EUROGRAPHICS 2017 / L. Barthe and B. Benes
(Guest Editors)

Volume 36 (2017), Number 2

Consistent Video Filtering for Camera Arrays

Nicolas Bonneel®', James Tompkin*’z, Deqing Sun?, Oliver Wang4, Kalyan Sunkavalli*, Sylvain Paris®, and Hanspeter Pfister’

* Equal contribution, 'CNRS/LIRIS, 2Brown University, ’NVIDIA, 4 Adobe, >Harvard Paulson SEAS

View 1 (left)

View 2 (right)

(a) Input camera array video (stereo rig).

(b) Per-frame filtered with dehaze operator.

(¢) Our result after enforcing consistency.

Figure 1: Our method turns inconsistent filtered video from camera arrays into consistent video across time and view. Applying image
dehazing per frame to an input stereo video (a) produces unstable results across time and view (b). Our approach makes the resulting stereo

video consistent (c). (‘Up and Down’: A = 0.05,As = 0.05.)

Abstract

Visual formats have advanced beyond single-view images and videos: 3D movies are commonplace, researchers have developed
multi-view navigation systems, and VR is helping to push light field cameras to mass market. However, editing tools for these
media are still nascent, and even simple filtering operations like color correction or stylization are problematic: naively applying
image filters per frame or per view rarely produces satisfying results due to time and space inconsistencies. Our method preserves
and stabilizes filter effects while being agnostic to the inner working of the filter. It captures filter effects in the gradient domain,
then uses input frame gradients as a reference to impose temporal and spatial consistency. Our least-squares formulation adds
minimal overhead compared to naive data processing. Further, when filter cost is high, we introduce a filter transfer strategy that
reduces the number of per-frame filtering computations by an order of magnitude, with only a small reduction in visual quality.
We demonstrate our algorithm on several camera array formats including stereo videos, light fields, and wide baselines.

Categories and Subject Descriptors (according to ACM CCS): [.4.3 [Computer Graphics]: Enhancement—Filtering 1.2.10 [Computer

Graphics]: Vision and Scene Understanding—Video analysis

1. Introduction

Capturing video with multiple cameras is an integral component of
many popular applications. For example, camera array rigs record
content for 3D displays, for stitched 360° video for virtual reality
[PSZ*15], for virtual-camera-based post production [FK00], and for
refocusing and depth-aware processing [NLB*05, VLD*13].

However, one challenge lies in processing the captured footage,
as many methods produce inconsistent output across frames from
multiple views. Consider the large class of filtering operations—
from tone mapping to color grading—which are fundamental steps
in post production workflows. With naive processing, small content
changes between frames can cause jarring temporal and spatial

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

inconsistency artifacts. We address filter inconsistency and enforce
spatio-temporal consistency across multiple views, with a gradient-
domain optimization inspired by Bonneel et al. [BTS*15].

A second challenge is efficient filtering. Camera arrays often pro-
duce 10-100x more video data than single-view cameras, and so
any kind of filtering is expensive, both in terms of computation and
memory. As an example, a 91-view sequence at 1280 x 768 resolu-
tion contains about 8GB of data per second. We present an efficient
approach that reduces the cost of filtering the data by an order of
magnitude, without a large reduction in quality, by skipping the
filtering step on many frames completely, and instead, transferring
the filter response from a small subset of input frames to the rest of

Bonneel et al. / Consistent Video Filtering for Camera Arrays

the data. Further, our approach is causal as it sequentially processes
frames, and so does not need multiple passes, or even to keep multi-
ple views or entire videos in memory. Combined, these properties
reduce the computational burden and allow for of spatio-temporally
consistent filtering of camera array video.

1.1. Related Work

Some techniques allow users to make consistent local edits across
a few discrete views [SK02, WIYGOS, YJHS12, LBP*12], in a
video [RAKRF08, BPK*13, SSML14], or in dense light fields
[ZWS*16,JMG11,JMB*14,MJG14, AZJ*15]. The challenge tack-
led by these techniques is different from ours as the effect is essen-
tially a painting or pasting operation: once the scene location is deter-
mined, the edit is inherently stable across views. Similarly, due to the
popularity of stereo video footage, many works deal with explicitly
enforcing consistency across stereo views for operations like image
stabilization [LNJ13], disparity mapping [LHW™*10,LSS*15], hole
filling [MHCP12] or object copy-and-paste [LvBK*10,LSS*15].

In contrast, we consider the class of image filter edits. Many
filters are sensitive to small changes in an image, and may generate
inconsistent results over time and view when applied to video from
camera arrays. For instance, recent intrinsic decomposition methods
for static light field images address the need for consistency across
views [GEZ* 16, AG16]. Unlike methods that target a specific effect
for a given input format, we propose an approach that applies to a
large number of image filters across different camera array setups.

One similar application is to harmonize colors across images in
a collection [HSGL13]. These photographic edits can typically be
modeled by a global RGB remapping. While we share a reliance on
dense matching between images, we seek to address a larger class
of filters including sophisticated spatially-varying transforms such
as intrinsic decomposition. This requires us to develop a number of
modifications to a dense matching method—in our case, PatchMatch
[BSFGO9]—that enable us to handle wider view separation while
retaining computational efficiency. In time, our approach is also
causal, which helps it scale to light field videos.

Other techniques target flickering in videos, i.e., due to physi-
cal degradation of film stock [BZCC10, DD10,PKCKO6] or poor
automatic white balance [FL11]. These techniques seek to remove
undesirable artifacts from degraded input video. In comparison, our
input medium is clean, and we wish to apply an image filter. We
seek to remove the flickering generated by the filter while still pre-
serving its visual effect. For instance, for tone mapping, we remove
the inconsistency between frames but maintain the low dynamic
range. Some processing techniques have similar goals and are ef-
fective at fixing temporal instabilities [LWA*12,BTS*15], even in
pixel prediction maps [DY'Y 15]. However, they focus on single-view
sequences and do not cope with view inconsistencies, e.g., when
processing light fields. Our approach revisits that of Bonneel et al.
to ensure spatial and temporal consistency for different camera array
setups. Importantly, this allows us to introduce the notion of filter
transfer to speed up the per-frame filtering.

1.2. Contributions

For camera array datasets, which includes stereo and light field
images and videos, we contribute:

e A method to remove spatial and temporal inconsistencies caused
by applying unstable image filters.

e An efficient least-squares formulation of this method that can
be solved in linear time with respect to the number of frames
in the dataset, and with a constant amount of memory that is
independent of the number of views and length of the videos.

e An approximation to this method that transfers the effect of the
image filter on a portion of the dataset to achieve significant
speed-ups with only minor degradation of output quality.

e A set of modifications to PatchMatch that enables wide-baseline
matching without quantization effects

e An interleaved approach for producing temporally stable results
for iterative NPR filters such as neural style transfer

Our approach enables content creators to employ common image
filters such as dehazing, auto color balance, stylization, and intrinsic
decomposition to many camera array configurations for which these
operations were previously unsuitable.

2. Spatio-temporal Consistency

We consider a dataset with several views {V;}, e.g., a stereo dataset
has two views V| and V;, and a 5 x 5 light field has 25 views. We
use x to denote the position of a pixel in a view; and for dynamic
sequences, e.g., a stereo video, we use ¢ to index the frames, i.e.,
Vi is the /™ frame of the i view. Our algorithm takes as input an
unprocessed dataset {V; } and an image filter /. We name {P; } =
{f(Vis)} the dataset filtered frame-by-frame by f. We are interested
in cases where f is not stable, i.e., the filtered dataset {P; } suffers
from spatial and/or temporal inconsistencies. Our objective is to
generate an output dataset {O; } that retains the visual appearance
of {P; } while being spatially and temporally consistent.

Overview We design our algorithm to handle real world datasets
with large numbers of views and arbitrary video lengths. To satisfy
these requirements, we design our method to only consider a small
number of views and frames at any given time because manipulating
many frames and views together quickly become unwieldy due to
the sheer size of the data. We proceed in two main steps. First, we
select an anchor view denoted by a, and stabilize it. Second, we
operate on the other views i # a, processing frames one at a time in
temporal order (Fig. 2). One major advantage of our algorithm is
that when we treat the frame P;, we only need to consider its input
counterpart Vi, its predecessor V;,_1), and the corresponding output
anchor frame Og, resulting in little memory overhead. We formulate
our problem as a least-squares optimization that we minimize with
an off-the-shelf linear solver.

2.1. Stabilizing the Anchor View

The first step of our algorithm is to select by hand an anchor view.
In principle this could be any view, but as we wish to maximise
potential coverage in correspondence, then this is typically the most
central view in the dataset. We name a its index. {Va }, {Pu }, and
{Ou} are datasets restricted to a single view. That is, they are
standard videos and we can use existing video techniques to remove
any inconsistency introduced in {Py } by the image filter. For our
prototype, we use the algorithm by Bonneel et al. [BTS*15] and

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Bonneel et al. / Consistent Video Filtering for Camera Arrays

@ Anchor view

Views

>
>

Frames

=
@

(a) Input dataset

®» Temporal data term

t 4
|
[

(c) Step 2: Stabilize anchor view

D Processed frame

[.
-

(b) Step 1: Apply image filter to entire dataset

= Temporal data term ' Spatial data term

t f &

f F ¥ §

(d) Step 3: Stabilize secondary views

Figure 2: Algorithm overview. We apply image filer f to input data {V;;} (a) to produce filtered data {P;;}. We are interested in the case
where these data suffer from spatial and temporal instability (b). First, we stabilize the anchor view { Py } using an existing technique to remove
temporal inconsistencies from videos (c). Then, we stabilize the secondary frames {P;;} (for i # a) using the anchor frames {Oa } as reference
in addition to the previous frames (d). In Section 2.4, we reorder this computation to be more storage efficient without affecting the output: in
practice, (c) and (d) are interleaved to create a streaming algorithm. Please view in color. (‘Big Buck Bunny Flower’: A = 0.1,As = 0.1.)

its available implementation, although any other technique which
removes temporal inconsistencies could be used. For completeness,
we summarize this algorithm below.

Enforcing the temporal consistency of the filtered video {Pu } is
formulated as a least-squares optimization that seeks to generate an
output { O } with gradients similar to { P, } while minimizing the
color variations along the time dimension, i.e., successive frames
should look the same. The formulation is causal, that is, frames are
processed one by one in temporal order and the result at a given
frame depends only on past results. Furthermore, the result at frame
t > 0 only depends on data at frames ¢ and (f — 1). The least-squares
energy to compute Oy is:

argming /||V0a, — VPatH2
+wi () [|0at = Tar (Og(—1))[Pdx (1a)
with: wi(x) = Acexp(—ou||Var —7Zzt(Va(t71))||2) (1b)

where T (-) is the temporal warp operator that places into corre-
spondence the pixels at frame (r — 1) with those at 7, and o and A
control how strongly temporal consistency is enforced. In practice,

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

we adapt the PatchMatch algorithm [BSFGO09] (§2.2) to compute a
correspondence 74 between the input frames Var—1) and Var.

This optimization problem is known as a Screened Poisson Equa-
tion. Finding a minimizer amounts to solving a sparse linear system,
which can be completed with a standard linear solver. The result is a
stabilized version {Og } of the anchor view. In the next section, we
explain how we build upon this approach to process the other views.

2.2. Stabilizing the Secondary Views

Once we have stabilized the anchor view a, we process secondary
views i # a one by one. For each view, the process is causal and only
involves data at 7 and (¢ — 1) similarly to Equation 1. The difference
is the addition of a data term that relates the considered frame P;; to
its corresponding stabilized anchor frame Og:

VO — VP>
+wi)[|0x = Ta(0i_1))IIP (2a)
+ws(0)]| 04 — St (Oar) |2l

argming, /

Bonneel et al. / Consistent Video Filtering for Camera Arrays

with: wi(x) = Acexp(—aud (Vir, Ta (Vi 1)))%) (2b)
ws(x) = Asexp(—0tsd(Viy, Sit (Var))?) (2¢)

where Sj;(+) is the spatial warp operator that puts in correspondence
the pixels in view i with those in the anchor view a, d(.,.)* denotes
the quality of alignment, computed as the sum of squared pixel
difference over a 7 x 7 patch neighborhood and o5 and As are pa-
rameters that controls the influence of the view consistency term.
We use a modified version of PatchMatch to define the operators
Sir and Ty (§2.3). In this formulation, A¢ controls the regularization
strength over time and As across views, while o and o control the
confidence we give to the computed correspondences. In practice,
we use A¢ € [1,50], As € [0.2,10] and oy = 0, € 7 X 7 % [0.1,1]. We
found that increasing o4 and o5 resolves flickering that could occur
at object boundaries due to poor correspondences. Inferring tempo-
ral consistency only from the anchor view (that is, A = 0 for i # a)
did not produce satisfactory results (see accompanying video).

Akin to Equation 1, this process is a least-squares optimization
problem that amounts to solving a Screened Poisson Equation. The
sparsity of the system to solve is the same since the new spatial term
10i — Sit(Oar)||* only changes the data-attachment term that was
already nonzero due to the temporal term. Memory use is higher
since the energy function relies on 7 frames instead of 5, but this is
well within the capacity of current hardware. And most importantly,
the memory requirement of our approach does not dependent on
the number of views and frames in a dataset, e.g., we can process
arbitrarily long sequences within a fixed amount of memory. The
computational cost is also higher because we run PatchMatch twice
(for S and 7)), but practically PatchMatch is cheap. As the process at
each frame amounts to running PatchMatch at most twice and solv-
ing a linear system of the same size and sparsity that is independent
of the number of views and frames, the computational complexity
of processing a dataset is linear in the number of views and frames,
that is: O(NyNg), where Ny is the number of views in a dataset and
Ny is the number of frames per view.

Fourier Analysis Bonneel et al. [BTS*15] used Fourier analysis
to study the frequency content of the solution of Equation 1. They
showed that most of the low frequencies come from the previous
output frame O ;1) and that the processed frame Fy has more
influence on the high frequencies. In the appendix, we derive a
similar result for our case (Eq. 2) and show that while the high
frequencies still mostly come from the processed frame P, the
low frequencies are dominated by a blend of the previous frame
Oj(;—1) and of the anchor frame Og, the balance between them
being controlled by ws and wr.

2.3. Spatio-temporal correspondences for 7

An important design decision is the choice of the warp operator 7
in Egs. 1 and 2. There is an extensive body of work on establishing
correspondences between images. For this, our requirements are
twofold: we seek a technique that is fast enough to scale to our large
datasets, and that can cope with large viewpoint changes present in
wide-baseline datasets. We begin by describing initial experiments
which provided insights to our final approach.

Sparse correspondences can be computed by matching across

(a) Corresp. to anchor (b) Corresp. in time (c) Output effect

Figure 4: Incorrect correspondence effect (a,b) on regularized out-
put (c), ‘Magician’. Row 1: The original PatchMatch algorithm
occasionally produces repeated patches (a) and temporally incon-
sistent flow (b), leading to temporally-unstable quantization effect
(c). Row 2: We handle correspondence inaccuracies in wide base-
lines via several alterations of the original algorithm (§2.2). This
effectively reduces quantization artifacts. Row 3: With the same cor-
respondence, controlling the diffusion process with the inter-patch
distance prefers good correspondences and improves the result.

wide baselines and time with features like SIFT [Low04], refined
through motion models via RANSAC. In practice, sparse corre-
spondences are insufficient to remove inconsistency as many filters
introduce high-frequency spatial variations. For example, intrinsic
decomposition creates different gradient distributions in different
regions from frame to frame. Sparse correspondences can only re-
move low spatial frequency deviations because the spatial resolution
of the correspondences does not match the flickering resolution.

Optical flow techniques are one way to provide dense per-pixel
correspondences, and these commonly trade accuracy for efficiency.
However, most are designed for small image changes in time and
so enforce strong spatial regularization. This may be suitable for
light field camera arrays, but is not suitable for wider baselines. For
instance, PCA Flow [WB15] is efficient but does not produce accu-
rate correspondences for wide-baseline camera arrays as the spatial
regularization is too strong. Our supplemental materials [sup15]
illustrate the artifacts produced by PCA Flow on wide-baseline se-
quences. Large motion optical flow techniques relax this constraint
(e.g., EpicFlow [RWHS15]), but can be prohibitively slow and so
do not scale to our problem.

Nearest neighbor field techniques solve for matches that are good
purely in terms of patch appearance, and this allows them to find
correspondences across wide-baseline views that have significant
differences. PatchMatch is one efficient approach which uses ran-
dom sampling; however, it can produce correspondence fields that
are not geometrically meaningful or temporally consistent. In many
cases, this is not a problem, particularly when the frame difference
in time or view is small such that the matching patch distance is
also small. However, large frame difference can lead to inconsistent
‘quantization’-style artifacts where a single source patch acts as
correspondence for many target patches (Fig. 4).

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Bonneel et al. / Consistent Video Filtering for Camera Arrays

Frames (a) (b)

(© (@ (e)

Figure 3: Correspondences in time (first row, ‘Juggler’) and across views (second row, ‘Magician’). (a) The original PatchMatch algorithm
can lead to many small and repeated patches, which occasionally causes quantization artifacts in the output. (b) Limiting the same patch to
be the source for no more than 3 correspondences helps vary the patch source. (c) In areas of uniform luminance, we do not perform the
PatchMatch random search, which reduces random errors. (d) Combined with a rough motion estimate, patches become temporally consistent.
(e) Finally, we restrict the patch search to a small radius around the current estimate as offsets over time are unlikely to change drastically.

Please zoom.

Our solution For these cases, we combine both approaches and
constrain PatchMatch. First, we compute sparse SIFT features and
use them to fit similarity motion model using RANSAC with a large
error threshold (200 pixels). The resulting motion field is globally
smooth but locally inaccurate because of parallax and non-rigid
motion. Thus, second, we initialize PatchMatch with this motion
field and perform randomized refinement. To prevent PatchMatch
from moving too far from the initialization: a) we limit the search
window over which the random search step in PM searches to 20
pixels, b) we explicitly enforce a bijectivity constraint on the cor-
respondences by limiting one source patch to match at most three
destination patches, to avoid one-to-many quantization artifacts, and
¢) we do not perform the random search step on patches with lu-
minance standard deviation smaller than 10 (on a scale of [0,255]),
as these low-contrast correspondences are often arbitrary and erro-
neous. Finally, we use the PatchMatch patch appearance error—the
sum of squared differences over the patch—to weight the strength
of the correspondence. This is more robust than the noise-sensitive
pixel-wise weights used by Bonneel et al. [BTS™15]. Figure 3 shows
how each of these changes result in a flow field that is more smooth
and meaningful, and also more consistent over time, which leads to
visually pleasing results (Fig. 4).

2.4. Efficient Computation Reordering

For the sake of clarity, we have described the algorithm as (1) create
the filtered dataset {P; = f(Vis)}, (2) process the anchor view, (3)
process the secondary views (Fig. 2). We can improve this scheme
by reordering the operations in two ways that do not affect the result.
First, we observe that Py = f(Vj;) is only needed when computing
the output frame Oj;. Instead of applying the image filter f to the
entire dataset and caching the result, it is more efficient to compute
f(Vi) when we start the processing of P; and discard it at the
end of it. It does not change the result but removes the need to
cache the entire {P; } dataset. Second, the computation of anchor
and secondary views depends only on data at times (¢t — 1) and ¢,
and the secondary views depend on the anchor view but not the
opposite. This allows us to interleave the processing of the anchor
and secondary views so that the entire process is causal. That is,

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

assuming that we have processed all the dataup to (¢ — 1) (forz > 0),
we first compute the output anchor view O, with Equation 1, and
use the result to compute the output secondary views O;; (for i # a)
with Equation 2. This allows us to store the data older than (r — 1)
directly in a compressed format, e.g., H264 or H265. Since this data
is not used in the computation anymore, the loss introduced by the
compression has no impact on the output quality.

2.5. Speed-up via Filter Transfer

The approach described produces stable outputs for many datasets
and filters (§3). However, applying image processing filters across
multiple frames and views can be prohibitively expensive when the
image filter f is costly. We propose an approximation which enables
a significant speed-up to the per-frame filtering while maintaining a
satisfying output. Our strategy is to filter only a subset of the frames,
i.e., we compute f(V;) only for some i and ¢ values and let our
regularization technique transfer the response from these frames
(Fig. 5). With this strategy, we exploit the high level of redundancy
between nearby frames and views to propagate the effect of the
image filter f from a few filtered frames onto all the others even
if they have not been filtered. In our algorithm, the anchor frames
are more important because they regularize the secondary frames.
Building on this observation, we filter all the anchor frames as
normal, but filter only one in every n secondary frames. Because our
approach is causal, we also filter the first frames of all views, i.e.,
we compute f(Vip) for all i. Formally, we define the dataset {P; }:
pﬁ:{f(vi) if (i=a) or (¢ mod n=0) 3
Vit otherwise
Then, the algorithm is the same, i.e., we minimize Equations 1 and 2
using P instead of P. As we filter all anchor frames, Equation 1 is
unchanged; only secondary view processing (Eq. 2) is affected.

The value of keeping the input frame Vj, in place when (i # a)
and (+ mod n # 0) is to maintain high-frequency detail in the out-
put. Consider replacing V;; with a mid-gray frame instead. Our
consistency term propagates lower-frequency content, but the high
frequencies are dominated by the current frame so that scene dynam-

Bonneel et al. / Consistent Video Filtering for Camera Arrays

@ Anchor view

Views

A 4

Frames

L
4 ||

(a) Input dataset

= Temporal data term

L
i
L

(c) Step 2: Stabilize anchor view

o |

D Processed frame

(b) Step 1: Apply image filter to subset of dataset

= Temporal data term v Spatial data term

@&

-

-

(d) Step 3: Stabilize secondary views

Figure 5: We accelerate our algorithm by applying image filter f only to a subset of the input data (a). We filter all frames at t = 0 and all
anchor frames, and 1 in n frames for the secondary views (b). We use n = 3 in this example. The rest of the algorithm remains the same (c,d).
This significantly speeds up the process while having a limited impact on the results because our algorithm is sufficiently robust to transfer the
information from the filtered frames, essentially “hallucinating” the effect of the filter. We reorder this computation to be more storage efficient
by interleaving (c) and (d) to create a streaming algorithm (§2.4). Please view in color. (‘Big Buck Bunny Flower’: s = 0.1, s =0.1.)

ics are not lost (see Appendix). Thus, inserting a mid-gray frame
would blur the result when (i # a) and (+ mod n # 0). Using Vj; as
a proxy for high-frequency content relies on the fact that, for many
filters, the fine gradients are not altered significantly between the
input and processed videos (e.g., not flipped). This condition is also
present in reverse: a filter which removes detail, and is then subset
with Vj; as a proxy, will see detail bleed back in.

However, for many filters these conditions are maintained and
the result is satisfactory. We found that speed-up factors of 5x
were possible while keeping a satisfying output quality. Figure 6
quantifies the output quality as we transfer more filtered frames.

3. Results

We found that our approach performs well on a broad range of image
filters as shown in our experiments. First, we report run times and
memory consumption, then we run experiments with a variety of
filters, scenes, and camera array configurations. We encourage the
reader to watch the supplemental videos [sup15].

Performance Our algorithm is efficient, and scales linearly with
the number of views. In many cases, camera array sequences either

have high angular and low spatial resolution, or high spatial and
low angular resolution. Our algorithm scales linearly with angular
resolution, and super-linearly with spatial resolution due to our multi-
scale Poisson solver and PatchMatch. On a 6-core Intel Xeon 3.5
GHz, a low resolution 320 x 240 15-view sequence is regularized at
a rate of approximately 2.7 seconds per frame for all views, while
a high resolution 1280 x 768 91-view sequence takes roughly 2
minutes per frame for all views, or 1.3 seconds per image. With
our unoptimized implementation, this corresponds to a throughput
of 0.8 mega-pixel per second. In practice, 60% of our runtime is
spent in computing the PatchMatch correspondence field and SIFT
matches. Currently, for convenience, our prototype implementation
holds two frames per camera in memory, along with correspondence
fields and other associated data. As such, the total memory usage
is ~6 GB for a 1280 x 768 91-view sequence independently of the
sequence length. However, in principle, it is not necessary to store
more than seven frames in memory at once (§2.2) and we could
optimize our implementation to further reduce its memory footprint.

Color mapping Automatic color adjustment filters are common,
and so we tested both Adobe Photoshop and Premiere Pro on vari-
ous multi-camera setups: light fields (‘Truck’, ‘Aquarium’), stereo

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Bonneel et al. / Consistent Video Filtering for Camera Arrays

35,
35 T T

[Near [EEE Medium [Far

50% 20% 10% 5% 0%

Near

35,
35 T T

[Near [Medium [Far

50% 20% 10% 5% 0%

Medium

Far

Figure 6: We evaluate the error induced by our filter transfer strategy between an anchor and a secondary view separated by either near,
medium, or far distances. The secondary view intrinsic decomposition reflectance filtering has been subsampled by factors of 2, 5, 10, 20, and
entirely except for its first frame. The anchor view has been either fully processed (left) or subsampled similarly to the secondary view (right).
Processing the anchor view entirely improves the reconstruction quality of the secondary view. (‘Big Buck Bunny Rabbit’: \; = 0.2, As = 0.2.)

Original Filtered

Color2gray

Autocolor

Figure 7: Two examples of other filters that resulted in flickering
that was corrected. (‘Juggler’: A = 0.2,As = 0.2. ‘Bangkok Chaos’:
(A =0.01,A;, =0.01.))

videos (‘Bangkok Chaos’), and multi-view setups (‘Magician’).
Common artifacts are flickering, which is often caused by bright ob-
ject, such as the sun or a flame, entering the frame, and more subtle
color casts which vary between views and over time as occlusions
reveal unseen areas. Smoothing AutoColor parameters over video
sequences can remove temporal flicker, but fails to remove color cast
inconsistencies between views. In most cases, our approach is able
to correct for both artifacts. However, the lack of correspondences
between views in the ‘Magician’ sequence leaves some temporal
inconsistencies. Similar flickering artifacts are seen with other color
mapping functions such as tone mapping and contrast-preserving
decoloration (color2gray), which we successfully remove.

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Stylization Stylization methods often perform some kind of color
mapping in combination with edge highlights, which can exhibit
flickering over time and space. We show a panoramic example using
the watercolor filter from Adobe Photoshop applied to each frame,
and then regularized. In general, filters which add new edges which
are inconsistent with input edges will lead to those new edges being
smoothed out during consistency enforcement (Fig. 7).

Dehazing We ran the Photoshop Dehazing filter on each frame of a
stereo video, which estimates an atmospheric haze color from image
statistics, and uses this to remove haze in outdoor images. In this
case, small changes in this estimate led to drastic changes in the
result, which we were able to make consistent (Fig. 1).

Intrinsic Decomposition Intrinsic decomposition is an essential
step in reflectance or lighting editing, as well as for analyzing scene
compositions. We computed a per-frame decomposition into re-
flectance and albedo information using Bell et al. [BBS14] (Fig. 8).
This filter shows significant flickering across time and view, but our
approach is able to enforce consistency across both. In Fig. 9, we
show a comparison with the recent (static) light field intrinsic decom-
position method of Garces et al. [GEZ*16]. Additional comparisons
can be found in supplemental materials.

Non-photorealistic Rendering To help evaluate which filters are
appropriate for our approach, we also consider NPR filters which
create a significantly pronounced effect. As our algorithm works
in the gradient domain, it implicitly assumes that the input edge
structure can effectively regularize the filter. Thus, our approach is
not appropriate for filters which add significant new edges to the
output, e.g., Adobe Photoshop cutout filter (Fig. 12). This is because
when there is a new edge in the output that is missing from the input,
our approach blurs it away, producing an unsatisfying result.

Bonneel et al. / Consistent Video Filtering for Camera Arrays

Vo

Vs

(a) Input Videos (cropped)

(b) Per-frame intrinsic albedo

(¢) Our result after enforcing consistency

Figure 8: Decomposing light field videos into albedo and reflectance information produces unstable results due to changes in content over
time and view. For instance, in (b), Vy, the balloon string brightness changes over time; in Vs, the green balloon has different appearance
either side of the string. Our method greatly reduces the resulting flicker, yielding a consistent result. (‘Balloon’: \s = 0.2,As = 0.02.)

(a) Input Images (b) [GEZ*16] (c) Our result

Figure 9: We compare our approach with that of Garces et
al. [GEZ" 16] which operates on static light field images. We enforce
consistency across views on the albedo obtained via the method of
Zhao et al. [ZTD* 12]. The method of Garces et al. exhibits consis-

tency artifacts across views, shown in red. (‘Teapot’: A = 0,As = 1.)

However, for iterative filters that introduce new edges, such as
the popular neural style transfer [GEB15] or ‘deep dream’ effects
[MOT15], we propose an iterated (filter — regularize — filter)
approach to cope with this edge blurring problem.By interleaving
our regularization within style transfer iterations, we are able to
remove significant inconsistency at low computational cost, while
retaining the desired style, as the high frequencies are added back at
each iteration. We perform this iteration four times to create a stable
result, as shown in the video and in Fig .10. One contemporaneous
approach for temporally stable style transfer uses long-term features
to track objects across motions in videos [RDB16]. While effective,
this approach relies on optical flow and takes roughly 3 minutes
per image pair, which would be prohibitive when scaling to large
numbers of views. Further, their approach modifies the underlying

Figure 10: [terative NPR filters can benefit from our regularization.
We stabilize the Gatys et al. approach [GEBI5]. Our process tends
to average out high frequencies over time; however, integrating it
into the NPR loop reintroduces high frequencies and maintains the
desired style. (‘Big Buck Bunny Flower’: A, = 0.1,hs =0.1.)

formulation [GEB15], while ours is agnostic to the formulation and
so applies to a class of problems.

Random Filters To demonstrate the efficacy of our filter transfer
approach, we applied random color transforms to all but the anchor
view of the ‘Treasure’ static light field (Fig. 11). Despite the drastic
frame-to-frame differences, our approach is still able to produce
a mostly consistent output. While a real world per-frame filter is
unlikely to produce such extreme variations, this test shows that
when the gradients are kept intact, our approach can still stabilize
the views in the presence of significant instability.

Validation We evaluate our method against existing per-view ap-
proaches to produce temporally stable output [LWA*12,BTS*15],
as well as to current solutions in Adobe Premiere Pro. To demon-
strate the improvements in our supplemental video, we 1) express

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

Bonneel et al. / Consistent Video Filtering for Camera Arrays

(a) One view of a 16-camera light field.

(b) Random filters applied to each view.

(¢) The same views after our approach.

(d) Output on an automultiscopic display (left to right: input, random filters causing view artifacts, our output).

Figure 11: Torture test: We chose a random filter effect for each view (b). The anchor frame (top left) stabilizes the remaining views. Even
with vastly different appearances, our approach still creates a consistent output (c). When viewed on an automultiscopic display (d), view
inconsistencies cause spatially-varying artifacts which change over views. Our approach removes them. (‘Treasure’: s = 0,As = 10.)

view and time changes by pausing time and switching views, and 2)
recorded an auto-multiscopic display with real camera motion.

Additionally, we also compare our approach to the single view
method of Bonneel et al. [BTS*15] but with a naive traversal of the
light field: generating a single video which sweeps through all views
of the multi-view sequence in one direction, then advances one frame
in time, then sweeps through all views in the other direction, then
advances one frame, and so on. While better than a pure per-view
approach, the sweeps leave artifacts between distant views over our
anchor approach, and causes ‘leaking’ of the input when using filter
transfer speed-up (please see our supplemental material [sup15]).

4. Discussion

We typically choose the anchor view to be in the middle of the
camera arrays to limit the distance of the farthest view. This choice
works well in our experiments and we observed that distance has
only a limited impact on accuracy (Fig. 6). However, manufacturers
have recently announced spherical camera arrays covering 360° and
distance might become a concern with the datasets that they produce.
If that is the case, extending our approach to several anchors will be
an interesting direction of future work.

To propagate the information spatially, we experimented with
referring to the nearest view instead of the anchor but this did not
perform as well. Distant views suffered from error accumulation
because they were related to the anchor through a chain of inter-
mediate views, and temporal inconsistencies in the correspondence
field were thus amplified for these views. Direct anchor attachment

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Input Our result

Figure 12: Limitation: NPR filters which add strong gradients
in regions where none exist in the input image, e.g., Photoshop
Cutout, can lead to blurring effects after the video is made consistent.
(‘Kendo’: A+ = 0.1,As =0.1.)

does not have an accumulation effect and performed better in our
case, however, investigating multiple anchor views and loop closure
to prevent drift is an interesting area for future work. While we ex-
perimented with a fixed subsample factor to speed up the per-frame
processing, a prior video analysis would allow automatic subsample
factor adjustment based on motion or content. Our work favored a
solution for which no precomputation is necessary.

Parameters Only two parameters need to be changed between
scenes, and these changes are generally intuitive. Scenes with wider
baselines require stronger spatial regularization, and scenes with
fast motion (blur) require stronger temporal regularization. Changes

Bonneel et al. / Consistent Video Filtering for Camera Arrays

in scene depth across time are regularized by the input gradients,
and do not typically require parameter changes. Please see the figure
captions for the parameters used.

Correspondence One might ask why we do not use depth maps
or depth-aware correspondence fields [HRF13]. Relying on image-
based rather than strict geometric correspondences provides flexi-
bility and relaxes input requirements, e.g., enabling our handheld
wide baseline street juggler example. This argument is corroborated
by works on generating light field imagery [RPZSH13, AGB*16],
which also use image correspondences (optical flow) rather than
depth, even with known camera configurations. Less strict corre-
spondence also allow robustness to view-based effects (specularity,
depth of field) and rolling shutter issues.

Standard PatchMatch introduces posterization artifacts, but by
adding rigid motion initialization, limiting the search radius and
number of repeated target patches, and skipping constant source
patches, we effectively increase robustness and reduce artifacts.
However, in hard cases, a little randomness adds robustness: in wide
baseline cases, for some image regions, there is no good match
between views. Retaining some of this randomness allows our ap-
proach to still find similar looking spatio-temporally stable regions
for consistent filter transfer. The same rationale extends to com-
parisons against depth-based reconstruction methods, where strict
geometric reasoning will fail but a more flexible pseudo-random ap-
proach will be more successful. Finally, our image-based correspon-
dences are still only soft constraints which guide spatio-temporal
consistency in conjunction with the input video gradients. This
provides further flexibility.

That said, some sequences can be challenging, e.g., ‘Magician’,
where artifacts in shadows and smooth gradients come from cor-
respondence errors. While our method helps reduce ‘one-to-many’
correspondence errors over standard PatchMatch in wide-baseline
or low-textured sequences, some sequences still produce artifacts
due to the challenge of finding correspondence in general situations
where disocclusion between views may be large. Prior information
about the camera layout, or improvements in registration, will help
generalize our approach.

Conclusion

We have introduced a technique that enables the application of un-
stable image filters such as dehazing, autocolor, and intrinsic decom-
position to datasets recorded with camera arrays, including stereo
videos, and static and dynamic light fields. Without our algorithm,
these filters introduce temporal flickering and view inconsistencies
that render their output unusable. We have shown how to remove
these artifacts by solving a least-squares optimization problem that
has the property of scaling linearly with the number of cameras in
the array and with the duration of sequence, and of running within
a fixed amount of memory independent of these parameters. For
computationally expensive image filters, we have proposed an accel-
eration strategy that runs the filter only a subset of the data and then
transfers the result to nearby frames and views. Our experiments
have demonstrated that our approach enables a large class of stan-
dard filtering operations on media like stereo and light field videos
that are rapidly gaining in popularity.

Acknowledgements

We thank Kovacs et al. [KFLA15], Ballan et al. [BBPP10], the (New)
Stanford Light Field Archive, Nagoya University Multi-view Se-
quence Download List, Al Caudullo Productions, and G. Pouillot for
their videos. We thank Szo-Po Wang and Wojciech Matusik for use
of their auto-multiscopic display, and Serena Booth for her narration.
For this work, James Tompkin and Hanspeter Pfister were sponsored
by the Air Force Research Laboratory and DARPA Memex program.
Nicolas Bonneel thanks Adobe for software donations.

References

[AG16] ALPEROVICH A., GOLDLUECKE B.: A variational model for
intrinsic light field decomposition. In Asian Conference on Computer
Vision (ACCV) (2016). 2

[AGB*16] ANDERSON R., GALLUP D., BARRON J. T., KONTKANEN
J., SNAVELY N., HERNANDEZ C., AGARWAL S., SEITZ S. M.: Jump:
Virtual reality video. ACM Trans. Graph. 35,6 (Nov. 2016), 198:1-198:13.
10

[AZJ*15] Ao H., ZHANG Y., JARABO A., MASIA B., L1U YEBIN L.,
GUTIERREZ, QIONGHAI D.: Light field editing based on reparameteriza-
tion. In Adv. in Multimedia Information Proc. (2015). 2

[BBPP10] BALLAN L., BROSTOW G. J., PUWEIN J., POLLEFEYS M.:
Unstructured video-based rendering: Interactive exploration of casually
captured videos. 1-11. 10

[BBS14] BELL S., BALA K., SNAVELY N.: Intrinsic images in the wild.
ACM Trans. on Graphics (SIGGRAPH) 33, 4 (2014). 7

[BPK*13] BAEK]J., PAJAK D., KiMm K., PULLI K., LEVvOY M.: WYSI-
WYG computational photography via viewfinder editing. ACM Trans.
Graph. 32,6 (2013). 2

[BSFG09] BARNES C., SHECHTMAN E., FINKELSTEIN A., GOLDMAN
D. B.: PatchMatch: A randomized correspondence algorithm for struc-
tural image editing. ACM Trans. Graph. (SIGGRAPH) 28, 3 (2009). 2,
3

[BTS*15] BONNEEL N., TOMPKIN J., SUNKAVALLI K., SUN D., PARIS
S., PFISTER H.: Blind video temporal consistency. ACM Trans.
Graph. (SIGGRAPH Asia) 34, 6 (2015). https://github.com/
nbonneel/blindconsistency. 1,2,4,5,8,9,11

[BZCC10] BHAT P., Z1TNICK C. L., COHEN M., CURLESS B.: Gradi-
entShop: A gradient-domain optimization framework for image and video
filtering. ACM Trans Graph (SIGGRAPH) 29,2 (2010). 2

[DD10] DELON J., DESOLNEUX A.: Stabilization of flicker-like effects
in image sequences through local contrast correction. SIAM Journal on
Imaging Sciences 3, 4 (2010), 703-734. 2

[DYY15] DANG K., YANGJ., YUAN J.: Adaptive exponential smoothing
for online filtering of pixel prediction maps. In 2015 IEEE International
Conference on Computer Vision (ICCV) (Dec 2015), pp. 3209-3217. 2

[FKOO] FOOTE J., KIMBER D.: Flycam: Practical panoramic video and
automatic camera control. In /EEE Int. Conf. on Multimedia and Expo
(ICME) (2000), vol. 3, pp. 1419-1422. 1

[FL11] FARBMAN Z., LISCHINSKI D.: Tonal stabilization of video. ACM
Trans. on Graphics (SIGGRAPH) 30, 4 (2011), 89:1 — 89:9. 2

[GEB15] GATYS L. A., ECKER A. S., BETHGE M.: A neural algorithm
of artistic style. CoRR abs/1508.06576 (2015). 8

[GEZ*16] GARCES E., ECHEVARRIA J. 1., ZHANG W., WU H., ZHOU
K., GUTIERREZ D.: Intrinsic light fields. CoRR abs/1608.04342 (2016).
2,7,8

[HRF13] HERBST E., REN X., FOX D.: Rgb-d flow: Dense 3-d motion
estimation using color and depth. In /CRA (2013), IEEE. 10

[HSGL13] HACOHEN Y., SHECHTMAN E., GOLDMAN D. B., LISCHIN-
SKI D.: Optimizing color consistency in photo collections. ACM Trans.
Graph. (SIGGRAPH) 32, 4 (2013), 85:1 —85:9. 2

(© 2017 The Author(s)
Computer Graphics Forum (©) 2017 The Eurographics Association and John Wiley & Sons Ltd.

http://lightfield.stanford.edu/
http://lightfield.stanford.edu/
http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
https://vimeo.com/96171324
https://vimeo.com/34963712
https://github.com/nbonneel/blindconsistency
https://github.com/nbonneel/blindconsistency

Bonneel et al. / Consistent Video Filtering for Camera Arrays

[JMB*14] JARABO A., MASIA B., BOUSSEAU A., PELLACINI F.,
GUTIERREZ D.: How do people edit light fields? ACM Trans. Graph.
(SIGGRAPH) 33,4 (2014). 2

[JMGI11] JARABO A., MASIA B., GUTIERREZ D.: Efficient propagation
of light field edits. In Proc. of the V Ibero-American Symposium in
Computer Graphics (2011), SIACG 2011, pp. 75-80. 2

[KFLA15] KovAcs P. T., FEKETE A., LACKNER K., ADHIKARLA
V. K.: Big buck bunny light-field test sequences. MPEG contribution
(ISO/IEC JTC1/SC29/WG11 M35721), Feb. 2015, 2015. 10

[LBP*12] LAFFONT P.-Y., BOUSSEAU A., PARIS S., DURAND F., DRET-
TAKIS G.: Coherent intrinsic images from photo collections. ACM Trans.
Graph. 31,6 (2012). 2

[LHW*10] LANG M., HORNUNG A., WANG O., POULAKOS S.,
SMOLIC A., GROSS M.: Nonlinear disparity mapping for stereoscopic
3d. ACM Trans. Graph. 29, 3 (2010), 10. 2

[LNJ13] Liu F, NIu Y., JIN H.: Joint subspace stabilization for stereo-
scopic video. In Computer Vision (ICCV), 2013 IEEE International
Conference on (Dec 2013), pp. 73-80. 2

[Low04] LoOWE D. G.: Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60, 2 (Nov. 2004), 91-110. 4

[LSS*15] Luo S.-J., SUN Y.-T., SHEN I.-C., CHEN B.-Y., CHUANG
Y.-Y.: Geometrically consistent stereoscopic image editing using patch-
based synthesis. IEEE Trans. Vis. and Comp. Graph. 21, 1 (2015), 56-67.
2

[LvBK*10] Lo W.-Y., VAN BAAR J., KNAUS C., ZWICKER M., GROSS
M.: Stereoscopic 3d copy & paste. ACM Trans. Graph. 29, 6 (2010),
147:1-147:10. 2

[LWA*12] LANG M., WANG O., AYDIN T., SMOLIC A., GROSS M.:
Practical temporal consistency for image-based graphics applications.
ACM Trans. Graph. (SIGGRAPH) 31,4 (2012), 34:1-34:8. 2, 8

[MHCP12] MORSE B., HOWARD J., COHEN S., PRICE B.: Patchmatch-
based content completion of stereo image pairs. In Int. Conf 3D Imaging,
Mod., Proc., Vis. and Transmission (3DIMPVT) (2012), pp. 555-562. 2

[MIG14] MASIA B., JARABO A., GUTIERREZ D.: Favored workflows in
light field editing. In Int. Conf. on Comp. Graph., Vis., Computer Vision
and Image Proc. (2014), CGVCVIP. 2

[MOT15] MORDVINTSEV A., OLAH C., TYKA M.: Inceptionism: Going
deeper into neural networks, June 2015. 8

[NLB*05] NG R., LEVOY M., BREDIF M., DUVAL G., HOROWITZ M.,
HANRAHAN P.: Light field photography with a hand-held plenoptic
camera. Computer Science Technical Report CSTR 2, 11 (2005). 1

[PKCKO06] PiITIE F., KENT B., COLLIS B., KOKARAM A.: Localised
deflicker of moving images. In IEEE European Conference on Visual
Media Production (2006). 2

[PSZ*15] PERAZZI F., SORKINE-HORNUNG A., ZIMMER H., KAUF-
MANN P., WANG O., WATSON S., GROSS M. H.: Panoramic video from
unstructured camera arrays. Comp. Graph. Forum 34,2 (2015), 57-68. 1

[RAKRFO08] RAV-ACHA A., KOHLI P., ROTHER C., FITZGIBBON A.:
Unwrap mosaics: A new representation for video editing. ACM Trans.
Graph. 27, 3 (2008). 2

[RDB16] RUDER M., DOSOVITSKIY A., BROX T.: Artistic style transfer
for videos. 8

[RPZSH13] RICHARDT C., PRITCH Y., ZIMMER H., SORKINE-
HORNUNG A.: Megastereo: Constructing high-resolution stereo panora-
mas. In 2013 IEEE Conference on Computer Vision and Pattern Recogni-
tion (June 2013), pp. 1256-1263. 10

[RWHS15] REVAUD J., WEINZAEPFEL P., HARCHAOUI Z., SCHMID C.:
EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical
Flow. In CVPR (2015). 4

[SKO2] SEITZ S. M., KUTULAKOS K. N.: Plenoptic image editing.
International Journal of Computer Vision 48, 2 (2002). 2

(© 2017 The Author(s)
Computer Graphics Forum (© 2017 The Eurographics Association and John Wiley & Sons Ltd.

[SSML14] SHENG B., SUN H., MAGNOR M., LI P.: Video colorization
using parallel optimization in feature space. IEEE Trans. Circuits and
Systems for Video Tech. 24, 3 (2014), 407-417. 2

[supl5] Supplemental materials for consistent video filtering for camera
array. http://liris.cnrs.fr/~nbonneel/cameraarrays/

data/,2015. 4,6,9

[VLD*13] VENKATARAMAN K., LELESCU D., DUPARRE J., MCMA-
HON A., MOLINA G., CHATTERJEE P., MULLIS R., NAYAR S.: Picam:
An ultra-thin high performance monolithic camera array. ACM Trans.
Graph. 32, 6 (Nov. 2013), 166:1-166:13. 1

[WBI15] WULFFJ., BLACK M. J.: Efficient sparse-to-dense optical flow
estimation using a learned basis and layers. In IEEE Conference on
Computer Vision and Pattern Recognition (June 2015). 4

[WIYGO8] WANG L., JIN H., YANG R., GONG M.: Stereoscopic in-
painting: Joint color and depth completion from stereo images. In /[EEE
Conference on Computer Vision and Pattern Recognition (2008). 2

[YJHS12] YUCER K., JACOBSON A., HORNUNG A., SORKINE O.:
Transfusive image manipulation. ACM Trans. Graph. 31, 6 (2012). 2

[ZTD*12] ZHAO Q., TAN P., DA1I Q., SHEN L., WU E., LIN S.: A
closed-form solution to retinex with nonlocal texture constraints. /EEE
Trans. Pattern Anal. Mach. Intell. 34,7 (2012), 1437-1444. 8

[ZWS*16] ZHANG F.-L., WANG J., SHECHTMAN E., ZHOU Z.-Y., SHI
J.-X., HU S.-M.: Plenopatch: Patch-based plenoptic image manipulation.
IEEE Trans. on Vis. and Comp. Graph. (2016). 2

Appendix: Fourier Analysis

We extend the Fourier analysis of Bonneel et al. [BTS*15] to our
scenario. Similarly, we study the case where ws and w; are con-
stant. For the anchor view, the result is the same since we use their
technique. Using our notation:

4752&2]:(PM) + Wt}—(nf(oa(l—l)))
4282 + wy

F(Oar) = @

where F denotes the Fourier transform in the image plane and &
the associated spatial frequency. This shows that low frequencies
are dominated by the previous output frame O,(,_1) and the high
frequencies by the current processed frame Py .

We now derive a similar result for the secondary views. First, we
apply the Euler-Lagrange formula to Equation 2:

—AOj + (wi+ws)Oy

= —AP; +wiTit(0y1—1)) + wsSit(Oar) ~ (5)

Then, we apply the Fourier transform and rearrang the terms:

4112&2]:(13[1) +Wt]:(7;t(05(t71))) +Ws]'—(8,'t(0al))
F(Oy) = T

47 § +wr +ws

(6)
The high frequencies are still dominated by the current processed
frame P; but the low frequencies come mostly from the previous
output frame O;(; 1) and from the current output anchor frame Oar,
the balance between both being controlled by the weights wy and ws.

http://liris.cnrs.fr/~nbonneel/cameraarrays/data/
http://liris.cnrs.fr/~nbonneel/cameraarrays/data/

