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• Recent progress in Augmented Reality (AR) / 
Virtual Reality (VR)

• Requirement of high-quality 3D content for AR, 
VR, Gaming …

• Usually: manual modelling (e.g. Maya)

• Wide availability of commodity RGB-D sensors: 
efficient methods for 3D reconstruction

• Challenge: how to reconstruct high-quality 3D 
models with best-possible geometry and color 
from low-cost depth sensors?

HTC Vive

NVIDIA VR Funhouse

Microsoft HoloLens

Asus Xtion
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State-of-the-art

• Goal: stream of RGB-D frames of a scene → 3D shape that maximizes the geometric 
consistency 

• Real-time, robust, fairly accurate geometric reconstructions

RGB-D based 3D Reconstruction

BundleFusion, 2017DynamicFusion, 2015KinectFusion, 2011

“KinectFusion: Real-time Dense 
Surface Mapping and Tracking”, 
Newcombe et al., ISMAR 2011.

“DynamicFusion: Reconstruction and Tracking of 
Non-rigid Scenes in Real-time”, Newcombe et al., 
CVPR 2015.

“BundleFusion: Real-time Globally Consistent 
3D Reconstruction using On-the-fly Surface 
Re-integration”, Dai et al., ToG 2017.
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State-of-the-art
Voxel Hashing
• Baseline RGB-D based 3D reconstruction 

framework
• initial camera poses 

• sparse SDF reconstruction

• Challenges:
• (Slightly) inaccurate and over-smoothed geometry

• Bad colors

• Inaccurate camera pose estimation

• Input data quality (e.g. motion blur, sensor noise)

• Goal: High-Quality Reconstruction of 
Geometry and Color

“Real-time 3D Reconstruction at Scale using Voxel Hashing”, Nießner et al., ToG 2013.
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State-of-the-art
High-Quality Colors [Zhou2014]

“Color Map Optimization for 3D Reconstruction with Consumer Depth 
Cameras”, Zhou and Koltun, ToG 2014

Optimize camera poses and image deformations 
to optimally fit initial (maybe wrong) 
reconstruction

But: HQ images required, no geometry refinement 
involved

High-Quality Geometry [Zollhöfer2015]

“Shading-based Refinement on Volumetric Signed Distance Functions”, 
Zollhöfer et al., ToG 2015

Adjust camera poses in advance (bundle 
adjustment) to improve color
Use shading cues (RGB) to refine geometry 
(shading based refinement of surface & albedo)

But: RGB is fixed (no color refinement based on 
refined geometry)

Idea: jointly optimize for geometry, albedo and image formation model to 
simultaneously obtain high-quality geometry and appearance!
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Our Method

• Temporal view sampling & filtering 
techniques (input frames)

• Joint optimization of 
• surface & albedo (Signed Distance 

Field) 
• image formation model

• Lighting estimation using Spatially-
Varying Spherical Harmonics (SVSH)

• Optimized colors (by-product)
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High-Quality 3D 
Reconstruction

RGB-D SDF Fusion

Temporal view sampling / filtering

Shading-based Refinement
(Shape-from-Shading)

Spatially-Varying
Lighting Estimation

Joint Appearance and 
Geometry Optimization
• surface
• albedo
• image formation model
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RGB-D Data

• 1086 RGB-D frames

• Sensor:

• Depth 640x480px

• Color 1280x1024px

• ~10 Hz

• Primesense

• Poses estimated using Voxel Hashing

Example: Fountain dataset

Source: http://qianyi.info/scenedata.html
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• Voxel grid: dense (e.g. KinectFusion) or sparse (e.g. Voxel Hashing)

Signed Distance Fields
Volumetric 3D model representation

“A volumetric method for building complex models from range images”, Curless and Levoy, SIGGRAPH 1996.
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• Voxel grid: dense (e.g. KinectFusion) or sparse (e.g. Voxel Hashing)
• Each voxel stores:

• Signed Distance Function (SDF): signed distance to closest surface
• Color values
• Weights

Signed Distance Fields
Volumetric 3D model representation

“A volumetric method for building complex models from range images”, Curless and Levoy, SIGGRAPH 1996.
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Signed Distance Fields

• Integrate depth maps into SDF with their 
estimated camera poses

• Voxel updates using weighted average

• Extract ISO-surface with Marching Cubes 
(triangle mesh)

”Marching cubes: A high resolution 3D surface construction algorithm”, Lorensen and Cline, SIGGRAPH 1987.

Fusion of depth maps
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Keyframe Selection

• Compute per-frame blur score (for color image)

“The blur effect: perception and estimation with a new no-reference perceptual blur metric”, Crete et al., SPIE 2007.

Frame 81 Frame 84

• Select frame with best score within a fixed size window as keyframe
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Sampling / Filtering

• Sample from selected keyframes only

• Collect observations for voxel in input views:

• Observation weights: view-dependent on 
normal and depth

• Filter observations: keep only best 5 
observations by weight

Sampling of voxel observations

Voxel center transformed and projected into input view

Input keyframes

Reconstruction
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Approach
Overview

Shading-based Refinement
(Shape-from-Shading)

Spatially-Varying
Lighting Estimation

Joint Appearance and 
Geometry Optimization
• surface
• albedo
• image formation model

Double-hierarchical
(coarse-to-fine: SDF Volume / RGB-D)
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Shape-from-Shading

• Shading-based refinement:

• Intuition: high-frequency changes in surface geometry → shading cues in input images

• Estimate lighting given surface and albedo (intrinsic material properties)

• Estimate surface and albedo given the lighting: minimize difference between estimated 
shading and input luminance

albedo

lighting

surface normal

• Shading equation:

Shading

-
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• Encode incident lighting for a given surface point

• Smooth for Lambertian surfaces

• SH Basis functions Hm parametrized by unit normal n

• Good approx. using only 9 SH basis functions (2nd order)

• Estimate SH coefficients:

Lighting Estimation
Spherical Harmonics (SH)

• Shortcoming: purely directional → cannot represent scene lighting for all surface 
points simultaneously
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Spatially-Varying Lighting

• Partition SDF volume into 
subvolumes

• Estimate independent SH 
coefficients for each 
subvolume

• Obtain per-voxel SH 
coefficients through tri-linear 
interpolation

Subvolume Partitioning
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Spatially-Varying Lighting

• Estimate SVSH coefficients for all subvolumes jointly:

Joint Optimization

Similarity between estimated shading and input luminance

Data term:

Laplacian regularizer:

Smooth illumination changes
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Joint Optimization

• Joint optimization of geometry, albedo and image formation model (camera poses 
and camera intrinsics):

Shading-based SDF optimization

Gradient-based shading constraint (data term)
Volumetric regularizer: smoothness in distance values (Laplacian)
Surface Stabilization constraint: stay close to initial distance values
Albedo regularizer: constrain albedo changes based on chromaticity (Laplacian)

with
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Joint Optimization

• Idea: maximize consistency between estimated voxel shading and sampled 
intensities in input luminance images (gradient for robustness)

Shading Constraint (data term)

Best views for voxel and respective view-dependent weights
Shading: allows for optimization of surface (through normal) and albedo

Sampling: allows for optimization of camera poses and camera intrinsics
Voxel center transformed and projected into input view



88

Recolorization

• Recompute voxel colors after optimization at each level

Optimal colors



89

Recolorization

• Recompute voxel colors after optimization at each level

• Sampling

• Sample from keyframes only

• Collect, weight and filter observations

Optimal colors



90

Recolorization

• Recompute voxel colors after optimization at each level

• Sampling

• Sample from keyframes only

• Collect, weight and filter observations

• Weighted average of observations:

Optimal colors
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Ground Truth: Quantitative Results
Frog (synthetic)

Ours

Zollhöfer et al. 15

• Generated synthetic RGB-D dataset (noise on 
depth and camera poses)

• Quantitative surface accuracy evaluation
• Color coding: absolute distances (ground truth)

Mean absolute deviation:
• Ours: 0.222mm (std.dev. 0.269mm)
• Zollhöfer et al: 0.278mm (std.dev. 0.299mm)

→ 20.14% more accurate
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Qualitative Results
Relief (geometry)

Input Color
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Ours

Zollhöfer et al. 15

Ours
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Qualitative Results
Bricks

Input Color Geometry (ours)

Appearance (ours)

Ours Fusion
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Luminance

Shading: Global SH vs. SVSH
Fountain

Global SH

SVSH

Difference

DifferenceShading

Shading
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Conclusion

• High-Quality 3D Reconstruction of Geometry 
and Appearance
• Temporal view sampling & filtering techniques

• Spatially-Varying Lighting estimation

• Joint optimization of surface & albedo (SDF) and 
image formation model

• Optimized texture as by-product
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Conclusion

• High-Quality 3D Reconstruction of Geometry 
and Appearance
• Temporal view sampling & filtering techniques

• Spatially-Varying Lighting estimation

• Joint optimization of surface & albedo (SDF) and 
image formation model

• Optimized texture as by-product

Thank you!

Questions?

Robert Maier

Technical University of Munich
Computer Vision Group

robert.maier@in.tum.de
https://vision.in.tum.de/members/maierr


