
Exploiting Budan-Fourier and Vincent’s Theorems for
Ray Tracing 3D Bézier Curves

Alexander Reshetov

NVIDIA

1

2

3

4

q

c
cubic c(t) quadratic q(t) distance = c2 +q2 derivative of distance2

0.2 0.4 0.6 0.8
t

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

(a) (b) (c)

Figure 1: We restate a 3D ray–cubic Bézier curve intersection (a) as a 2D problem (b). The ray can only intersect the thick curve if the cyan disk

around the 2D coordinate system origin overlaps two rectangles obtained by intersecting the yellow vertical slab with the two horizontal slabs. We

only need to search for the minimum distance between the ray and the curve in the thin gray interval (c).

ABSTRACT

We present a new approach to finding ray–cubic Bézier curve inter-

sections by leveraging recent achievements in polynomial studies.

Compared with the state-of-the-art adaptive linearization, it in-

creases performance by 5–50 times, while also improving the accu-

racy by 1000X. Our algorithm quickly eliminates parts of the curve

for which the distance to the given ray is guaranteed to be bigger

than a model-specific threshold (maximum curve’s half-width). We

then reduce the interval with the isolated distance minimum even

further and apply a single iteration of a non-linear root-finding

technique (Ridders’ method).

CCS CONCEPTS

•Computingmethodologies→Ray tracing;Parametric curve

and surface models;

KEYWORDS

Bézier curves, ray tracing, hair and fur rendering, polynomial roots,

Budan-Fourier theorem, Vincent’s theorem, VCA, VAG, VAS

ACM Reference format:

Alexander Reshetov. 2017. Exploiting Budan-Fourier and Vincent’s The-

orems for Ray Tracing 3D Bézier Curves . In Proceedings of HPG ’17, Los

Angeles, CA, USA, July 28-30, 2017, 11 pages.

DOI: 10.1145/3105762.3105783

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPG ’17, Los Angeles, CA, USA

© 2017 ACM. 978-1-4503-5101-0/17/07. . . $15.00
DOI: 10.1145/3105762.3105783

1 INTRODUCTION AND PRIOR ART

The extraordinary success of computer graphics has largely been

built on linear representations of real-world objects. This has al-

lowed full hardware support, but it is on the wrong side of the

memory-vs-computation trade-off. Fundamentally, to improve ap-

proximation requires finer and finer tessellation, resulting in signif-

icant memory utilization but diminishing quality improvements.

Perhaps nowhere is this predicament more noticeable than in hair

and fur rendering. Using a mesh representation for such models is

prohibitively expensive. Thus less-accurate texture approximations

have typically been used in practice [Hadap et al. 2007; Kajiya and

Kay 1989; Lengyel et al. 2001; Ren et al. 2010; Sintorn and Assarsson

2009]. This is changing now, driven by the adaptation of the content

creation tools that can design genuine higher order surfaces and

curves. The logic of asset management and production development

favors ray tracing algorithms that allow more streamlined rendering

pipeline [Christensen and Jarosz 2016]. Directly rendering hair and

fur in ray tracing systems also benefits from the efficient occlusion

culling due to customary front-to-back processing order. On the

flip side, handling different levels-of-detail [Kang et al. 2013] is

less compelling in a ray-tracing context as it affects acceleration

structures [Djeu et al. 2011]. Solutions without LODs are more

fitting, provided there is a time budget for exact intersections.

A separate—but very important—area of curve rendering re-

search pertains to the 2D domain, with applications in text, decals,

vector graphics, and texture rendering. It is anchored by the sem-

inal work of Loop and Blinn [2005] and thoroughly explored by

other researchers [Batra et al. 2015; Ganacim et al. 2014; Kilgard

and Bolz 2012; Liao et al. 2012; Nehab and Hoppe 2008, 2012; Qin

et al. 2008; Ray et al. 2005; Reshetov and Luebke 2016; Sen 2004; Sun

et al. 2012; Tarini and Cignoni 2005]. Such methods are not directly

transferable to 3D, and generally aim at evaluating a distance from

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA A. Reshetov

a given point sample to a curve–but not the parameter of the curve

that corresponds to the minimum distance.

Sederberg and Nishita proposed to use convex hull property for

Bézier clipping in 2D case [1990]. Their method is rather general,

allowing to find intersections of two arbitrary coplanar curves.

The state-of-the-art in 3D geometric hair modeling was estab-

lished by Nakamaru and Ohno [2002] and extended by Barringer et

al [2012], Qin et al [2014], Woop et al [2014], and Chiang at al [2015].

In these approaches a parametric curve space is dynamically split

until a curve fragment can be safely approximated with a straight

line under given circumstances.

Consequently, such methods are faster for slowly changing or

deeply subdivided curves. In contrast, our approach exhibits the op-

posite behavior: it is most potent for spatially varying cubic curves

and becomes less efficient for almost linear curves (requiring an

additional logic for a strictly quadratic or linear ones). And it is at

its worst for axis-aligned straight lines. We demonstrate this factual

modus operandi by comparing our approach with the adaptive lin-

earization using version 3 of the Physically Based Rendering system

by Pharr et al. [2016] for experiments. For free-form randomized

Bézier curves, we improve the performance of the PBRT ray-curve

intersection kernel by 50X; for all the models in the book the range

is 6X–12X; while for an artificial model, consisting entirely of axis-

aligned straight curves, our advantage is only 2.5X. Straight lines

could easily be assigned to a separate branch of the algorithm, but

we assume that it is the application’s responsibility to handle such

cases (especially when hardware-accelerated facilities are readily

available).

Other than the straight-line case, the reasonable performance

and accuracy of our algorithm makes it suitable for a variety of

applications such as hair, fur, cloth, or grass rendering. Our imple-

mentation can be used as a drop-in replacement, but is modular in

nature, enabling its use in parts to accelerate other tasks. In par-

ticular, since we quickly eliminate parametric intervals on which

the ray is guaranteed to be further from the curve than a given

distance, our technique can jump-start more evolved approaches

with assiduous shape modeling [Bronsvoort and Klok 1985]. We

also completely circumvent the LOD handling problem, comput-

ing exact intersection at any distance. This lets us use the same

geometry regardless of the sampled path.

Determining a ray–curve proximity (aka intersection) is just

a first step that feeds into a full rendering system. It requires a

preprocessing step (building an acceleration structure) and post-

processing step (actual shading). Given the wide-ranging nature of

the related problems, we will limit our scope to only the ray–curve

intersection kernel itself, while noting the excellent work of other

researchers in this area [Andersen et al. 2016; Chiang et al. 2015;

d’Eon et al. 2011; Moon et al. 2008; Ou et al. 2012; Qin et al. 2014;

Woop et al. 2014; Wu and Yuksel 2017; Yan et al. 2015; Yu et al. 2012;

Zinke et al. 2008].

It is expedient to consider parametric representation of rays and

curves, which permits reformulating the related geometric prob-

lems as a solution of polynomial equations for such parameters. The

original Graphics Gems [Glassner 1990] contains many excellent

articles on the subject. In particular, Hook and McAree [1990] in-

troduced to graphics community Sturm sequences that can be used

0.2 0.4 0.6 0.8
t

0.05

0.10

0.15

0.20

distance(t)

Figure 2: Case study for ray-curve intersections. Top: both ray and

curve could have thickness. Bottom: distance between the ray and

points on the curve as a function of the curve’s parameter t . The green

line corresponds to the curve’s half-thickness.

to bracket real roots of univariate polynomial equations. Sturm’s

theorem was, indeed, the method of choice for numerically solving

polynomial equations for most of the 20th century as it was con-

sidered superior to earlier approaches based on Vincent’s theorem.

Ironically, there was a complete turnaround later in the century,

facilitated by the discovery of the efficient ways to compute Vincent

sequences, the fastest one being the Vincent–Akritas–Strzeboński

algorithm [2008].

2 RAY-CURVE PROXIMITY QUERIES

For an arbitrary curve and a ray—considered as objects with zero

width—a probability of their exact intersection is 0. Depending

on a specific application’s requirements, ray, curve, or both may

have a thickness (Figure 2). However, it is more conventional and

straightforward to search for intersections of zero-width rays with

primitives whose cross-sectional geometry is defined by the model.

In particular, cylindrical or elliptical profiles might work for a strand

of hair, and ribbons for a blade of grass. Assuming a significant

disparity between longitudinal and cross-sectional dimensions of

such objects, a probability of their intersection with the ray that

penetrates their bounding box will still be rather low (see section

2.2 for the study).

Therefore it is important to eliminate non-intersecting cases as

quickly as possible. It can be facilitated by using squared distance

between points on a curve and a ray (which is a sextic polynomial

for a cubic Bézier curve). By analyzing properties of such function,

we can efficiently find intervals on which the distance is guaranteed

to be greater than the maximum of curve’s half-width (areas outside

yellow intervals in Figure 2). This assertion does not even require

computing the polynomial coefficients in an explicit form, let alone

finding its roots.

Such interval reduction attends to all potential proximity queries,

whether we are interested in finding bona fide ray–thick curve in-

tersections or just want a distance minimum. In later cases, we able

to reduce the interval even further (to the thin gray area). This

lends itself well to the final step of our algorithm—actually find-

ing a minimum through a single iteration of a local minimization

technique (see section 2.8 for the comparison and evaluation of the

possible approaches).

Exploiting Budan-Fourier and Vincent’s Theorems for Ray Tracing 3D Bézier Curves HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

We have found that this yields the minimum position at t = 0.412.

Note that the ray would intersect the swept cylinder around the

curve (which radius is shown as green line) at two positions that

are close but different from this one. One of these positions is for

the ray entering the cylinder, another—exiting. As it may happen,

an application might only be interested in the coordinate of the

minimum, parameterized by curve’s t-value, as is the case of the

PBRT shading system. We surmise that it is also possible to reduce

intervals for ray/cylinder intersections exploiting sextic properties,

similar to what we did for a minimum distance, which requires

computing a quintic root. However here we concentrate our efforts

on an efficient computation of the distance minimum that can be

directly fed into existing shading systems.

2.1 Algorithm and Paper Outline

We are interested in finding minima of a distance between a curve

and a ray that are smaller than a given threshold (which can be

a function of curve’s parameter). We will casually refer to this

as “intersection”. In most cases, such intersection will not exist,

allowing a quick resolution of the query.

The first four steps of our algorithm aim at reducing the interval

that can potentially contain the intersection, the last one at actu-

ally finding one. We proceed as follows (indexing the list by the

corresponding paper section):

2.3 Though intrinsically three-dimensional, finding minimum dis-

tance(s) between a given ray and a curve can be restated as

a 2D problem. In this new dual space, we minimize distance

between points on the transformed Bézier curve and the co-

ordinate system origin. As an added bonus, the x-coordinate

of the new Bézier curve is a quadratic polynomial (and y is a

cubic).

2.5 By exploiting properties of such polynomials (section 2.4), we

eliminate the intervals on which the distance is guaranteed to

be bigger than a given threshold (calculated from the curve’s

cross-sectional profile).

2.6 Eliminate the cases for which we know that parameter s , which

gives the closest point along the ray o+s d, will be negative—if

we actually calculate it, which we do not yet need to do.

2.7 Analyze the remaining intervals and estimate the number of

the extrema of the distance function (roots of its derivative). In-

tervals with more than one extremum are split further. Intervals

with a single maximum are discarded. For the scenes we tested,

there will only be a single minimum in 99.99% cases. For such

occurrences we will reduce the interval even more—without

using any root finding algorithm. Such reduced intervals are

shown with gray shading in Figures 1c and 2.

2.8 Find a root after a single iteration of a local minimization tech-

nique applied to the reduced interval. Among such methods,

those that employ a non-linear transformation of the target

function allow a better accuracy.

In our experiments, when a curve’s radius is set to 1% of the max-

imum side of its bounding box, we eliminate 95% of all intersections

just by analyzing polynomial coefficients. In the remaining 5% cases,

the distance is less than the radius in 80% of them (i.e. intersection

{0.01, 0.01, 1}

{0.01, 0.1, 1}

{0.1, 0.1, 1}

{0.01, 1, 1}

{0.1, 1, 1}

{1, 1, 1}

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
distance0.0

0.2

0.4

0.6

0.8

ρ

0.00 0.01 0.02 0.03 0.04
0.0

0.2

0.4

0.6

0.8

ρ

Figure 3: A probability of a random ray to be closer to a random

curve than a given distance. Six different cases are studied, delineated

by the size of the curve’s bounding box. We consider only the rays

that intersect the curve’s bounding box and originate outside it.

cannot be eliminated, see section 2.2 for the detailed analysis). For

the tested models in Table 1, we achieve this elimination in 93–99%

cases.

Steps 2.3–2.5 of our algorithm have a geometric interpretation

in which the ray can be separated from parts of the curve by axis-

aligned lines in the dual space (ones that delineate the shaded slabs

in Figure 1b). Other steps are algebraic in nature and do not allow

such a simple geometric formulation. In the current implementation,

these steps are only applicable to the cubic curves and are less

general than the convex hull clipping.

2.2 Statistical Distance

For an arbitrary triangle, we have computed that a ray has a 28%

probability to intersect a triangle if its origin is located inside the

triangle’s bounding box, and 14% otherwise (appendix B.7). For a

typical ray–curve intersection query, percentages are much lower.

We find a probability distribution by constructing a random

Bézier curve with control points in a unit cube. We then compute a

tight bounding box for the curve (not for its control points), create

a random ray that intersects this box, and find a minimum distance

between the ray and the curve. To normalize results, we also scale

everything up so the largest side of the bounding box is 1.0.

The cumulative distribution function for such measurements is

given by the blue curve in Figure 3. That is, a ray will be closer

to a curve than 0.02 with 8% probability, closer than 0.01 with

4% probability, and so on. This blue graph accounts for a general

case. Statistics will be different for flatter curves. We split all data,

separately accumulating statistics for bounding boxes not exceeding

given sizes. For example, when the two smaller sides of the box

are less than 0.1 in length, distance between a ray and a curve will

be less than 0.01 in 24% cases (red curve). And, of course, if two

box sides are less than 0.01, the maximum distance cannot exceed

0.01
√

2 (brown graph).

For rays with an origin inside a curve’s bounding box (which is

typical for secondary rays), these probabilities are cut in half. We

provide measurements for real scenes in section 3. These numbers

highlight the importance of having an efficient culling strategy for

the non-intersecting cases.

2.3 Dimensionality Reduction

A point on a cubic Bézier curve is given by the univariate poly-

nomial b(t) = u0 + u1t + u2t
2
+ u3t

3, where bold variables are

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA A. Reshetov

3D vectors and t ∈ [0, 1] is a scalar parameter. This can be eas-

ily converted to and from the Bernstein form (9). Using matrix

notation:

b(t) = U tT =
[
u0 u1 u2 u3

] [
1 t t2 t3

]T
(1)

We will use a vector of t-powers t, 4 × 3 matrix of coefficients

U, as well as a modified V (defined in 3) in other parts of the

algorithm.

A distance from b(t) to a line that contains o and has a unit direc-

tion d is the length of the cross product vector b2(t) = (b(t) − o)×d
(cathetus = hypotenuse sinα). Each component of the 3D vector

b2(t) is a cubic polynomial and thus defines another Bézier curve.

This new curve is shown in Figure 1b together with its control

points. By design, vector coefficients of b2(t) are orthogonal to d

and lay in the plane that contains origin
[
0 0 0

]
. We refer to this

as “dual space” to the original 3D Euclidean space. We define two

orthonormal vectors is this space as

q =
u3 × d

|u3 × d|
c = q × d

(2)

These two vectors establish a coordinate system in the plane

(shown as q and c axes in Figure 1b). If the vector u3 × d has zero

length, we choose an arbitrary unit vector in the plane for q. We

then compute

V =
[
u0 − o u1 u2 u3

]

pq = qV
pc = c V

(3)

In the coordinate system (q, c), four 2D vector coefficients for

b2(t) could be found by transposing 2 × 4 matrix
[
pq pc

]
—but

we have found more practical to work with 4D vectors pq and pc

directly (5). Such approach yields operations well-suited for modern

architectures.

Figure 4 shows the original 3D and the transformed 2D curve

together using the same data as in Figure 1, as well as q and c axes.

By design, vectors q, c and d establish an orthonormal coordinate

system in 3D Euclidean space. Adaptive linearization algorithms

also use the coordinate system with z-axis defined by the ray’s di-

rection. By transforming everything into the ray-centric coordinate

system, further calculations are simplified at the expense of some

initial computations.

Our approach differs by specifically choosing q axis in such a way

that the cubic term in pq vanishes (as it is proportional to (u3×d)·u3,

see also appendix B.6). In many cases, it allows meaningful interval

reduction by itself (section 2.5), without computing other terms.

2.4 Polynomial Properties

This section gives a brief description of the mathematical apparatus

used throughout the paper. The specific details are provided in

appendices A and B. We address two related yet distinct problems

for a polynomial p(t) and its derivative p′(t) on the interval [t1, t2]
using threshold r :

1. Find number of p′(t) roots on [t1, t2].
2. Verify that p(t) < −r or p(t) > r for all t ∈ [t1, t2].

(4)

Figure 4: 3D curve and dual 2D curve shown together. The distance

from a point on the 3D curve to the ray is equal to the distance from

the corresponding point on the 2D curve to the coordinate origin [0 0]

at the intersection of green (quadratic terms) and red (cubic) axes.

These tests are performed by analyzing numerical sequences

derived from Budan-Fourier theorem and Vincent’s theorem. The

former requires computing all derivatives of the given polynomial

at t1 and t2. For each such sequence, we count the number of sign

variations. The difference between these two values yields the upper

bound on the number of roots of the polynomial on the interval

[Bensimhoun 2013].
The modern rendition of Vincent’s theorem provides an alter-

native—and more accurate—way of evaluating such a bound by
computing the number of sign variations in the coefficients of the
transformed polynomial

(1 + x)n p (t1 + t2x

1 + x
)

where n is the degree of the analyzed polynomial p(t).
In different parts of the paper, p(t) is either a squared length of

a 2D vector, or one of the components of such vector (section 2.5),

or a ray parameter for the minimum (s in o + s d, see section 2.6).

If there is a single solution of p′(t) = 0 and the second test in (4)

fails, i.e. we cannot guarantee that min
t∈[t1,t2]

|p(t) | > r , we find the root

with any suitable technique (2.8). It will give us the sole minimum

of p(t) on the interval (maximum can be quickly dismissed by

requiring p′(t1) < 0).

If test 1 returns 0 roots, we immediately reject the interval even

if |p(t1)| < r or |p(t2)| < r . This simply means that the minimum is

achieved at the adjacent intervals which will be handled in a due

course. This is true for a single curve and for C1 smoothly joined

multiple curves as well (which is usually the case in hair modeling).

If the curves are not connected smoothly—and this is an application

specific case—we additionally check p(0) or p(1) if t1 = 0 or t2 = 1.

The calculations spent on test 1 do not contribute directly to

the main goal of finding the intersection. Moreover, it affects the

program flow only if more than one root is predicted. We have found

that this is a rare event in practice (0.01% in the tested models). It

would be frugal to reuse some of this data and it is indeed possible.

Figure 5 shows sextic polynomial p(t) and its derivative. This is,

in fact, the squared distance function for the left yellow interval in

Exploiting Budan-Fourier and Vincent’s Theorems for Ray Tracing 3D Bézier Curves HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

1

2

3

4
5

6

7

0.22 0.24 0.26 0.28

0.002

0.004

0.006

0.008

distance squared

1

2

3

4

5

6

0.22 0.24 0.26 0.28

-0.3

-0.2

-0.1

0.1

derivative

Figure 5: Vincent sequences for sextic p(t) and its derivative. We use

such sequences to make sure that there is only a single minimum on

the interval and bracket it more precisely.

Figure 1c (one that was not excluded by other means). The minimum

of this function corresponds to the closest distance between a curve

and a ray.

First, we compute the Vincent sequence for quintic p′(t) (right)

on the given interval. The first entry in the sequence is p′(t1), the

last one is p′(t2). The four middle entries do not correspond to

any t , we just plot them equidistantly for convenience. Vincent’s

theorem states that p′(t) has a single root if and only if the corre-

sponding sequence has one sign variation. This is, indeed, our case:

the sequence changes signs between third and fourth entries.

Second, we compute the Vincent sequence for p(t) (left). This

can be done cheaply utilizing partial sums of the sequence for

p′(t). The minimum of p-sequence (fourth entry) gives us a lower

bound of p(t) values on the processed interval. That is, the distance

between the ray and the curve is greater than
√

0.0023 = 0.048.

If the modeled hair half-width were smaller than this value, we

would have rejected the intersection (for a better visibility we use

r = 0.075 in the examples, which is a rather thick hair).

Finally, the position of the p-sequence minimum gives us a

good guess of the true minimum as tnew1 = t1 + (t2 − t1) (4 − 1)/6.

Equipped with the fact that p′(t) changes sign only once on the

interval, we can bracket the true minimum by computing tnew2 =

tnew1 + (t2 − t1)/12. If the signs of p′(tnew1) and p′(tnew2) differ,

then the interval [tnew1, tnew2] is a smaller bracket for the root,

otherwise we check a bigger offset from tnew1.

The same logic is applied to the processing of the cubic com-

ponent of the dual curve (section 2.5) and the disposition of the

negative ray directions (section 2.6).

2.5 Interval Reduction

Distance between a point on the curve b(t) (1) and the ray o+ s d is

equal to the length of the 2D vector g(t) with cubic coefficients (3):

t =
[
1 t t2 t3

]

g(t) = t
[
pq pc

] (5)

Let r be the maximum radius of the curve’s cross-sectional pro-

file (“half-width”). We can guarantee that |g(t)| > r if |gx | > r or

|gy | > r . The squared length of the vector g is a 6th degree poly-

nomial of t . Instead of directly solving the roots of its derivative,

we try to quickly refute the intersection by looking on the indi-

vidual components of g—without explicitly computing the sextic

coefficients.

Since the x-component of the vector g is a quadratic polynomial

of t , we can easily find (one or two) intervals of t for which |gx | 6 r .

In Figure 1c, gx is shown as the function q(t). Its intersections with

±r dotted cyan lines yield two yellow t-intervals that can potentially

contain the minimum distance smaller than r . We have found that

in about 30% of cases, such intervals will not exist at all or will be

outside t ∈ [0, 1] and we immediately reject the intersection.

For each unresolved interval [t1, t2] we recompute r in hopes

of reducing it, and then look onto gy . It is a cubic function and its

extrema could be obtained by solving a quadratic equation, allowing

us to find min
t∈[t1,t2]

|gy (t) | exactly.

In practice we use an even simpler approach (A.3). Four compo-

nents of the Vincent sequence C for the polynomial gy (t) can be

found by multiplying pc to the matrix of t12-values M given by (7).

Intervals for which C > r or C < −r can be safely rejected. These

calculations require no branching. On top of it, we will reuse the

matrix M to eliminate the cases in which the minimum distance is

achieved for the negative ray directions.

Note that our algorithm does not change if the half-width r is a

quadratic function of t and we use it directly instead of max
t∈[t1,t2]

r (t).

We could not analyze such a case because of our lack of compelling

models. Given that r (t) is typically small with respect to the curve’s

length, it will not have a significant impact on performance anyway.

2.6 Disposition of Negative Ray Directions

In most applications only positive values of the parameter s along

the ray o + s d are taken into account. Thus we can immediately

dismiss the interval [t1, t2] for which we know that s < 0 for all

the closest points along the ray. This elimination is more likely for

secondary rays.

A value of s for the point on the ray closest to b(t) can be com-

puted as d · (b(t) − o). It is a cubic polynomial of t with coefficients

dV , where V is given by (3). Next we multiply the resulting vector

of cubic coefficients by the matrix M (7). If all four components of

the resulting vector are negative, s is guaranteed to be less than 0

for all t ∈ [t1, t2] (A.3).

This is a very simple check and we always do it. If the ray’s

origin is outside the bounding box of the curve, this test is unlikely

to succeed, but ray/box intersection data is not saved in our testbed

platform PBRT. This is a conservative test that may not resolve all

cases. Once the actual value of s for the intersection is found, it

must be retested again.

2.7 Root Isolation

If all our early rejection tests fail, we arrive at the step of our

algorithm where we finally need the sextic polynomial p(t) which

is the squared norm of the vector g in (5).
√
p(t) yields the distance

between point b(t) on the curve (1) and the given ray. To find

p(t), we compute dot products of pq and pc with vector t and then

g2
x + g2

y . The first derivative p′(t) can also be more easily evaluated

as 2 (g′xgx + g′ygy), without using sextic coefficients as such.

To compute the Fourier (A.1) and Vincent (A.5) sequences that

we use in tests (4), we need all six non-zero derivatives ofp(t). There

are two ways to handle this: a) continue differentiating individual

components of g or b) explicitly store and use sevenp(t) coefficients.

As it turns out, both methods have performed similarly, taking

advantage of the reduced computations for the higher derivatives

and the fact that gx (t) is a quadratic polynomial. Indeed, p(6)(t) is

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA A. Reshetov

just 720 pc[3]2 (indexing vector from 0). Since we only need the

sign of the derivatives, we could cancel the numerical multipliers.

In case of the 6th derivative, however, we do not need to compute

it at all, since it is always positive.

In practice we use method (a) for p(t) and p′(t) and (b) for the

higher derivatives. This allows us to compute and store only the

last five sextic coefficients since the first two are needed only for

p(t) and p′(t). Once we have machinery for evaluating derivatives,

we:

1. Compute Fourier sequences (A.1) at t1 and t2. If analysis

of their sign differences tells us that there are no roots on

the interval, we reject it.

2. Convert Fourier sequences at the endpoints to the Vincent

sequence for the whole interval (A.4). We will also compute

a new bound for the number of roots if more than one root

was predicted by Fourier sequences (which are less precise

in this regard). We also further split intervals with more

than one root.

(6)

3. Reduce and potentially reject the interval using the tech-

nique we described in section 2.4.

4. And, finally, find a sole minimum of p(t) as a root of p′(t)
on the reduced interval as explained in the next section.

Once we have found the minimum, we compare it to r and check

that the ray goes in the positive direction.

One important caveat, pertinent to any root isolation technique,

is the handling of very close roots. In our case, such roots may

result in excessive splits trying to separate them. From a pragmatic

point of view, however, if roots are close enough to each other, they

are all good (see example in right part of Figure 7). For this reason,

we avoid splitting small intervals and proceed with the root finding

part of the algorithm at once.

2.8 Root Finding

Various root-finding techniques exist: we refer readers to Wikipedia

article from which we took our inspiration [2016]. Figure 6 pro-

vides maximum and average errors in distance computation after

a single iteration for a variety of different approaches. We carried

out multiple tests for random curves and rays in a unit cube and ag-

gregated the results. The distance error is a more reliable yardstick,

since the maximum error in curve’s t-parameter can be unbounded

(e.g. in case of multiple intersections or when a ray is parallel to a

straight line curve). On the other hand, the average t-error behaves

similarly to the average d-error.

Notably, the well-known Newton–Raphson method has the worst

accuracy, followed by its discrete companion—secant method. These

two methods would benefit from the almost linear behavior of the

examined function, as they use x-intercept of the function’s tangent

line. This is not the case for our target function f (t) = p′(t), which

is a derivative of the squared distance p(t) = g(t) · g(t) in (5). Even

if the original b(t) in (1) is not varying wildly, the act of b(t) → g(t)
projection could exacerbate the situation.

Under such circumstances, methods that expect non-linear target

function have an edge. Muller [1956] finds roots of a parabola

1E-080.00000010.0000010.000010.00010.0010.010.11

Muller²

Ridders²

Muller + secant

Ridders + secant

Ridders

Muller

inverse

Laguerre

parabola fitting

adaptive linearization

secant

Newton-Raphson

max(d) <d>

Figure 6: Maximum and average errors in distance computations for

different minimization techniques (the longer the bar the smaller the

error).

Figure 7: Worst cases for t (left) and distance (center) after 109

simulations. Right: Klassen’s curve with control points {{-1,-1,-1},

{5,5,1}, {-5,-5,1}, {1,1,1}} and rays with the worst distance and

t errors.

that interpolates f (t) values at t = {t1, (t1 + t2)/2, t2}; Ridders

[1979] probes an exponential approximation to linearize such values.

These two methods are superior even in comparison with multiple

iterations of the simpler techniques (Newton’s and secant), also

taking advantage of the already computed p′ at the endpoints.

To pick one, Ridders’ is more straightforward and requires no

branching, while Muller’s has to check if the parabola is degener-

ated into a line.

Ridders’ method finds tnew that is guaranteed to be inside [t1, t2].
Among the four values t1, (t1 + t2)/2, t2, and tnew , we could always

choose two consecutive ones (let’s say ta and tb) with opposite p′

signs. We can then promptly fine-tune the result with the basic

variant of the secant method as (f (tb) ta − f (ta) tb)/(f (tb)− f (ta)).
It reduces the worst error, while having almost no impact on the

performance. We use this combination for all the reported results.

Figure 7 shows ray/curve data resulting in the worst error in t

(2.7 × 10−2) and distance (1.67 × 10−2) that were found after 109

tests. Interestingly, we found that the worst-distance curve is similar

to the one suggested by Klassen [1991], which causes the most

problems in numerical methods.

Two iterations of Muller’s or Ridders’ methods (the last two bars

in the chart) would significantly reduce errors even for such curves.

For most applications though it is an over-kill.

Other tested methods—Laguerre’s, parabola fitting for p(t), and

inverse quadratic interpolation—are neither simple nor particularly

accurate for our problem.

Figure 6 also shows results for the adaptive linearization (using

PBRT’s implementation verbatim and executing the prescribed

Exploiting Budan-Fourier and Vincent’s Theorems for Ray Tracing 3D Bézier Curves HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

number of iterations). This technique estimates the distance error

to find the number of run-time splits for the curve. For random

curves this approach sometimes falter since the error is estimated

only once for the whole curve, but for real models it is mostly

adequate as evident from Table 1.

The adaptive linearization error can be reduced by prepensely

increasing the number of splits—with the detrimental impact on per-

formance. Ironically, we cannot use less-accurate-but-faster root

finding algorithm in our approach to get a sizable performance

boost. Using the simplest secant technique improves the perfor-

mance for the tested models by only 3%, while still having 8X better

accuracy than the default setting for the adaptive linearization.

3 RESULTS

Table 1 compares performance and accuracy of our ray-curve in-

tersection technique with PBRT, measured on a second generation

Intel i7-3930K at 3.2GHz. Only the kernel measurements are given

in the table, ignoring shading and acceleration structure traversal.

The overall wall clock performance improvement is the smallest

for the single hair model (1.3X) in which most of the time is spent

traversing empty space. For other models it is in 2.3–5.4X range.

The measurements confirm contrarian characteristics of our

algorithm which is less efficient for almost-linear curves. The per-

formance gains shrink from 49.6X for the single curly hair model

to 6.8X for the straight hair.

We did not change the default behavior of PBRT’s bounding

volume hierarchy (BVH) builder, in which curves are automatically

pre-split into 23 pieces, for models 2–6. For the single hair, which

is comprised of 25 Bézier curves, we kept all these curves intact.

This is the best setup to minimize the overall wall clock timing.

The disadvantage of the almost linear curve segments apropos

of our algorithm is that for some rays the initial interval reduction

will be rather paltry. For rays parallel to the prevalent segment

direction (“hair splitting”), the total variation of the quadratic term

gx in (5) may be smaller than r , as exemplified in Figure 7 (left). The

flip side of this is that it becomes possible to encapsulate the entire

curve segment in a cylinder with a small radius. We implemented

this functionality specifically for such cases. Even though for more

spatially varying curves such checks are mostly extraneous, finding

the distance between the ray direction and the cylinder axis is

cheap.

Another component of our implementation that becomes essen-

tially irrelevant for shorter segments is using exact curve bounds

during BVH building. Each coordinate of a cubic Bézier curve could

have only two extrema that can easily be found by solving a qua-

dratic equation. This allows tight bounding box. Yet, for deeply split

segments these bounds are just slightly smaller than ones for the

control points of the split curve. We kept this functionality anyway

as an instrument for future studies in BVH construction.

4 DISCUSSION

The ratio of longitudinal to cross-sectional sizes for a typical hair

or fur filament is in 100s. This necessitates splitting such primitives

to avoid a significant spatial overlap for dense models. We believe

that such splits should be made dynamically, aligning split planes

for nearby primitives, considering curves and triangles. This is

Figure 8: Two bunnies: the original PBRT model and one with the

randomized fur.

a potential area for future research, also taking into account the

dramatic changes in the cost function for the surface area heuristics

that our algorithm brought in.

Orienting BVH nodes by a prevalent hair direction is also an

attractive proposition [Woop et al. 2014],though its impact may

vary depending on the model. We randomized each fur strand

in PBRT’s furry bunny model (Figure 8). This produced a plush

effect, simultaneously barring any potential improvements from

the oriented bounding boxes.

Hair and fur is somewhere in between the traditional geometric

objects, such as triangles, and purely volumetric constructs. This

calls for further studies, in line with volumetric fur with explicit

hair strands [Andersen et al. 2016] or distance aware ray tracing

for curves [Nakamaru et al. 2012].

These are the most promising areas of research. We are also

interested in accelerating intersections of rays and swept cylin-

drical shapes as well [Bronsvoort and Klok 1985], using the new

mathematical apparatus we proposed in this paper.

A ROOT LOCALIZATION TECHNIQUES

If a polynomial function has a single root on a given interval, it

can be reliably found. For this reason, it is important to isolate

the polynomial roots. All such techniques stem from the original

Descartes’ rule of sign [1637].

There is a significant body of work on this subject, summarized

by Bensimhoun [2013] and Biagioli [2016]. We are interested in the

two particular formulations (4) for polynomials of degree 3, 5, and

6; their Vincent sequences will be referred as C, Q , and S. With

respect to finding (an upper bound of) number of roots for p′(t) = 0,

the utile answers are 0, 1, and “more than one”. The second problem

of proving that |p(t)| > r can be facilitated by showing that two

equations p(t) = ±r have no roots.

Methods based on Sturm’s theorem yield the exact number of

roots yet require long polynomial division. Fourier sequences are

easy to compute but can overshoot the actual number of roots.

The modern techniques, such as Vincent–Collins–Akritas [1976],

Vincent–Alesina–Galuzzi [2000], and Vincent–Akritas–Strzeboński

[2008], are in the middle with respect to the efficiency and the

simplicity.

Figure 9 shows the histogram distribution for the number of

roots for arbitrary curves and rays on intervals that survived the

tests in section 2.5. For real models, Fourier method reports 0 or 1

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA A. Reshetov

Table 1: Kernel performance and accuracy for the tested models. PBRT results with the default settings are given in gray. The last four columns

show (a) percent of early exits (before minimum search), (b) percent of ray–curve intersections for rays that intersect curve’s bounding box,

(c) unresolved tests that do not have an intersection, and (d) average ratio of curve’s half-width to its length for split segments. a + b + c = 100%.

1. single hair 2. lock 3. curls 4. straight 5. curly 6. fur

average kernel time

in nanoseconds

13.6

675.6

33.1

675.2

57.0

697.0

116.0

793.4

145.6

1113.0

90.8

753.9

average distance

error

7.7 × 10−10

2.3 × 10−6
1.8 × 10−10

6.8 × 10−7
2.6 × 10−10

9.8 × 10−7
4.1 × 10−10

7.4 × 10−6
2.9 × 10−10

4.5 × 10−7
5.5 × 10−12

5.9 × 10−7

maximum distance

error

2.7 × 10−8

6.9 × 10−5
8.3 × 10−9

4.2 × 10−5
1.2 × 10−5

2.1 × 10−4
9.7 × 10−7

9.1 × 10−4
1.7 × 10−5

1.7 × 10−3
2.0 × 10−8

1.9 × 10−5

a. culled tests 98.8% 98.2% 99.2% 93.4% 94.8% 96.6%

b. intersections 1.08% 1.60% 0.64% 5.03% 3.15% 2.55%

c. no intersections 0.12% 0.20% 0.16% 1.57% 2.05% 0.85%

d. average r /length 0.0022 0.0038 0.0038 0.018 0.062 0.033

Fourier Vincent Sturm

Figure 9: Number of roots reported by different techniques in ran-

domized tests. Sturm’s theorem always give the correct answer, while

Fourier and Vincent techniques may overstate it by even number.

roots in 99.2% cases, and Vincent—in 99.99% cases. Therefore we

start counting roots with the simplest Fourier method and switch

to the Vincent one only in the case of the multiple reported roots.

We use Mathematica [2017] to derive formulæ in this appendix;

the corresponding notebook is given in appendix B.

A.1 Budan-Fourier Theorem

Fourier sequence of a polynomial contains all its non-zero deriva-

tives. To find extrema of 6th -degree polynomial p(t), we search

for roots of its derivative p′(t). Fourier sequence of p′(t) is given

by {p′(t), p′′(t), p(3)(t), p(4)(t), p(5)(t), p(6)(t)}. We evaluate such

sequences at both endpoints of the interval [t1, t2] and then count

the number of sign variations in each sequence. The difference be-

tween these two values constitutes the upper bound on the number

of roots of p′(t) on the interval [Bensimhoun 2013].

Now let’s consider a variable substitution t = t1 + x(t2 − t1)
that transforms p(t) defined for t ∈ [t1, t2] into h(x) defined for

x ∈ [0, 1]. The chain differentiation rule allows computing Fourier

sequences for h′(0|1) as a product of p′(t1 |t2) sequences times

{dt ,dt2
,dt3
,dt4
,dt5
,dt6} where dt = t2 − t1. This will come handy

converting Fourier sequences to Vincent ones (A.4). We will also

enjoy a certain latitude in scaling entries in Fourier sequences that

do not change signs but simplify calculations.

A.2 Vincent’s Theorem

We are mostly interested in a single application of Vincent’s theo-

rem. In rare cases when we do need to split the interval, we reset

everything, compute a new Fourier sequence (at the split position)

and then switch to Vincent’s if warranted. In these circumstances,

differences between particular implementations of Vincent’s the-

orem (referred as VCA, VAG, or VAS) are not essential. VAG and

VAS handle [t1, t2] interval directly, while VCA requires a variable

substitution as it deals with t ∈ [0, 1].

A.3 Cubic Polynomial

For a cubic polynomial c(t) = c0 + c1 t + c2 t
2
+ c3 t

3 considered
on interval [t1, t2], we want to know if |c(t)| > r , i.e. equations
c(t) = ± r have no roots on the interval. VAG method [Alesina and
Galuzzi 2000] tells us to compute

(1 + x)3 (c (t1 + t2x

1 + x
) − ρ)

where ρ is either +r or −r . The coefficients of the resulting cubic

polynomial of x define the Vincent sequence C for c(t) − ρ as

M =



1 1 1 1

t1 (2t1 + t2)/3 (t1 + 2t2)/3 t2

t2
1 t1 (t1 + 2t2)/3 t2 (2t1 + t2)/3 t2

2

t3
1 t2

1t2 t1t
2
2 t3

2


C =

[
c0 c1 c2 c3

]
M −

[
ρ ρ ρ ρ

]

(7)

The vector C is obtained by multiplying the vector of cubic coef-

ficients c0123 =

[
c0 c1 c2 c3

]
by the matrix of t-values M. We then

Exploiting Budan-Fourier and Vincent’s Theorems for Ray Tracing 3D Bézier Curves HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

subtract ρ from each component. We also took a liberty of rescaling

C entries to simplify calculations, since we are only interested in

signs. Vincent’s theorem ensures that |c(t)| > r if c0123 M > r or

c0123 M < −r for all four components. Note also that the first and

last components are polynomial values at the interval’s endpoints.

If r = 0, which is the case for the disposition of the negative ray

directions (section 2.6), only one comparison is needed.

A.4 Fourier → Vincent Conversion

Differentiation is linear with respect to polynomial coefficients. A

polynomial and its Fourier or Vincent sequences have the same

number of degrees of freedom. It is reasonable to assume that one

representation can be converted to another. This is a correct assump-

tion which can be verified by performing symbolic transformations.

It is easier to do so when endpoints are 0 and 1.

Let ai and bi be Fourier sequences at x = 0 and x = 1 for quintic

h(x). Then its VCA sequence, which corresponds to the coefficients

of a new polynomial (1 + x)5 h(1/(1 + x)), can be found as either

Q =

a1 + a2 +
a3

2

+

a4

6

+

a5

24

+

a6

120

5 a1 + 4 a2 +
3 a3

2

+

a4

3

+

a5

24

10 a1 + 6 a2 +
3 a3

2

+

a4

6

10 a1 + 4 a2 +
a3

2

5 a1 + a2

a1

=

b1

5 b1 - b2

10 b1 - 4 b2 +
b3

2

10 b1 - 6 b2 +
3 b3

2

-

b4

6

5 b1 - 4 b2 +
3 b3

2

-

b4

3

+

b5

24

b1 - b2 +
b3

2

-

b4

6

+

b5

24

-

b6

120

(8)

Since we retain both Fourier sequences (A.1), we use only the

shaded expressions to simplify computations. What remains is to

find Fourier sequences for h(x) at x = 0 and 1 using p′(t)-sequences

defined for t = t1 and t2. We already know how to do it (multiply

by powers of dt = t2 − t1). This allows us to analyze p(t) and p′(t)
behavior on interval [t1, t2] using the apparatus devised for Bézier

curves on interval [0, 1], which is described in the next section.

A.5 Sextic Polynomial and its Derivative

A cubic Bézier curve in Bernstein form is given by

b(t) = (1 − t)3 w1 + 3 (1 − t)2 t w2 + 3 (1 − t) t2 w3 + t
3 w4 (9)

Seven VCA coefficients for the sextic polynomial p(t) = b(t) ·b(t)
on [0, 1] interval are computed using wi j = wi ·wj as

S =

[
w44 w34

2 w24 + 3 w33

5

w14 + 9 w23

10

2 w13 + 3 w22

5
w12 w11

]
(10)

We scaled down all the entries by the corresponding binomial

coefficients
[
1 6 15 20 15 6 1

]
to get expressions as linearly in-

terpolated dot products of the control points wi. If each component

of S is greater than r2, then p(t) > r2 for all t ∈ [0, 1].
Sequential differences of S are equal to the scaled VCA coeffi-

cients for quintic p′(t) = 2 b′(t) · b(t) using the following identity

D(S) = 1/6 Q /
[
1 5 10 10 5 1

]
(11)

This gives a simple algorithm of computing S when Q is known,

just by inverting the discrete differentiation (as partial sums of Q).

Therein we shall emphasize that Q is obtained from Fourier

sequences for t1 and t2 but corresponds to [0, 1] interval as proffered

in the previous section. Thus the whole procedure has an effect

of double splitting the original curve at t1 and t2 to produce the

new Bézier curve defined on [0, 1] that coincides with the original

curve for all t ∈ [t1, t2]. We could have done all this explicitly, but

our approach is much simpler since we do not have to compute the

control points wi of the new curve.

For practical purposes, we roll in all the numerical factors and

also store the coefficients in the reverse order (from the highest x

degree to a free member), as illustrated in Figure 5.

B MATHEMATICA NOTEBOOK

This is a Mathematica [2017] notebook used to derive all formulæ

in this paper. For clarity, it is split into sections corresponding to

appendix A. We define Bézier curves and polynomials as

(∗ c u b i c B e z i e r c u r v e i n B e r n s t e i n form as i n e q u a t i o n 9 ∗)

bc3 [t_ , { p1_ , p2_ , p3_ , p4_ }] : =

(1− t) ^ 3 p1 + 3 (1− t) ^ 2 t p2 + 3 (1− t) t ^2 p3 + t ^3 p4 ;

bc3 ' [t_ , { p1_ , p2_ , p3_ , p4_ }] : =

3 (1− t) ^ 2 (p2−p1) + 6 (1− t) t (p3−p2) + 3 t ^2 (p4−p3) ;

(∗ u n i v a r i a t e p o l y n om i a l s and d e r i v a t i v e s ∗)

po ly [t_ , c _ L i s t] : = c [[1]] + Plus@@MapIndexed [# 1 ∗ t ^ # 2 [[1]] & , Rest [c]] ;

poly ' [t_ , c _ L i s t] : = D[po ly [t , c] , t] ;

B.3 Cubic Polynomial

c3 = Array [c , 4 , 0] ; (∗ c o e f f i c i e n t s ∗)

v3 = Coef f i c i en tL i s t [Expand [(1 + t) ^ 3 ∗ (po ly [(t 1 + t 2 t) / (1 + t) , c3]− r)] , t] ;

v3r = Expand [v3 ∗ { 1 , 1 / 3 , 1 / 3 , 1 }] + r ; (∗ doesn ' t depend on r ∗)

(∗ t h e same e x p r e s s i o n i n ma t r i x form ∗)

vm = S i m p l i f y @ C o e f f i c i e n t L i s t [v3r / . Thread [c3 −> u^Range [0 , 3]] , u] ;

vm = Transpose [vm] ;

Pr int@Matr ixForm [vm / . t 1 −> Subscr ipt [t , 1] / . t 2 −> Subscr ipt [t , 2]]

P r i n t @ S i m p l i f y [c3 . vm − v3r] (∗ v e r i f y ∗)

1 1 1 1

t1
1
3
(2 t1 + t2)

1
3
(t1 + 2 t2) t2

t1
2 1

3
t1 (t1 + 2 t2)

1
3
t2 (2 t1 + t2) t2

2

t1
3 t1

2 t2 t1 t2
2 t2

3

{0, 0, 0, 0}

B.4 Fourier → Vincent Conversion

(∗ B e z i e r c o n t r o l p o i n t s ∗)

bc = Table [Subscr ipt [w, i] , { i , 4 }] ;

(∗ 10 d o t p r o d u c t s o f bc t e rms u s i n g ∗ f o r e a s i e r man i p u l a t i o n s ∗)

bco = D e l e t e D u p l i c a t e s @ F l a t t e n @ O u t e r [Times , bc , bc] ;

(∗ bco as an a r r ay ∗)

bca = Table [Subscr ipt [d , i] , { i , Length [bco] }] ;

(∗ l o o k i n g f o r r o o t s o f f [x] = g ' [x] i n e q u a t i o n 5 ∗)

f [x_] : = 2 ∗ bc3 [x , bc] ∗ bc3 ' [x , bc] ;

(∗ V i n c e n t s e q u e n c e f o r f (VCA form) ∗)

vs = Coef f i c i en tL i s t [Simplify [(1 + t) ^ 5 ∗ f [1 / (1 + t)]] , t] / / Expand ;

vsd = vs / . Thread [bco−>bca] ; (∗ e x p r e s s v s u s i n g d o t p r o d u c t s ∗)

vsa = Table [Subscr ipt [V , i] , { i , Length [vs] }] ; (∗ vsd as an a r r ay ∗)

(∗ F o u r i e r s e q u e n c e f o r f ∗)

f s = S impl i fy@Tab le [Coef f i c i en tL i s t [D[f [t] , { t , n }] , t] , { n , 0 , 5 }] ;

For [f 2 v = { } ; t x = 0 , t x <= 1 , t x ++ , (∗ o v e r { 0 , 1 } e n d p o i n t s ∗)

f s x = po ly [tx , #] & / @fs ; (∗ f s a t e n d p o i n t ∗)

f s d = Simplify [Expand [f s x] / . Thread [bco−>bca]] ; (∗ as d o t p r o d u c t s ∗)

f s a = Table [Subscr ipt [{ a , b } [[t x + 1]] , i] , { i , Length [f s x] }] ; (∗ a r r ay ∗)

(∗ e q u a t i o n s l i n k i n g f s x and VCA t e rms ∗)

eqn = Eliminate [Fla t ten [{ Thread [f s d == f s a] , Thread [vsd == vsa] }] , bca] ;

(∗ e x p r e s s VCA th r ough F o u r i e r s e q u e n c e a t t x ∗)

AppendTo [f2v , Expand [vsa / . F i r s t @ S o l v e [eqn , vsa]]] ;

] ;

(∗ c h o o s e t h e s i m p l e s t e x p r e s s i o n (shaded t e rms) ∗)

f f = " C o u r i e r ␣ New" ; cyan = RGBColor [0 . 8 5 , 1 , 1] ;

Print@Row [{

Fla t ten [{ Text [S t y l e [# , FontFamily−> f f]]&

/@ f 2 v [[1 , ; ; 3]] ,

Text [S t y l e [# , FontFamily−> f f] , Background−>cyan]&

/@ f 2 v [[1 , 4 ; ;]] }] / / MatrixForm ,

HPG ’17, July 28-30, 2017, Los Angeles, CA, USA A. Reshetov

" = " ,

Fla t ten [{ Text [S t y l e [# , FontFamily−> f f] , Background−>cyan]&

/@ f 2 v [[2 , ; ; 3]] ,

Text [S t y l e [# , FontFamily−> f f]]&

/@ f 2 v [[2 , 4 ; ;]] }] / / MatrixForm

}] ;

a1 + a2 +
a3

2
+

a4

6
+

a5

24
+

a6

120

5 a1 + 4 a2 +
3 a3

2
+

a4

3
+

a5

24

10 a1 + 6 a2 +
3 a3

2
+

a4

6

10 a1 + 4 a2 +
a3

2

5 a1 + a2

a1

=

b1

5 b1 - b2

10 b1 - 4 b2 +
b3

2

10 b1 - 6 b2 +
3 b3

2
-

b4

6

5 b1 - 4 b2 +
3 b3

2
-

b4

3
+

b5

24

b1 - b2 +
b3

2
-

b4

6
+

b5

24
-

b6

120

B.5 Sextic Polynomial and its Derivative

Pr int@Text [bc3 [t , bc]]

vp = Coef f i c i en tL i s t [Simplify [(1 + t) ^ 6 (bc3 [1 / (1 + t) , bc]^2 − r ^ 2)] , t] ;

vp = Expand [vp / { 1 , 6 , 1 5 , 2 0 , 1 5 , 6 , 1 } + r ^ 2] ; (∗ doesn ' t depend on r ∗)

Print@Matr ixForm [{ vp } / . Thread [F l a t t en@Outer [Times , bc , bc] −>

F la t t en@Outer [Dot , bc , bc]]] ;

Print@Expand [D i f f e r e n c e s [vp] + 1 / 6 vs / { 1 , 5 , 1 0 , 1 0 , 5 , 1 }] ;

(1- t)3 w1 + 3 (1- t)
2
t w2 + 3 (1- t) t

2
w3 + t

3
w4 w4.w4 w3.w4

2 w2.w4
5

+ 3 w3.w3
5

w1.w4
10

+ 9 w2.w3
10

2 w1.w3
5

+ 3 w2.w2
5

w1.w2 w1.w1 
{0, 0, 0, 0, 0, 0}

B.6 pq is a �adratic Polynomial

ro = { ox , oy , oz } ; rd = { dx , dy , dz } ; (∗ ray ' s o r i g i n and d i r e c t i o n ∗)

U = Array [u , { 4 , 3 }] ; (∗ mat r i x U f o r b (t) i n e q u a t i o n 1 ∗)

q = Cross [U [[4]] , rd] ; (∗ q and c = q × rd from e qu a t i o n 2 ∗)

(∗ c u b i c te rm in pq van i s h e s , a s t h e n e x t e x p r e s s i o n i s 0 ∗)

S i m p l i f y @ L a s t @ C o e f f i c i e n t L i s t [({ 1 , t , t ^2 , t ^ 3 } . U − ro) . q , t]
Out[131]=

0

B.7 Probability of Ray-Triangle Intersection

r : = RandomReal [{ 0 , 1 } , 3] ;

For [n = 1 0 0 0 0 0 0 ; nx = 0 ; i = 1 , i <= n , i ++ ,

{ v0 , v1 , v2 } = { r , r , r } ; (∗ v e r t i c e s ∗)

bb = MinMax /@ ({ v0 , v1 , v2 } / / Transpose) / / Transpose ;

ro = bb [[1]] + (bb [[2]] − bb [[1]]) ∗ r ;

rd = Normal i ze [r − r] ;

nx += Boole [Abs@Total [Sign [(# [[1]] − ro) . Cross [# [[2]] − ro , rd]] &

/@ { { v0 , v1 } , { v1 , v2 } , { v2 , v0 } }] == 3] ;

] ;

Print [" \ [Rho] ␣ = ␣ " , nx , " / " , n] ;

ACKNOWLEDGMENTS

We are deeply grateful to Cem Yuksel and Benedikt Bitterli for

providing a hair geometry which is used under a creative commons

attribution license.

The availability of PBRT source code and the excellent documen-

tation was instrumental in our research; we would like to congratu-

late Matt Pharr, Greg Humphreys, and Wenzel Jakob on a job well

done.

The authors would also like to thank the anonymous referees

for their valuable comments and helpful suggestions.

REFERENCES
Alkiviadis G Akritas, Andreas I Argyris, and Adam W Strzeboński. 2008. FLQ, the

Fastest Quadratic Complexity Bound on the Values of Positive Roots of Polynomials.
Serdica Journal of Computing 2, 2 (2008), 145–162.

Alberto Claudio Alesina and Massimo Galuzzi. 2000. Vincent’s Theorem from a Modern
Point of View. Rendiconti del Circolo Matematico di Palermo Serie II (2000), 179–191.

Tobias Grønbeck Andersen, Viggo Falster, Jeppe Revall Frisvad, and Niels Jørgen
Christensen. 2016. Hybrid Fur Rendering: Combining Volumetric Fur with Explicit
Hair Strands. Vis. Comput. 32, 6-8 (June 2016), 739–749.

Rasmus Barringer, Carl Johan Gribel, and Tomas Akenine-Möller. 2012. High-quality
Curve Rendering using Line Sampled Visibility. ACM Trans. Graph. 31, 6, Article
162 (Nov. 2012), 10 pages.

Vineet Batra, Mark J. Kilgard, Harish Kumar, and Tristan Lorach. 2015. Accelerating
Vector Graphics Rendering using the Graphics Hardware Pipeline. ACM Trans.
Graph. 34, 4, Article 146 (July 2015), 15 pages.

Michael Bensimhoun. 2013. Historical Account and Ultra-simple Proofs of Descartes’s
Rule of Signs, De Gua, Fourier, and Budan’s Rule. ArXiv e-prints (Sept. 2013).
arXiv:math.HO/1309.6664

Eric Javier Biagioli. 2016. Methods for Bounding and Isolating the Real Roots of Univariate
Polynomials. Ph.D. Dissertation. Instituto Nacional de Matemática Pura e Aplicada.

Willem F. Bronsvoort and Fopke Klok. 1985. Ray Tracing Generalized Cylinders. ACM
Trans. Graph. 4, 4 (Oct. 1985), 291–303.

Matt Jen-Yuan Chiang, Benedikt Bitterli, Chuck Tappan, and Brent Burley. 2015. A
Practical and Controllable Hair and Fur Model for Production Path Tracing. In
SIGGRAPH Talks. ACM.

Per H. Christensen and Wojciech Jarosz. 2016. The Path to Path-Traced Movies.
Foundations and Trends® in Computer Graphics and Vision 10, 2 (2016).

George E. Collins and Alkiviadis G. Akritas. 1976. Polynomial Real Root Isolation
Using Descarte’s Rule of Signs. In Proceedings of the Third ACM Symposium on
Symbolic and Algebraic Computation (SYMSAC ’76). 272–275.

Eugene d’Eon, Guillaume Francois, Martin Hill, Joe Letteri, and Jean-Marie Aubry. 2011.
An Energy-conserving Hair Reflectance Model. In Proceedings of the Twenty-second
Eurographics Conference on Rendering (EGSR ’11). 1181–1187.

René Descartes. 1637. La géometrie (Discours de la Méthode, third part). Ed. of Leyde.
Peter Djeu, Warren Hunt, Rui Wang, Ikrima Elhassan, Gordon Stoll, and William R.

Mark. 2011. Razor: an Architecture for Dynamic Multiresolution Ray Tracing. ACM
Trans. Graph. 30, 5, Article 115 (Oct. 2011), 26 pages.

Francisco Ganacim, Rodolfo S. Lima, Luiz Henrique de Figueiredo, and Diego Nehab.
2014. Massively-parallel Vector Graphics. ACM Trans. Graph. 33, 6, Article 229
(Nov. 2014), 14 pages.

Andrew S. Glassner. 1990. Graphics Gems. Academic Press, Inc., Orlando, FL, USA.
Sunil Hadap, Marie-Paule Cani, Ming Lin, Tae-Yong Kim, Florence Bertails, Steve

Marschner, Kelly Ward, and Zoran Kačić-Alesić. 2007. Strands and Hair: Modeling,
Animation, and Rendering. InACM SIGGRAPH 2007 Courses (SIGGRAPH ’07). 1–150.

D. G. Hook and P. R. McAree. 1990. Graphics Gems. Chapter Using Sturm Sequences
to Bracket Real Roots of Polynomial Equations, 416–422.

Wolfram Research, Inc. 2017. Mathematica, Version 11.1. (2017). Champaign, IL, 2017.
J. T. Kajiya and T. L. Kay. 1989. Rendering Fur with Three Dimensional Textures.

SIGGRAPH Comput. Graph. 23, 3 (July 1989), 271–280.
L. Kang, J. Wuxia, G. Guohua, and H. Yi. 2013. Level-of-Detail Modeling with Artist-

Defined Constraints for Photorealistic Hair Rendering. In 2013 International Con-
ference on Virtual Reality and Visualization. 225–228.

Mark J. Kilgard and Jeff Bolz. 2012. GPU-accelerated Path Rendering. ACM Trans.
Graph. 31, 6, Article 172 (Nov. 2012), 10 pages.

R. Victor Klassen. 1991. Integer Forward Differencing of Cubic Polynomials: Analysis
and Algorithms. ACM Trans. Graph. 10, 2 (April 1991), 152–181.

Jerome Lengyel, Emil Praun, Adam Finkelstein, and Hugues Hoppe. 2001. Real-time
Fur over Arbitrary Surfaces. In Proceedings of the 2001 Symposium on Interactive 3D
Graphics (I3D ’01). 227–232.

Zicheng Liao, H. Hoppe, D. Forsyth, and Yizhou Yu. 2012. A Subdivision-Based
Representation for Vector Image Editing. IEEE Trans. on Vis. and Computer Graph.
18, 11 (2012), 1858–1867.

Charles Loop and Jim Blinn. 2005. Resolution Independent Curve Rendering Using
Programmable Graphics Hardware. In ACM SIGGRAPH 2005 Papers (SIGGRAPH
’05). 1000–1009.

Jonathan T. Moon, Bruce Walter, and Steve Marschner. 2008. Efficient Multiple Scatter-
ing in Hair Using Spherical Harmonics. In ACM SIGGRAPH 2008 Papers (SIGGRAPH
’08). Article 31, 7 pages.

David E. Muller. 1956. A Method for Solving Algebraic Equations Using an Automatic
Computer. Math. Tables Aids Comput. 10 (1956), 208–215.

Koji Nakamaru, Toru Matsuoka, and Masahiro Fujita. 2012. Distance Aware Ray
Tracing for Curves. In ACM SIGGRAPH 2012 Posters (SIGGRAPH ’12). Article 103,
1 pages.

Koji Nakamaru and Yoshio Ohno. 2002. Ray Tracing for Curves Primitive. In WSCG.
311–316.

Diego Nehab and Hugues Hoppe. 2008. Random-access Rendering of General Vector
Graphics. In ACM SIGGRAPH Asia 2008 Papers (SIGGRAPH Asia ’08). Article 135,
10 pages.

Diego Nehab and Hugues Hoppe. 2012. A Fresh Look at Generalized Sampling. Foun-
dations and Trends in Computer Graphics and Vision 8, 1 (2012), 1–84.

Jiawei Ou, Feng Xie, Parashar Krishnamachari, and Fabio Pellacini. 2012. ISHair:
Importance Sampling for Hair Scattering. Comput. Graph. Forum 31, 4 (June 2012),
1537–1545.

http://arxiv.org/abs/math.HO/1309.6664

Exploiting Budan-Fourier and Vincent’s Theorems for Ray Tracing 3D Bézier Curves HPG ’17, July 28-30, 2017, Los Angeles, CA, USA

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation (3rd ed.). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Hao Qin, Menglei Chai, Qiming Hou, Zhong Ren, and Kun Zhou. 2014. Cone Tracing
for Furry Object Rendering. IEEE Trans. Vis. Comput. Graph. 20 (2014), 1178–1188.

Zheng Qin, Michael D. McCool, and Craig Kaplan. 2008. Precise Vector Textures for
Real-time 3D Rendering. In Proc. of the 2008 Symposium on Interactive 3D Graphics
and Games (I3D ’08). 199–206.

Nicolas Ray, Xavier Cavin, and Bruno Lévy. 2005. Vector Texture Maps on the GPU.
Technical Report. Laboratoire Lorrain de Recherche en Informatique et ses Appli-
cations.

Zhong Ren, Kun Zhou, Tengfei Li, Wei Hua, and Baining Guo. 2010. Interactive
Hair Rendering Under Environment Lighting. In ACM SIGGRAPH 2010 Papers
(SIGGRAPH ’10). Article 55, 8 pages.

Alexander Reshetov and David Luebke. 2016. Infinite Resolution Textures. In Proceed-
ings of High Performance Graphics (HPG ’16). 139–150.

C.J.F. Ridders. 1979. A new algorithm for computing a single root of a real continuous
function. IEEE Transactions on Circuits and Systems 26, 11 (1979), 979–980.

T. W. Sederberg and T. Nishita. 1990. Curve Intersection Using Be&Acute;Zier Clipping.
Comput. Aided Des. 22, 9 (Nov. 1990), 538–549.

Pradeep Sen. 2004. Silhouette Maps for Improved Texture Magnification. In Proc. of
the ACM SIGGRAPH/Eurographics Conf. on Graphics Hardware (HWWS ’04). 65–73.

Erik Sintorn and Ulf Assarsson. 2009. Hair Self Shadowing and Transparency Depth Or-
dering Using Occupancy Maps. In Proceedings of the 2009 Symposium on Interactive
3D Graphics and Games (I3D ’09). 67–74.

Xin Sun, Guofu Xie, Yue Dong, Stephen Lin, Weiwei Xu, Wencheng Wang, Xin Tong,
and Baining Guo. 2012. Diffusion Curve Textures for Resolution Independent
Texture Mapping. ACM Trans. Graph. 31, 4, Article 74 (July 2012), 9 pages.

Marco Tarini and Paolo Cignoni. 2005. Pinchmaps: Textures with Customizable
Discontinuities. Comput. Graph. Forum 24, 3 (2005), 557–568.

Wikipedia. 2016. Root-finding Algorithms — Wikipedia, The Free Encyclopedia. (2016).
https://en.wikipedia.org/wiki/Category:Root-finding_algorithms

Sven Woop, Carsten Benthin, Ingo Wald, Gregory S Johnson, and Eric Tabellion. 2014.
Exploiting Local Orientation Similarity for Efficient Ray Traversal of Hair and Fur.
In High Performance Graphics. 41–49.

Kui Wu and Cem Yuksel. 2017. Real-time Fiber-level Cloth Rendering. In Proceedings
of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D
’17). Article 5, 8 pages.

Ling-Qi Yan, Chi-Wei Tseng, Henrik Wann Jensen, and Ravi Ramamoorthi. 2015.
Physically-accurate Fur Reflectance: Modeling, Measurement and Rendering. ACM
Trans. Graph. 34, 6, Article 185 (Oct. 2015), 13 pages.

Xuan Yu, Jason C. Yang, Justin Hensley, Takahiro Harada, and Jingyi Yu. 2012. A
Framework for Rendering Complex Scattering Effects on Hair. In Proceedings of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’12).
111–118.

Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. 2008. Dual Scattering
Approximation for Fast Multiple Scattering in Hair. ACM Trans. Graph. 27, 3, Article
32 (Aug. 2008), 10 pages.

https://en.wikipedia.org/wiki/Category:Root-finding_algorithms

	Abstract
	1 Introduction and Prior Art
	2 Ray-Curve Proximity Queries
	2.1 Algorithm and Paper Outline
	2.2 Statistical Distance
	2.3 Dimensionality Reduction
	2.4 Polynomial Properties
	2.5 Interval Reduction
	2.6 Disposition of Negative Ray Directions
	2.7 Root Isolation
	2.8 Root Finding

	3 Results
	4 Discussion
	A Root Localization Techniques
	A.1 Budan-Fourier Theorem
	A.2 Vincent's Theorem
	A.3 Cubic Polynomial
	A.4 Fourier Vincent Conversion
	A.5 Sextic Polynomial and its Derivative

	B Mathematica Notebook
	B.3 Cubic Polynomial
	B.4 Fourier Vincent Conversion
	B.5 Sextic Polynomial and its Derivative
	B.6 pq is a Quadratic Polynomial
	B.7 Probability of Ray-Triangle Intersection

	Acknowledgments
	References

