_p[r: RTag->Event] {
// rmw, but with the domain restricted to
// non-RI’ed and non-RD’ed Reads, and with
// the range restricted to non-RI’ed Writes
(Read - r[RI+RD]) <: rmw :> (Write - r[RI])

}
fun po_p[r: RTag->Event] {
(Event - r[RI]) <: po :> (Event - r[RI])

}
// ...and so on for the other relations...
pred tso_causality_p[r: RTag->Event] {
acyclic[(rf_p[r]) + (co_p[r]) +

(fr_p[r]) + (po_loc_p[r])]
}

Figure 6: Implementing Instruction Relaxations in Alloy

are uncommon. Second, for models with other types of aux-
iliary relations, we can use other workarounds which remain
practical and sufficient for small test size bounds. An exam-
ple of such a workaround is discussed in Section 6.3. We
therefore use the code of Figure 5c for our experiments, and
we leave the full resolution of this false negative problem for
future work.

4.3 Formalizing Instruction Relaxations in Alloy
We now describe how instruction relaxations themselves can
be defined within Alloy. Figure 6 shows our approach. We
define an abstract base sig “RTag” from which all instruction
relaxation definitions are derived. We then define a perturbed
version of each primitive relation in the base model. We label
these with the suffix “_p”. Perturbed relations take as input
the application of an instruction relaxation to an instruction
in the test. The body of each perturbed relation specifies how
the given applied instruction relaxation affects instances of
the relation which start or end at the chosen instruction.

For example, consider the rf relation and the RI instruc-
tion relaxation. The relation rf_p, the perturbed version of
rf, is defined to include all original rf edges, except those
whose domain and/or range include instructions which have
been removed by RI. The rmw_p relation is defined simi-
larly, except that it also excludes rmw edges whose source
load was subject to RD.

Note that when RI’ing the store sourcing a load, we
choose not to explicitly enumerate the set of all possible
replacements when forming rf_p, as doing so would have
introduced a non-trivial performance cost and little actual
benefit. Instead, we simply leave the return value of that
load unconstrained. Doing so results in relaxed tests which
may be slightly underconstrained, but the downside of this is



St [x], 2 Ld r1 = [x]
St [x], 1

Legal: (r1=0,[x]=1),(r1=0,[x]=2),(r1=2,[x]=1)
Illegal: (r1=1,[x]=1),(r1=1,[x]=2),(r1=2,[x]=2)

Figure 7: The CoRW litmus test

fun co_p[r: RTag->univ] {
(Write - r[RI]) <: ^co :> (Write - r[RI])

}

Figure 8: Repairing a perturbed co_p relation by taking the
transitive closure prior to performing the relaxation

only a slight risk of producing false positives (non-minimal
tests which are nevertheless emitted by the generation flow).
We considered this worthwhile, as false positives are mostly
harmless; they would at worst cause a few cycles to be
wasted running a test which is not quite technically minimal
(but which may nevertheless be interesting anyway).

To see the effect of leaving perturbed relations un-
constrained, consider CoRW (Figure 7). Outcome (r1=2,
[x]=2) is forbidden under any coherent memory model,
sometimes even by definition, but it can be made to pro-
duce that outcome when applying RI to each instruction,
and hence it is minimal. Most interestingly, consider what
happens when applying RI to the store of 2 to [x]. If the
load either chooses to instead return the value of the initial
condition or is simply left unconstrained, then the ([x]=2)
portion of the outcome becomes valid and the requirement is
satisfied. However, suppose instead the load were simply re-
assigned to source from the co-predecessor (i.e., the store of
1 to [x]) of the RI’ed store, as might be a natural thought.
In that case, however, the load would be sourced from a fu-
ture store in the same thread, a condition which is always
illegal. Hence the test would no longer pass the minimality
criterion, and it would become a false negative.

To avoid false negatives from appearing as described
above, we “repair” perturbed relations only when it is abun-
dantly clear that doing so will not overconstrain the search
space. Suppose, for example, co were defined to be non-
transitive3. In that case, RI’ing an instruction in the middle
of a long chain of co edges would leave the events in the
first part unrelated to events in the second part. However,
co is inherently a transitively closed relation when actually
used, and so the removal of one event in the middle of a
chain should not conceptually affect the rest of the transitive
closure. Since there is no risk of introducing false negatives
by simply restoring transitivity to perturbed relations in this
category, such relations are the only ones we make an extra
effort to explicitly “repair”.

3 Although it may seem strange theoretically, it is often convenient: making
relations such as po and co non-transitive removes a significant amount of
clutter from graphical representations of the generated tests.

St [x], 1 Ld.acquire r1 = [y]
St.release [y], 1 Ld r2 = [x]

Illegal Outcome: r1=1, r2=0

Ld.acquire r1 = [x] St [y], 1
Ld r2 = [y] St.release [x], 1

Illegal Outcome: r1=1, r2=0

Figure 9: Only one test in each symmetry class needs to be
emitted. In these two tests, the addresses and the threads are
swapped, but the overall test structure is the same.

5. Synthesising Test Suites
Our basic synthesis methodology is straightforward: we sim-
ply have Alloy generate all model instances (i.e., all litmus
test executions) which satisfy the minimality criterion as ap-
plied to some axiom of the model. However, we also take
into account the practical concerns described below.

5.1 Symmetry Reduction
As shown in previous work, naive enumeration of litmus
tests produces a large amount of redundancy. The same is
true here: by default, Alloy emits a large number of redun-
dant copies of each test satisfying the minimality criterion.
For example, Figure 9 shows two tests that appear different
on the surface but which are in fact symmetric and therefore
redundant. Alloy does have some built-in symmetry reduc-
tion through its use of symmetry-breaking predicates (Tor-
lak and Jackson 2007), but this is insufficient to capture the
higher-level notions of symmetry such as those eliminated
by Mador-Haim et al. (2010).

We therefore built a post-processor which collects and
canonicalizes the tests emitted by Alloy. Our canonicalizer
simply augments the approach of Mador-Haim et al. by in-
corporating new instruction features such as memory order
parameters. Threads in a test are hashed and sorted alpha-
betically, and addresses are reassigned in sorted-sequential
order to produce a single canonical form of every test. Only
one test producing any given hash is emitted.

5.2 Experimental Methodology
To demonstrate the value of our synthesis methodology, we
apply it to a number of memory models. We generate one test
suite for each axiom of each memory model by applying the
instruction relaxations of Table 2, and we record the number
of tests emitted and the CPU time it took to generate each
suite. We also generate one “union” test suite per model.
The union suite includes all tests that satisfy the minimality
criterion for at least one axiom in the model4.

4 Generating this suite directly with Alloy often took significantly longer
than it would have taken to simply generate the results for each axiom
separately and then merge the suites at the end. We nevertheless include
it as an interesting comparison point.



Ld r1 = [x] Ld r2 = [x]
St [x], 2 St [x], 1
Illegal Outcome: r1=1,r2=2,[x]=2

Figure 10: n5/CoLB is in “Owens” but not “causality”. How-
ever, n5/CoLB contains as a subset CoRW (Figure 7), which
is in “causality”.

If a litmus test satisfies the minimality criterion for more
than one axiom, we count it only once in the overall per-
model “union” count. Therefore, due to overlap, some per-
model “union” test count totals may be less than the sum of
the per-axiom test count totals.

In contrast with Mador-Haim et al. (2010), we count all
instructions. Specifically, we include fences in the instruc-
tion counts, and we count atomic read-modify-write instruc-
tions however they are formalized (load-store pairs con-
nected by an rmw relation count as two instructions, while
atomic RMW primitives count as a one instruction). There-
fore, instruction counts for seemingly identical litmus tests
might differ slightly from model to model.

We perform our synthesis in Alloy 4 with the MiniSAT
backend on a server farm composed of varying Xeon-class
processors. We include all suites that could be generated
in no more than 16GB of memory and within 48 hours of
runtime. The results are shown in the following section.

6. Case Studies
6.1 Total Store Order (TSO)
The TSO memory model was first introduced for SPARC,
but it is best known today as the memory model adopted by
x86 processors (Advanced Micro Devices (AMD) 2016; In-
tel 2016b; SPARC International 1993; Owens et al. 2009).
We use the axiomatic formulation described earlier in Fig-
ure 4. As a baseline for comparison, we use the suite of x86-
TSO litmus tests gathered by Owens et al. (2009). We refer
to this as the “Owens” suite for brevity. At the time, x86 had
not settled definitively on TSO, and this suite aimed at recon-
ciling differences between competing definitions of the x86
memory model. They collected litmus tests from Intel ISA
manuals, AMD ISA manuals, and academic papers, and they
added various tests of their own creation. The complete suite
contains 24 tests, and 15 specify forbidden outcomes. Our
aim is therefore to reproduce (at least) these 15 tests.

Table 4 compares the “causality” suite to the “Owens”
suite. At first glance, it appears that some tests in “causality”
were not present in “Owens”, and vice versa. Further exami-
nation, however, shows that every test in “Owens” but not in
“causality” contains inside of it a test which is in fact present
in “causality”. Figure 10 shows an example: test n5/CoLB is
in “Owens”, but it is not in “causality” because it does not
satisfy the minimality criterion for RI applied to the load in
Thread 0. However, n5/CoLB contains within it test CoRW

#Insts “Owens” only Both “causality” Only

2 — — CoWW

3 — — CoRR; CoRW

4 n5/CoLB MP; LB S; 2+2W;
(CoRW) CoMP; W+WRR;

W+W+RR

5 iwp2.8.b (MP) WRC; n6 WWC; R+f;
MP+st; (3 more)

6 iwp2.6/CoIRIW amd5/SB+mfences; (many more)
(W+W+RR); amd6/IRIW;
n4 (n5/CoLB) iwp2.8.a;

RWC+mfence

7 — — (many more)

8 amd10 (amd5/ — (many more)
SB+mfences); —
iwp2.7/amd7 —
(amd6/IRIW) —

9 n3 (amd6/IRIW) — (many more)

Table 4: Comparing the “Owens” suite to the “causality”
suite. Each non-minimal test in “Owens” contains as a sub-
test a test present in “TSO-union” (shown in parentheses).

Ld [x]
St [x]

St [x]
Ld [x]

St [x]
St [x]
Ld [x]

St [x] St [x]
Ld [x]

Figure 11: The four tests in “sc_per_loc” but in neither
“causality” nor “Owens”

St [x] RMW [x] St [x] St [x] RMW [x]

St [x] RMW [x]
St [x]

St [x] St [x]
RMW [x]

Figure 12: The four TSO tests in “rmw_atomicity”

(Figure 7), and CoRW is in fact in “causality”. In this sense,
“causality” reproduces the entirety of “Owens”, while also
adding new tests that “Owens” did not include.

In addition to “causality” by itself entirely subsuming
“Owens”, “sc_per_loc” and “rmw_atomicity” introduce ad-
ditional tests that neither “causality” nor “Owens” include
(Figures 11 and 12). “rmw_atomicity” contains four tests,
while “sc_per_loc” contains ten tests, but six overlap with
“causality”. That “Owens” contains no primitive tests from
these two axioms is not entirely unexpected, as “Owens” was
instead to distinguish between different possibilities for what
we refer to as the causality axiom, and as such it simply
took the basic behaviors of coherence and read-modify-write
atomicity for granted.

Overall, the results for TSO are summarized in Figure 13.
As Figure 13a shows, for each bound, our synthesis tech-
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Figure 13: TSO memory model results

nique produces an order of magnitude more tests than are
in “Owens”, while simultaneously remaining tractable as
compared to the set of all possible litmus tests. Figure 13b
shows how these tests are generated: the “sc_per_loc” and
“rmw_atomicity” saturate at ten and four tests, respectively,
while the “causality” suite continues to grow without bound.
Unfortunately, the runtime is currently super-exponential
with the test size bound (Figure 13c); see Section 7 for a
discussion. Nevertheless, these results provide strong empir-
ical evidence of the effectiveness of our synthesis technique

St [x], 2 Ld r1 = [x] Ld r2 = [y]
St [y], 1 St [x], 1

Illegal Outcome: r1=2,r2=1,[x]=2,[y]=1

Figure 14: Litmus test WWC

pred power {
acyclic[rf + co + fr + po_loc] // SC per Loc.
acyclic[ppo + fences + rfe] // No Thin-Air
irreflex[fre.prop.*(ppo+fences+rfe)] // Obs.
acyclic[co + prop] // Propagation

}
// Write propagation order; mostly due to fences
fun prop : Event->Event { /* see Alglave */ }
// Preserved program order, due to dependencies,
// po_loc, and other subtleties. Fixed-point of
// four mutually-recursive helper relations.
fun ppo : Event->Event { /* see Alglave */ }

Figure 15: Top-level Power memory model axioms (Alglave
et al. 2014)

in generating litmus tests for TSO. In addition to reproduc-
ing every basic pattern in “Owens”, our synthesis technique
generates numerous additional tests, including some that are
studied in the context of non-TSO models, and others which
are less well-known overall.

We note one minor redundancy: our symmetry reduction
technique (adapted from Mador-Haim et al. (2010)) was
unable to detect the symmetry between two different variants
of litmus test WWC. As shown in Figure 14, WWC has
two threads with identical load-store patterns, and so the
canonicalization algorithm could not detect the symmetry
between the two variants with the first two threads swapped.
We plan to enhance our canonicalizer to address this, but
even without it, the only cost is a small amount of extra
redundancy in the test suite.

6.2 Power (and ARMv7)
The ARM and Power memory models together make for an-
other interesting case study (ARM Holdings 2016; Power.org
2013). Both are significantly more complex than TSO, and
yet both have been studied heavily in previous work. This
makes them good baseline models for comparison.

For our study, we use the axiomatic formulation of the
Power memory model from Alglave et al. (2014). The ba-
sic rules are shown in Figure 15. ARMv7 is broadly simi-
lar to Power, but differs in some of the details (e.g., ARM
has no equivalent of the Power lwsync lightweight fence).
However, according to Alglave et al., some subtleties of
the ARMv7 model remain uncertain. ARMv8 adds explicit
load-acquire and store-release opcodes (ARM Holdings
2016), but to our knowledge ARMv8 has not been formal-
ized axiomatically.

We synthesized the “power-union” suite consisting of
tests which satisfy the minimality criterion for at least one
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Figure 16: Power memory model results

of the four axioms. We then compare “power-union” against
two baseline suites: the “Cambridge” 55-test summary of
the Power and ARM memory models (Sarkar et al. 2011a,b),
and the “cats” suite of over eight thousand tests studied by
Alglave et al. as part of their formalization process (Alglave
et al. 2014, 2015b). Just as with “Owens” suite for TSO,
these suites consist of hand-written tests, tests extracted
from industry manuals, and randomly-generated variants
thereof (Alglave et al. 2010).

Figure 16 summarizes the results. As with our compar-
ison to TSO, our synthesis technique reproduces all of the

tests in “Cambridge”, with one exception: test PPOAA is
presented using a full sync fence, but in reality it only re-
quires a lightweight lwsync fence, and hence it is not min-
imal as presented in “Cambridge”. Fortunately, the lwsync
variant of PPOAA is included in “power-union”.

As shown in Figure 16a, there is no clear trend in rel-
ative test counts between “power-union” and “cats”. Fig-
ure 16b shows that “power-union” contains a large num-
ber of “no_thin_air” tests due largely to the variety of ways
different dependency types can be chained together to form
ppo. “cats” contains a large number of randomized tests ex-
ploring a similar space. We did not directly analyze all tests
in “cats” suite due to their being written in the incompatible
.litmus format. However, after manual empirical analy-
sis, we again find some tests in “cats” which do not satisfy
the minimality criterion, and we find other tests in “power-
union” which are not present in “cats”, including again the
first three tests of Figure 11. We did verify that our synthe-
sis technique was able to reproduce some particularly inter-
esting tests such as lb+addrs+ww, which identifies the dif-
ference in strength between address and data dependencies
present in this formalization.

Figure 16c shows that Alglave’s formalization of the
Power memory model was taxing on our infrastructure. The
runtime is still super-exponential with respect to the test size
bound, but the constant factor is also much larger than it
was for TSO. We identify two major causes of this. First,
the presence of three separate types of dependency (ad-
dress, control, data) with subtly different semantics means
that each basic test shape has a huge number of subtle de-
pendency variants that must be considered independently.
Second, the axiomatic formulation that we use calculates
preserved program order (ppo) by finding the fixed point
of a set of four mutually-recursive definitions. This adds
substantial computational complexity to the process. As al-
ways, there is a tradeoff between having simpler, easier-
to-analyze models and having models which squeeze out
every ounce of the deliverable performance from a given
(micro)architecture.

In the next case study, we compare these results to those
for a streamlined version of the ARM and Power models.

6.3 Streamlined Causal Consistency (SCC)
The Streamlined Causal Consistency (SCC) model is a CPU-
like memory model aimed at simplifying away the com-
plexities and corner cases of the ARM and Power memory
model while preserving similar relaxed behaviors. We intro-
duce SCC for two purposes: to compare the suite generation
runtime of simple vs. complex models, and to analyze addi-
tional hardware memory model features not already covered
by TSO and Power. The core of the model is presented in
Figure 17. SCC adds explicit Acquire and Release instruc-
tions, similar to ARMv8 (ARM Holdings 2016), but it elimi-
nates dependencies and the complex ppo entirely. It also de-
fines the sc relation to be a total order over all heavyweight



sig Acquire extends Read {}
sig Release extends Write {}
sig FenceAcqRel extends Fence {}
sig FenceSC extends Fence { sc: set FenceSC }
fact { total[sc, FenceSC] } // FenceSC total order
pred scc {
acyclic[rf + co + fr + po_loc] // SC per Loc.
acyclic[rf + dep] // No Thin-Air values
no fr.co & rmw // RMW Atomicity
irreflexive[*(rf + co + fr).^cause]// Causality

}
fun prefix : Event->Event {
iden + (Fence <: po) + (Release <: po_loc)

}
fun suffix : Event->Event {
iden + (po :> Fence) + (po_loc :> Acquire)

}
fun sync : Event->Event {
Releasers <: prefix.^(rf+rmw).suffix :> Acquirers

}
fun cause : Event->Event { *po.(sc + sync).*po }

Figure 17: Top-level SCC Axioms

St [x], 1 St [y], 1
FenceSC FenceSC
Ld r1 = [y] Ld r2 = [x]

Legal Outcomes: (r1=1,r2=1),(r1=1,r2=0),(r1=0,r2=1)
Illegal Outcomes: (r1=0,r2=0)

(a) The store buffering (SB) litmus test

St [x], 1 St [y], 1
FenceSC FenceSC
Ld r1 = [y] Ld r2 = [x]

Legal Outcomes: (r1=1,r2=1),(r1=1,r2=0),(r1=0,r2=1)
Illegal Outcomes: (r1=0,r2=0)

(b) If sc places the Thread 0 fence before the Thread 1 fence, then
even if the accesses to [y] are removed, (r1=0,r2=0) remains
illegal.

Figure 18: If sc is chosen before applying RI, test fails the
statement of the minimality criterion from Figure 5c.

FenceSC instructions (International Organization for Stan-
dardization (ISO) 2011a,b; Mador-Haim et al. 2012).

The inclusion of sc required us to make one modification
to our basic modeling approach. As we noted in Section 4.3,
there are cases in which our practical formalization of the
minimality criterion is an under-approximation of the proper
definition. Unfortunately, sc falls exactly into this category.

Consider the “store buffering” (SB) litmus test of Fig-
ure 18a. This test satisfies the minimality criterion: the out-
come (r1=0,r2=0) is illegal, but applying any instruc-
tion weakening to the test causes it to become observable.
However, according to the code of Figure 5c, the sc edge
is implicitly chosen before applying the instruction relax-
ation. Unfortunately, when the operations are performed in

fact { lone sc } // zero or one sc edges
pred causality_wa {
irreflexive[(rf + co + fr).^cause] or
irreflexive[(rf + co + fr).^cause_wa]

}
fun cause_wa : Event->Event {
(*po.(~sc + sync).*po)

}

Figure 19: Augmenting SCC to work around (wa) our infras-
tructure limitations

that order, one store and one load can in fact be removed by
RI without causing the outcome to become observable (Fig-
ure 18b). In this case, SB would be a false negative of the
kind described in Section 4.3.

To work around this limitation, we use the code shown
in Figure 19. If there are zero or one sc edges, then we
can manually emulate the enumeration over all sc edges
by simply considering both the relation and its reversal. A
test with three non-trivial FenceSC instructions would need
at least 8 instructions overall since a fence at the start or
end of a thread is irrelevant. As our results currently do
not scale past eight instructions anyway, this workaround
was sufficient for our current study. A general long-term
solution would require a technique such as the one discussed
in Section 4.3.

The SCC results generated using the workaround above
are shown in Figure 20. Figure 20a shows the number of tests
generated. “sc_per_location” and “rmw_atomicity” saturate
as they did before, while the tests generated from the other
axioms continue to grow with the test size bound. Notably,
most per-axiom numbers are larger, since SCC provides
more ways to synchronize (e.g., acquire/release vs. fences)
than did the previous models. However, with only one type
of depenedency, there are much fewer “no_thin_air” axioms
than there were for Power. The suite also includes tests
such as SB which require FenceSC instructions and sc
edges, confirming that the approach of Figure 19 worked
as intended. Finally, Figure 20b shows a similar super-
exponential runtime trend to the previous models.

6.4 C and C++
Lastly, we analyze the C11/C++11 memory model (Interna-
tional Organization for Standardization (ISO) 2011a,b). Al-
though this model was finalized six years ago, it still con-
tains various surprises and unresolved corner cases (Batty
et al. 2016; Manerkar et al. 2016; Vafeiadis et al. 2015). It
also serves as a good case study of how synthesizing test
suites for software memory models differs from the process
of generating suites for hardware models. We use the formu-
lation of Batty et al. (2016) for our experiments (Figure 21),
but we eliminate initialization events in order to scale more
easily to larger tests.

A new wrinkle is added by the fact that C11/C++11 (like
many other software models) gives no semantics at all to
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Figure 20: SCC memory model results

pred c11 {
irreflex[hb] // Hb
irreflex[(?(~rf)).mo.(?rf).hb] // Coh
irreflex[rf.hb] // Rf
no (rf :> NonAtomicEvent) - vis // NaRf
irreflex[rf + (mo.mo.~rf) + (mo.rf)] // Rmw
acyclic[(SCEvent->SCEvent - iden) & // Simp

(?Fsb.(hb+fr+mo).?sbF)]
}
fun hb : Event->Event { sb + sw }
// sequenced-before: analogous to program order
// synchronizes-with: loosely, release->acquire
// synchronization. See Batty for details.

Figure 21: Top-level C11 memory model axioms (Batty et al.
2016). As a convenient shorthand, the figure uses a “zero or
one” operator “?” even though Alloy has no such operator.

a program with the possibility of a data race (Adve and
Hill 1990; Boehm and Adve 2008; International Organiza-
tion for Standardization (ISO) 2011a,b). This raises an in-
teresting question: if application of an instruction relaxation
to a properly-synchronized race-free program results in a
racy execution, should such tests be considered valid new
outcomes with respect to the minimality criterion? The dis-
tinction is non-trivial; just as in Section 4.3, more tests are
produced if racy outcomes are included than if they are ex-
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(a) Number of tests in the suite generated for each axiom. The
total is less than the sum of the parts due to overlap. No tests were
generated for “Hb”.
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Figure 22: C11/C++11 memory model results

cluded. However, in this case, the potentially racy relaxed
tests represent buggy executions rather than malformed pro-
grams, and so we do not consider them false positives. In
any case, we would rather err on the side of producing more
tests rather than fewer.

Also worth noting is that C11/C++11 (as well as Java)
currently have some counterintuitive situations in which in-
creasing the synchronization can cause more outcomes to
become visible (Ševčík and Aspinall 2008; Vafeiadis et al.
2015). While one could in theory consider instruction relax-
ations which increase the strength of the synchronization, we
do not consider any in this paper, as this non-monotonicity
is generally not intentional anyway.

The C11 results are shown in Figure 22. Of immediate
note from Figure 22a is the fact that no interesting tests
are generated for the “Hb” axiom. This is because applying
DMO to an instruction with an hb relation demotes the hb
into *hb.rf.*hb, and the original irreflexive[hb]
statement becomes irreflexive[(*hb.rf.*hb).hb]
= irreflexive[rf.hb], where the latter is exactly
the “Rf” axiom. Hence DMO cannot produce a new out-
come which satisfies “Rf”, and no “Hb” test can satisfy the



(implicit initial condition: [x]=0)
rmw.add [x], 1 rmw.add [x], 1

Illegal Outcome: [x]=1

(a) In models which expose each atomic RMW event as a single
instruction, this test is minimal

(implicit initial condition: [x]=0)
ld.rmw r1, [x] ld.rmw r2, [x]
add r1, r1, 1 add r2, r2, 1
st.rmw [x], 1 st.rmw [x], r2

Illegal Outcome: [x]=1

(b) In models where atomic RMW operations are exposed as paired
loads and stores, the same test is no longer minimal: applying RI to
the first load produces still-illegal CoRW

Figure 23: The choice of basic primitives can affect whether
a test is considered minimal

minimality criterion. Additionally, “Hb”, “Coh”, “Rf”, and
“Rmw” can be collectively rewritten in the simpler form
acyclic[*com.hb] (Vafeiadis et al. 2015). We con-
firmed empirically that the suite generated for this combined
axiom produces the same set of litmus tests as the combined
suites for the original four5. This shows that the emptiness
of the “Hb” suite is merely a property of the formalization
than a shortcoming of our synthesis technique; all minimal
tests are present in the final overall suite. Finally, Figure 22b
shows that C11 took the longest to analyze of the models we
considered in this paper.

Our C11 results demonstrate that our synthesis technique
works well on both software and hardware models. We hope
to extend our method to more diverse and more sophisticated
models (e.g., OpenCL) in the future.

7. Discussion
There are various ways in which our synthesis method could
be extended in the future. For example, the litmus test suites
of Section 6.2 both consider test families such as PPO[000-
999] in which there is a fixed basic pattern (here, MP), but in
which one or more of the relations in the test are randomized
(here, the load-load ordering). It would be straightforward
to extend our techniques to generate minimized instances
of particular relations to reproduce such families, and more
broadly to take advantage of combining randomization tech-
niques with ours.

There may also be tests which are not strictly minimal,
but which nevertheless may be interesting to include in a
test suite. For example, the test of Figure 23 is not minimal
in models where atomic read-modify-writes are exposed as
two paired instructions (such as the model in Figure 4): the
load half of one of the atomics can be removed without

5 Batty et al. intentionally focused on producing axioms corresponding to
text in the standard, rather than on finding the most compact representations.

allowing any new outcomes. This is analogous to n5/CoLB
being excluded in Section 6.1 due to its containing CoRW as
a subcomponent. However, even in such models, the test of
Figure 23 is perfectly reasonable to include, as atomics may
behave differently from non-atomics in practice. It would
be interesting to classify all tests by counting how many
instruction relaxations it would take to make the test produce
a new outcome, and then to produce test suites of varying
“degrees of minimality”.

Alternatively, it would also be useful to extend a suite
of minimal tests by feeding it into a flow that randomly
strengthens or perturbs those tests. For example, the test of
Figure 23 could be re-derived as a random and/or guided
strengthening of CoRW. This approach would tie in nicely
with a stressing or fuzzing flow of the kind that has been
shown to encourage weak memory behaviors to appear in
practice (Sorensen and Donaldson 2016).

Of course, one practical problem to solve is the fact that
runtime is currently super-exponential with respect to the
test size bound. Fortunately, generation of a litmus test suite
is a one-time cost for any given model. We also believe
that a more sophisticated use of symmetry reduction within
the SAT solver itself could provide significant benefits. The
risk would be that doing so would come at the expense of
generality or usability, which through Alloy are what made
our exploration possible in the first place. We hope to further
explore this tradeoff as future work as well.

8. Conclusion
Memory model verification is becoming increasingly impor-
tant as hardware and software models continue to evolve
in increasingly complex directions. Unfortunately, existing
testing infrastructures are prone to human error and incom-
plete coverage. To mitigate this, we presented a new method-
ology for automatically synthesizing comprehensive litmus
test suites directly from axiomatic memory model formal-
izations. Our synthesis technique was able not only to repro-
duce but also to fill in gaps in existing test suites for various
important real-world memory models, including x86-TSO,
IBM Power, and C11/C++11. We also showed how easily
our technique was able to adopt to the SCC memory model
newly proposed in this paper. Finally, our results reinforce
the need for and benefits of formalism when defining and
analyzing memory models. To aid in this effort, our models
are open-sourced and freely available at the following URL:
http://github.com/nvlabs/litmustestgen

Acknowledgments
This research was developed, in part, with funding from the
United States Department of Energy. The views, opinions,
and/or findings contained in this article are those of the
authors and should not be interpreted as representing the
official views or policies of the Department of Energy or the
U.S. Government.



References
Advanced Micro Devices (AMD). AMD64 architecture pro-

grammer’s manual. Technical report, 2016. URL: http:
//developer.amd.com/resources/developer-
guides-manuals.

S. V. Adve and M. D. Hill. Weak ordering—a new definition. In
17th Annual International Symposium on Computer Architecture
(ISCA), 1990.

J. Alglave and L. Maranget. Towards a formalization of the HSA
memory model in the cat language. Technical report, 2016.
HSA Foundation Specification Version 1.1. URL: http://
www.hsafoundation.com/?ddownload=5381.

J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak
memory models. In 22nd International Conference on Computer
Aided Verification (CAV), 2010.

J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Mod-
elling, simulation, testing, and data mining for weak memory.
ACM Transanctions on Programming Languages and Systems
(TOPLAS), 36(2):7:1–7:74, July 2014. ISSN 0164-0925.

J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan,
J. Ketema, D. Poetzl, T. Sorensen, and J. Wickerson. GPU con-
currency: Weak behaviours and programming assumptions. In
20th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2015a.

J. Alglave, L. Maranget, and M. Tautschnig. Herding cats:
Modelling, simulation, testing, and data mining for weak
memory, companion material, Power litmus tests. 2015b. URL:
http://diy.inria.fr/cats/showlogs/power-
tests.tgz.

AMD. Revision guide for AMD family 10h processors. Technical
report, 2012. Bug 254. URL: http://support.amd.com/
TechDocs/41322\_10h\_Rev\_Gd.pdf.

ARM. Cortex-A9 MPCoreTM, programmer advice notice, read-
after-read hazards. Technical report, 2011. URL: http:
//infocenter.arm.com/help/topic/com.arm.
doc.uan0004a/UAN0004A\_a9\_read\_read.pdf.

ARM Holdings. ARM architecture reference manuals. Techni-
cal report, 2016. URL: http://infocenter.arm.com/
help/topic/com.arm.doc.set.architecture.

M. Batty, A. F. Donaldson, and J. Wickerson. Overhauling sc
atomics in c11 and opencl. In 43rd Annual Symposium on
Principles of Programming Languages (POPL), 2016.

H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency
memory model. In 29th Annual Conference on Programming
Language Design and Implementation (PLDI), 2008.

H.-J. Boehm and B. Demsky. Outlawing ghosts: Avoiding out-of-
thin-air results. In Workshop on Memory Systems Performance
and Correctness (MSPC), 2014.

S. Hangal, D. Vahia, C. Manovit, and J.-Y. J. Lu. TSOtool: A pro-
gram for verifying memory systems using the memory consis-
tency model. In 31st Annual International Symposium on Com-
puter Architecture (ISCA), 2004.

Intel. A formal specification of Intel Itanium processor fam-
ily memory ordering. Technical report, 2002. URL:

ftp://download.intel.com/design/Itanium/
Downloads/25142901.pdf.

Intel. Intel Xeon processor E5 v3 product family, processor spec-
ification update. Technical report, 2016a. Bug HSE44.
URL: http://www.intel.com/content/dam/
www/public/us/en/documents/specification-
updates/xeon-e5-v3-spec-update.pdf.

Intel. Intel R©64 and IA-32 architectures software de-
veloper manuals. Technical report, 2016b. URL:
http://www.intel.com/content/www/us/
en/processors/architectures-software-
developer-manuals.html.

International Organization for Standardization (ISO). Information
technology – programming languages – C, ISO/IEC 9899:2011.
Technical report, Dec. 2011a.

International Organization for Standardization (ISO). Informa-
tion technology – programming languages – C++, ISO/IEC
14882:2011. Technical report, Sept. 2011b.

D. Jackson. Alloy: A lightweight object modelling notation. In
ACM Transactions on Software Engineering and Methodology
(TOSEM), volume 11, Apr. 2002. URL: http://alloy.
mit.edu.

Khronos Group. The OpenCL specification, version 2.1. Tech-
nical report, 2015. URL: https://www.khronos.org/
registry/cl/specs/opencl-2.1.pdf.

L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Transactions on
Computers, 28, 1979.

D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee.
COATCheck: Verifying memory ordering at the hardware-OS
interface. In 21st International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2016.

S. Mador-Haim, R. Alur, and M. M. K. Martin. Generating litmus
tests for contrasting memory consistency models. In 22nd In-
ternational Conference on Computer Aided Verification (CAV),
2010.

S. Mador-Haim, L. Maranget, S. Sarkar, K. Memarian, J. Alglave,
S. Owens, R. Alur, M. M. K. Martin, P. Sewell, and D. Williams.
An axiomatic memory model for power multiprocessors. In
24th International Conference on Computer Aided Verification
(CAV), 2012.

Y. A. Manerkar, C. Trippel, D. Lustig, M. Pellauer, and
M. Martonosi. Counterexamples and proof loophole for the
C/C++ to POWER and ARMv7 trailing-sync compiler map-
pings. arXiv, 1611.01507v2, Nov 2016.

C. Manovit, S. Hangal, H. Chafi, A. McDonald, C. Kozyrakis, and
K. Olukotun. Testing implementations of transactional memory.
In 15th International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2006.

A. Milicevic, J. P. Near, E. Kang, and D. Jackson. Alloy*: A
higher-order relational constraint solver. In 37th International
Conference on Software Engineering (ICSE), 2015.

S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model:
x86-TSO. In 22nd International Conference on Theorem Prov-
ing in Higher Order Logics (TPHOLs), 2009.



Power.org. Power ISATMversion 2.07. Technical re-
port, 2013. URL: https://www.power.org/wp-
content/uploads/2013/05/PowerISA\_V2.07\
_PUBLIC.pdf.

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams.
Understanding POWER multiprocessors, companion mate-
rial, POWER and ARM litmus tests. Technical report,
2011a. URL: https://www.cl.cam.ac.uk/~pes20/
ppc-supplemental/test6.pdf.

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams.
Understanding POWER multiprocessors. In 32nd Conference
on Programming Language Design and Implementation (PLDI),
2011b.
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