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Abstract—Tensor contractions constitute a key computa-
tional ingredient of numerical multi-linear algebra. However,
as the order and dimension of tensors grow, the time and space
complexities of tensor-based computations grow quickly. In this
paper, we propose and evaluate new BLAS-like primitives that
are capable of performing a wide range of tensor contractions
on CPU and GPU efficiently. We begin by focusing on single-
index contractions involving all the possible configurations
of second-order and third-order tensors. Then, we discuss
extensions to more general cases.

Existing approaches for tensor contractions spend large
amounts of time restructuring the data which typically in-
volves explicit copy and transpose operations. In this work,
we summarize existing approaches and present library-based
approaches that avoid memory movement. Through systematic
benchmarking, we demonstrate that our approach can achieve
10x speedup on a K40c GPU and 2x speedup on dual-socket
Haswell-EP CPUs, using MKL and CUBLAS respectively, for
small and moderate tensor sizes. This is relevant in many
machine learning applications such as deep learning, where
tensor sizes tend to be small, but require numerous tensor con-
traction operations to be performed successively. Concretely,
we implement a Tucker decomposition and show that using
our kernels yields atleast an order of magnitude speedup as
compared to state-of-the-art libraries.
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I. INTRODUCTION AND SCOPE

Multilinear algebraic computations, are ubiquitous in mul-
tiple scientific domains such as machine learning and mod-
ern data science [4], quantum chemistry and physics [14],
signal and image processing [9], chemometrics [7], and
biochemistry [13]. The study of tensor computations has
a long and diverse history, as early as in the work by
Hitchcock [11]. The domains and references provided herein
are by no means exhaustive but merely a small representative
sample of the various flavors in which tensor computations
are used in science. Tensors are multi-way arrays which can
be viewed as a generalization of matrices to allow multi-
modality in data. Tensor contractions play a central role in
a variety of algorithms and applications; for a motivating
example, see Section II-C. However, non-trivial performance
bottlenecks in several application areas are encountered due

to the high space and time complexities associated with
tensor computations. In this paper, motivated by the recent
increased interest from machine learning and deep learning,
we propose and study library-based communication avoiding
approaches for performing tensor contractions.

Conventional approaches for computing general tensor
contractions rely on matricization, the logical or explicit
restructuring of the data so that the computation can be
performed with a sequence of Basic Linear Algebra Sub-
routine (BLAS) library calls. The BLAS routines provide
efficient and portable implementations of linear algebra
primitives, with many fast implementations existing across
many architectures [8].

To this point, the GEneral Matrix Multiply (GEMM)
primitive specified within the BLAS library is possibly
the most optimized and widely used routine in scientific
computing. Noting that the basic theoretical computational
and communication complexities of most tensor contractions
is equivalent to that of GEMM, these computations should
scale equally well. However, we find that existing tensor
libraries such as the TENSOR TOOLBOX and CYCLOPS
TENSOR FRAMEWORK perform explicit data transposition
to compute almost all tensor contractions and the cost of
data restructuring often dominates the cost of the actual
computation. Other approaches have previously proposed
intrusive compiler and static analysis solutions, whereas we
provide a much simpler library-based solution [16], [17].

Findings and contributions: We introduce a new BLAS
primitive, known as STRIDEDBATCHEDGEMM, that allows
the majority of tensor contractions to be computed with-
out any explicit memory motion. We detail the so-called
exceptional cases that cannot be evaluated with STRIDED-
BATCHEDGEMM and demonstrate that an efficient solution
exists with another small extension to the primitive.

We demonstrate performance improvement using our ap-
proach on both CPU and GPU in direct benchmarks in ad-
dition to an application study. The Tucker decomposition is
an important tensor application in machine learning wherein
the advantage of our strategy compared to existing libraries
is clear.



Finally, the value of this approach and its applications are
being recognized by NVIDIA. As of this writing, the pro-
posed interface exists in the CUBLAS 8.0 Release Candidate
and is likely to appear the official release later this summer.

II. BACKGROUND
A. Related Work

Peise et al [22] extended results from Napoli et al [19]
in mapping tensor contractions to sequences of BLAS rou-
tines and modeling the performance of these mappings. In
this work, they systematically enumerate and benchmark
combinations of possible BLAS kernels one could use to
compute a given tensor contraction to conclude that the
best performing algorithms involve the GEMM kernel. Some
evaluation strategies are neglected to be considered, such
as flattening or developing new, generic linear algebraic
subroutines that could yield improved performance.

Li et al [16] also recognizes the cost of explicit copies and
proposes evaluation strategies exactly comparable to the flat-
tening and batching strategies addressed in this paper. Their
discussion of loop modes and component modes map to our
discussion of batch modes and GEMM modes. However, Li
et al do not discuss strategies beyond tensor-times-matrix
multiply. Furthermore, they only consider mode-n tensor-
times-matrix contractions of the form Yi1···in−1j···iN =∑

in
Xi1···iNUjin , which avoids the more complicated cases

in this paper. Abdelfattah et al [3] presents a framework
using batched GEMM for tensor contractions on GPUs.
However, they focus on optimizing only limited number of
tensor contraction kernels on extreme small size tensors.
Other works in [1] [20] improve the tensor computation
performance by doing loop reorganization and fusion.

The STRIDEDBATCHEDGEMM interface proposed in this
paper has previously been mentioned by Jhurani et al [12]
as a low-overhead interface for multiple small matrices on
NVIDIA GPUs. Jhurani proposes the same interface for
CUBLAS that we propose in this paper and focuses on
implementation concerns. In this work, we treat STRID-
EDBATCHEDGEMM as an available primitive, benchmark
evaluation strategies that utilize it, and examine how it may
be further extended for use in multi-linear algebra.

The BLAS-like Library Instantiation Software (BLIS)
framework [26] offers GEMMs which support non-unit
strides in both the row and column dimensions, which are
attractive solutions to some of the problems in this paper.
However, performance is expected to suffer due to decreases
in cache line utilization, and SIMD opportunities.

Recent improvements in parallel and distributed comput-
ing systems have made complex tensor computation feasible.
TensorFlow [2] can handle multi-linear algebra operations
and it is primarily a data-flow and task-scheduling frame-
work for machine learning.
B. Notation

We denote tensors by uppercase letters, indices by lower-
case letters and index lists by calligraphic letters. We assume

all indexing is zero-based. R denotes the set of real numbers.
The order of a tensor is the number of modes it admits. A

scalar is a zeroth-order tensor, a vector is a first-order tensor,
a matrix (say Amn) is a second-order tensor with the rows
(indexed by m) being the first mode and columns (indexed
by n) being the second mode, and a three-way array (say
Amnp) is a third-order tensor with the first, second and third
modes indexed by m, n, and p, respectively. Note that we
use the term index to name a mode and iterate through the
elements in that mode.

The dimension of the ith mode, denoted dim<i>, is the
number of elements it contains. The dimension of a mode
of a tensor is denoted by the bold lowercase letter of the
respective index; for example, the third-order tensor Amnp

has dimension dim<0>×dim<1>×dim<2> or m× n× p
where the first mode (indexed by m) takes values 0, . . . ,m−
1, the second mode (indexed by n) takes values 0, . . . ,n−1,
the third mode (indexed by p) takes values 0, . . . ,p− 1.

We follow Einstein summation convention to represent
tensor contractions.A general tensor contraction is written
as

CC = αAABB + β CC (1)

where A,B, C are ordered sequences of indices such that
C ≡ (A ∪ B) \ (A ∩ B). The indices in A ∩ B are called
contracted indices. The indices in C are called free indices.

C. An Important Practical Application

In unsupervised learning, tensor decomposition [4] is
gaining a lot of attention and is the crux of model estimation
via the method of moments. A variety of problems such as
topic model estimation, Gaussian mixtures model estimation,
and social network learning can be provably, consistently
and efficiently solved via the tensor decomposition tech-
niques under certain mild assumptions.

The basic building blocks of these algorithms involve ten-
sor contractions. Two frequently used tensor decomposition
methods are the CP decomposition [10] and the Tucker
decomposition [25]. In [27], the authors use the Tucker
decomposition to extract new representations of the face
images despite different expressions or camera viewpoints.
To illustrate the fundamental importance of tensor contrac-
tions, we will pick one of the most common tensor de-
composition algorithms, namely the higher-order orthogonal
iteration (HOOI) [15] for asymmetric Tucker decomposition,
and use it as a case-study. In the Einstein notation, the
factorization of a third-order tensor T ∈ Rm×n×p is given
by Tmnp = GijkAmiBnjCpk, where G ∈ Ri×j×k is the
core tensor, A ∈ Rm×i, B ∈ Rn×j, C ∈ Rp×k. From
Kolda et al [24], we summarize the algorithm for the third-
order tensor case in Algorithm 1. Following their notation,
T(r) denotes the mode-r unfolding of tensor T . For further
technical details, we refer the reader to Kolda et al [24].



Algorithm 1 Tucker decomposition algorithm.
Require: Tensor T ∈ Rm×n×p, core tensor size i, j, k, number

of iterations T .
Ensure: Factors AT , BT , CT and core tensor G

1: Set t = 0;
2: Initialize A0 ← i leading left singular vector of T(1)

B0 ← j leading left singular vector of T(2)

C0 ← k leading left singular vector of T(3)

3: while t < T do
4: Ymjk = TmnpB

t
njC

t
pk

5: At+1 ← i leading left singular vector of Y(1).
6: Yink = TmnpA

t+1
mi C

t
pk

7: Bt+1 ← j leading left singular vector of Y(2).
8: Yijp = TmnpB

t+1
nj At+1

mi

9: Ct+1 ← k leading left singular vector of Y(3).
10: end while
11: Gijk = TmnpA

T
miB

T
njC

T
pk

D. Conventional Tensor Contraction

The conventional approach for tensor contraction is to
matricize the tensors via transpositions and copies. Libraries
such as Basic Tensor Algebra Subroutines (BTAS) [18],
MATLAB Tensor Toolbox [6], [5], and Cyclops Tensor
Framework [23] all perform some version of matricization,
which is typically performed in four steps:

1) Consider a general tensor contraction of the form (1).
Define the index sets K, I, J as

K = A ∩ B, I = A \ (A ∩ B), J = B \ (A ∩ B)

2) Permute tensors A, B, and C into the form

CIJ = αAIKBKJ + β CIJ (2)

3) Evaluate (2) using one of four BLAS kernels:

DOT |K| = |A| and |K| = |B|

GER |K| = 0

GEMV |K| = |A| xor |K| = |B|

GEMM else

4) Permute the result, CIJ , into the desired output, CC .
This approach to tensor contractions is completely general
– it works for any two tensors of arbitrary order and
any number of contraction indices. However, for even the
simplest contractions, the cost of explicitly permuting the
tensor data typically outweigh the cost of the computation
to be performed. See Section III-A for examples.

III. APPROACH

In this section, we present library-based evaluation strate-
gies for performing general tensor contractions in-place –
without explicit copies and/or transpositions.
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Figure 1: The fraction of time spent in copies/transpositions
when computing the contraction Cmnp = AmkBpkn using
the conventional approach. Lines are shown with 1, 2, 3,
and 6 total transpositions performed on either the input or
output. (Left) CPU. (Right) GPU.

A. Motivating Observations

Case study 1 : Consider Cmnp = AmkBnkp. The
conventional approach presented in Section II-D results
in an evaluation wherein one switches, by means of ex-
plicit copy operations, modes n and k in B to produce
Cmnp = AmkBknp, which is now of the form (2) and can be
evaluated directly with a GEMM. Alternatively, we observe
that we may perform the computation without explicit copy
by launching p individual GEMMs.

Case study 2 : Consider Cmnp = AkmBpkn. The
conventional approach presented in Section II-D results
in an evaluation wherein we may require more than one
transposition. For concreteness, we analyzed how BTAS
performs this contraction. We observed that BTAS uses four
explicit transpositions that results in the following algorithm:

1) Permute Akm to Amk.
2) Permute Bpkn to Bkpn.
3) Permute Cmnp to Cmpn.
4) Compute Cmpn = αAmkBkpn + βCmpn with GEMM.
5) Permute Cmpn to Cmnp.

Similarly, in the MATLAB Tensor Toolbox, the main idea
is to reshape all tensors to matrices. For instance, in Case
2.4 in Table II, it reshapes Akm to Amk and reshapes tensor
Bpkn to matrix Bk(pn) with the first dimension as k and
the second dimension as p ∗ n. Cyclops also uses index
reordering methods for fully dense tensors. The reordering is
avoided only in the more restrictive case of high-dimensional
symmetric tensors.

We note that some of the steps in the above approach
can certainly be avoided with an improved algorithm that
still implements the conventional approach. For example,
Step 1 can be avoided by using a GEMM that implicitly
transposes the first matrix via a CblasTrans parameter
or equivalent in Step 4. Another optimization would be to
avoid Step 3 altogether when β = 0. Other approaches
require even fewer transposition steps. Ultimately, observe
that we may perform the computation without explicit copy
by performing p individual GEMMs.



In Figure 1, we measure the cost of these explicit
transpose operations in a representative tensor contrac-
tion on CPU and GPU. On the CPU we use MKL’s
mkl_somatcopy and cblas_sgemm, and on the GPU
we use CUBLAS’s cublasSgeam and cublasSgemm
to perform each required matrix transposition and GEMM
respectively. Note that transposition primitives are not spec-
ified in BLAS, but are vendor-specific BLAS-like extensions
provided to perform common transpose operations. For this
reason, these optimized functions are not typically used in
tensor libraries with, instead, custom transposition imple-
mentations taking their place. These custom implementa-
tions are likely not as optimized as the vendor implementa-
tions.

As we can see from Figure 1, on the CPU, almost 40%
of the time is used in copy and transpose, even when
only a single mode transposition is performed. Clearly, with
more transpose operations, the fraction is higher, requiring
60-80% of the total time. This correlates well with data
presented in [16] where it is reported that Tensor Toolbox
takes approximately 70% of the total time performing copies
and transpositions in one algorithm. By avoiding these
transpositions we may obtain 10x speedup on the GPU for
small tensors with n . 100, and more than 2x speedup on
the CPU for almost all n.

Although the fraction of time spent in transposition will
asymptotically approach zero as n grows in both cases,
the high bandwidth of the GPU allows the computation to
dominate the communication much more quickly. Indeed,
the reported maximum bandwidth of the K40c GPU is
288GB/sec and the dual-socket Xeon E5-2630 v3 CPU
achieves 118GB/sec.

Additionally, that the gap between computational perfor-
mance and communication performance continues to in-
crease, so the cost of transposition is likely to increase in the
future. Even now, especially for small tensor sizes, it is clear
that the cost of performing explicit copies and transpositions
is significant and should be avoided.
B. Extended Notation

We would like to express evaluation strategies for tensor
contractions succinctly, so we introduce additional notation.

In this paper, tensors are assumed to be stored in the
column-major format. In other words, the ith mode has a
memory stride – termed “leading dimension” in BLAS –
denoted ld<i> with ld<0> = 1. Using this notation, Amnp

is stored as A[m+ n ∗ ld<1>+ p ∗ ld<2>]. Note that the
common packed-storage case is obtained when, for all i, we
have ld<i> =

∏
0≤k<i dim<k>.

We now formalize three operations that are used in tensor
contraction evaluations.

1) Batching: [i] denotes that mode i is batched, A batched
mode is considered fixed.

2) Flattening: (ij) denotes that modes i and j are flattened,
i.e., modes i and j are now considered together as
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Figure 2: The arithmetic intensity of computing n GEMMs
of size n × n versus the achieved performance on a K40c
GPU and 16 cores (32 threads) of a dual socket CPU.

a single mode. The combined mode h = (ij) is
considered free.

3) Transpose: A>mn denotes a matrix transpose. Trans-
poses may only be applied to tensors with exactly two
free modes.

The purpose of these notations is that they map directly
to looped BLAS calls and the appropriate evaluation can
often be read directly from the notated expression. Next, we
review some rules that the above notation must follow in
order to obtain a well-formed evaluation expression.

1) A batched mode [i] cannot be the first mode of any
matrix term. That is, A[m]nk is not allowed. Batching
in the first mode would cause the m resulting logical
n×k matrices to be strided in both rows and columns
and, therefore, cannot be used as a matrix in any BLAS
routine.

2) A flattening (ij) requires that ld<j> = ld<i>dim<i>.
Unfortunately, the notation alone is therefore not suffi-
cient to determine which modes may be flattened; it is
contingent on the representation as well. In the common
packed-storage case, however, this flattening condition
is always true.

3) If a flattening operation occurs on the right side, it
must occur on the left side with the same modes in
the same order. For example, Cm(np) = AmkBk(pn) is
not allowed.

4) Standard transposition rules apply: C>nm = AmkBkn

implies Cnm = B>knA
>
mk. However, modes may not be

swapped under transposition. For example, A>mk can
not be replaced with Akm.

This notation allows us to quickly read off the intended
extended BLAS evaluation expression for arbitrary tensor
contractions. See Table I for examples.

C. BATCHEDGEMM

Instead of relying on explicit mode transpositions, Peise
et al [21], [22] considered mapping tensor contractions to
BLAS primitives directly – enumerating all possible BLAS
primitives that could be used and their nesting within loops.



Contraction BLAS Evaluation
Cm(np) = AmkBk(np) GEMM (’N’,’N’, m, np, k, 1, A, lda<1>, B, ldb<1>, 0, C, ldc<1>);
C(mn)p = B(mn)kA

>
pk GEMM (’N’,’T’, mn, p, k, 1, B, ldb<1> · ldb<2>, A, lda<1>, 0, C, ldc<1> · ldc<2>);

Cm[n]p = AmkBk[n]p for n in [0,n) GEMM (’N’,’N’, m, p, k, 1, A, lda<1>, B + n · ldb<1>, ldb<2>, 0, C + n · ldc<1>, ldc<2>);
Cmn[p] = B>

k[p]m
Akn for p in [0,p) GEMM (’T’,’N’, m, n, k, 1, B + p · ldb<1>, ldb<2>, A, lda<1>, 0, C + p · ldc<2>, ldc<1>);

C[n]p = BpkAk[n] for n in [0,n) GEMV (’N’, p, k, 1, B, ldb<1>, A+ n · lda<1>, 1, 0, C + n, ldc<1>);

Table I: Example mapping between tensor contractions with batched and flattened modes in our notation and the
corresponding BLAS expression evaluation. Note that the appropriate BLAS primitive, transposition, matrix pointer, and
leading dimension parameters to GEMM can be read off directly from the notation.

Of course, the evaluation strategies that relied on level-
3 BLAS primitives (GEMM) rather than level-2 primitives
(GEMV, GER) were much more efficient. This often resulted
in the need for many small GEMMs to be performed, which
usually does not achieve ideal performance.

The need to compute many small GEMMs has not
gone unnoticed by the leading implementations of BLAS.
NVIDIA supplied the capability to multiply pairs of many
small matrices in CUBLAS v4.1 [CUDA Toolkit v4.1] via the
function cublasXgemmBatched. Similarly, as of MKL
11.3β, cblas_Xgemm_batch is available with a similar
interface and is also specifically optimized for small matrix
sizes.

In Figure 2, we plot the achieved performance on CPU
and GPU of these BATCHEDGEMM functions by eval-
uating n GEMMs of size n × n using each strategy
with MKL 11.3.1 and CUBLAS 7.5. Note that there are
much higher performance in both cases when n is small.
When n is large, there is clearly room for optimization in
cublasSgemmBatched.

Both of these interfaces are based on pointers to matrix
pointers, which often require allocation and/or precomputa-
tion at the point-of-call. This makes them awkward to use in
the context of tensor contractions where the strides between
matrices are regular and the generality provided by these
interfaces goes unused.
D. STRIDEDBATCHEDGEMM

Building on the BATCHEDGEMM extensions to BLAS,
we propose STRIDEDBATCHEDGEMM (Listing 1) which
offers a simplified interface for the constant-strided
BATCHEDGEMM and more optimizations opportunities for
implementors. The interface and reference implementation
of STRIDEDBATCHEDGEMM is provided in Listing 1. The
lda, ldb, ldc parameters are the standard “leading di-
mension” parameters that appear in level-3 BLAS primitives
and denote to the stride between columns of the matrix. We
refer to the new loa, lob, loc parameters as the “leading
order” parameters and denote the stride between matrices of
the batch.

There are a number of advantages to a
STRIDEDBATCHEDGEMM primitive. First, STRIDED-
BATCHEDGEMM is actually more restrictive than the
BATCHEDGEMM that has already appeared in MKL and

CUBLAS, but we argue that a BATCHEDGEMM with a
constant stride between matrices is a common enough case
to consider specializing for. By providing this interface,
the common case with constant strides between matrices is
not forced to perform allocations or precomputations as it
currently must perform in order to use BATCHEDGEMM.
Additionally, these extra restrictions provide additional
knowledge of the memory layout of the computation
and offers additional optimizations opportunities in
SIMDization, prefetching, and tiling. In other words, the
”batch-loop” in STRIDEDBATCHEDGEMM now directly
participates in the polyhedral computation as an affine
for-loop. With the pointer-interface in BATCHEDGEMM,
the ”batch-loop” cannot fully participate in a polyhedral
model of the computation and is certainly not a candidate
for vectorization or cache blocking.

In Table II, we have enumerated all unique single-mode
contractions between a second-order and third-order tensor
using the notation from Section III-B. All but 8 contractions
can be computed with only a single call to STRIDED-
BATCHEDGEMM.
E. Exceptional Cases

The eight exceptional cases in Table II – Cases 3.4, 3.6,
4.4, 4.6, 5.4, 5.6, 6.4, and 6.6 – occur when batching forces
the evaluation to either be a BATCHEDGEMV or violate the
no-first-mode rule.

This can be resolved by making an extension to the op-
eration parameters allowed for BATCHEDGEMM. Typically,
the available operation parameters are “normal”, “trans-
pose”, “conjugate”, and “Hermitian”. To account for the
exceptional cases, “extended X” could be added to allow
violations of the no-first-mode rule and consider all three
modes involved in the batching simultaneously.

For example, Case 3.6 and 6.4 could then be written

Cmn[p] = B[p]mk A
>
nk Cm[n]p = B>[n]kmAkp

and evaluated via
sb_gemm(OP_EX_N, OP_T,

M, N, K,
1,
B, ldb<1>, ldb<2>,
A, lda<1>, 0,
0,
C, ldc<1>, ldc<2>,
P);

sb_gemm(OP_EX_T, OP_N,
M, P, K,
1,
B, ldb<1>, ldb<2>,
A, lda<1>, 0,
0,
C, ldc<2>, ldc<1>,
N);



Case Contraction Kernel1 Kernel2 Kernel3 Case Contraction Kernel1 Kernel2
1.1 AmkBknp Cm(np) = AmkBk(np) Cmn[p] = AmkBkn[p] Cm[n]p = AmkBk[n]p 4.1 AknBkmp Cmn[p] = B>

km[p]
Akn

1.2 AmkBkpn Cmn[p] = AmkBk[p]n Cm[n]p = AmkBkp[n] 4.2 AknBkpm Cmn[p] = B>
k[p]m

Akn

1.3 AmkBnkp Cmn[p] = AmkB
>
nk[p]

4.3 AknBmkp Cmn[p] = Bmk[p]Akn

1.4 AmkBpkn Cm[n]p = AmkB
>
pk[n]

4.4 AknBpkm TRANS(A>knB
>
pk[m]

) C[m][n]p = Bpk[m]Ak[n]

1.5 AmkBnpk Cm(np) = AmkB
>
(np)k

Cmn[p] = AmkB
>
n[p]k

4.5 AknBmpk Cmn[p] = Bm[p]kAkn

1.6 AmkBpnk Cm[n]p = AmkB
>
p[n]k

4.6 AknBpmk TRANS(A>knB
>
p[m]k

) C[m][n]p = Bp[m]kAk[n]

2.1 AkmBknp Cm(np) = A>kmBk(np) Cmn[p] = A>kmBkn[p] Cm[n]p = A>kmBk[n]p 5.1 ApkBkmn C(mn)p = B>
k(mn)

A>pk Cm[n]p = B>
km[n]

A>pk
2.2 AkmBkpn Cmn[p] = A>kmBk[p]n Cm[n]p = A>kmBkp[n] 5.2 ApkBknm Cm[n]p = B>

k[n]m
A>pk

2.3 AkmBnkp Cmn[p] = A>kmB>
nk[p]

5.3 ApkBmkn Cm[n]p = Bmk[n]A
>
pk

2.4 AkmBpkn Cm[n]p = A>kmB>
pk[n]

5.4 ApkBnkm TRANS(Bnk[m]A
>
pk) C[m]n[p] = Bnk[m]A[p]k

2.5 AkmBnpk Cm(np) = A>kmB>
(np)k

Cmn[p] = A>kmB>
n[p]k

5.5 ApkBmnk C(mn)p = B(mn)kA
>
pk Cm[n]p = Bm[n]kA

>
pk

2.6 AkmBpnk Cm[n]p = A>kmB>
p[n]k

5.6 ApkBnmk TRANS(Bn[m]kA
>
pk) C[m]n[p] = Bn[m]kA[p]k

3.1 AnkBkmp Cmn[p] = B>
km[p]

A>nk 6.1 AkpBkmn C(mn)p = B>
k(mn)

Akp Cm[n]p = B>
km[n]

Akp

3.2 AnkBkpm Cmn[p] = B>
k[p]m

A>nk 6.2 AkpBknm Cm[n]p = B>
k[n]m

Akp

3.3 AnkBmkp Cmn[p] = Bmk[p]A
>
nk 6.3 AkpBmkn Cm[n]p = Bmk[n]Akp

3.4 AnkBpkm TRANS(AnkB
>
pk[m]

) C[m][n]p = Bpk[m]A[n]k 6.4 AkpBnkm TRANS(Bnk[m]Akp) C[m]n[p] = Bnk[m]Ak[p]

3.5 AnkBmpk Cmn[p] = Bm[p]kA
>
nk 6.5 AkpBmnk C(mn)p = B(mn)kAkp Cm[n]p = Bm[n]kAkp

3.6 AnkBpmk TRANS(AnkB
>
p[m]k

) C[m][n]p = Bp[m]kA[n]k 6.6 AkpBnmk TRANS(Bn[m]kAkp) C[m]n[p] = Bn[m]kAk[p]

Table II: List of 36 possible single mode contraction operations between a second-order tensor and a third-order tensor and
possible mappings to Level-3 BLAS routines. Note that 8 cases may be performed with GEMM, 28 cases may be performed
with STRIDEDBATCHEDGEMM, and 8 cases remain exceptional.

When the extended operation is passed, it is known that
batching is in the first mode of the input which always has
leading dimension 1. Thus, the leading order parameter to
sb_gemm contains no information. Instead, leading dimen-
sions of the other two modes in row-column order of the
batched matrix are passed as the leading dimension and
leading order parameters.

The implementation of a computation like this is expected
to perform a “3D” tiling of B into cache in order to
efficiently contract with the standard 2D cache tiling of A.

F. Generalization

In this section, we explain the generality of our approach
and how it can be easily applied and extended to single-
mode contractions involving tensors of arbitrary order.

Consider an arbitrary single-mode tensor contraction of
the form (1). It is straightforward to see by simple counting
that the number of unique contractions is [(|A|+ |B|− 2)!] ·
|A| · |B|. We note that Table II is obtained with |A| = 2
and |B| = 3. Of these contractions, all of them may be
performed without explicit mode transpositions by nesting
the BATCHEDGEMM operations.

We observe that some single-mode contractions of two
tensors of arbitrary order can be evaluated by batching on
different modes with the BATCHEDGEMM operations. For
example, consider Cmn[p][q] = Amk[p]Bnk[q] wherein we can
batch in either p and q. We prefer to choose the mode with
the larger dimension for the BATCHEDGEMM batching loop
over the other (nested batching).

The nested-batching strategy in Listing 2 is general and
extends to any two tensors of any order. Algorithms and
heuristics for choosing the looped, batched, and GEMM-ed
modes are provided in Section IV-D.

Listing 1: Interface and reference implementation of BLAS-
like strided batched GEMM.

1 // C_p = alpha*opA(A_p)*opB(B_p) + beta*C_p
2 sb_gemm(op_type opA, op_type opB,
3 int m, int n, int k,
4 T alpha,
5 const T* A, int lda, int loa,
6 const T* B, int ldb, int lob,
7 T beta,
8 T* C, int ldc, int loc,
9 int batch_size)

10 {
11 // EXPOSITION ONLY
12 for (int p = 0; p < batch_size; ++p)
13 gemm(opA, opB,
14 m, n, k,
15 alpha,
16 A + p*loa, lda,
17 B + p*lob, ldb,
18 beta,
19 C + p*loc, ldc);
20 }

Listing 2: Nested batching.
1 for (int q = 0; q < Q; ++q)
2 sb_gemm(OP_N, OP_T,
3 M, N, K,
4 1,
5 A, lda<1>, lda<2>,
6 B+q*ldb<2>, ldb<1>, 0,
7 0,
8 C+q*ldc<3>, ldc<1>, ldc<2>,
9 P);

IV. RESULTS AND DISCUSSION

In this section, we benchmark varying evaluation strate-
gies in order to define heuristics for computing general ten-
sor contractions without copy or transposition. Additionally,
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Figure 3: Performance ratio between the conventional
approach with κ mode transpositions over a
BATCHEDGEMM in [p] for Case 1.3. For color from
deep to light, κ = 1, 2, 3, 6. Performance on CPU
using MKL’s mkl_somatcopy, cblas_sgemm, and
cblas_sgemm_batch. Performance on GPU using
CUBLAS’s cublasSgeam, cublasSgemm, and our
modified cublasSgemmBatched.

we demonstrate the feasibility of the extended transpose
parameter for exceptional case evaluations.

All performance measurements are performed on a het-
erogeneous CPU-GPU system with a dual-socket Intel Xeon
E5-2630 v3 2.4GHz processor and an NVIDIA K40c GPU.
Each CPU socket has 8 cores and 16 threads with an
8× 256KB L2 cache and a 20MB L3 cache. The K40c has
2880 streaming cores distributed across 15 multiprocessors
operating at 0.75GHz and a 1.5MB L2 cache.

All data used are randomized dense matrices. To eliminate
noise from parallel competition of multi-sockets, all CPU
results are generated from serial runs (one core, one thread).

A. Conventional Evaluation

We further motivate the use of STRIDEDBATCHEDGEMM
evaluations by plotting the speedup of the conventional ap-
proach – transpositions until a single GEMM can be called –
over a single STRIDEDBATCHEDGEMM call in evaluation of
Case 1.3 from Table II for tensors of size n×n×n. Figure 3
shows that STRIDEDBATCHEDGEMM is significantly faster
than performing even a single transposition followed by a
flattened GEMM, especially for small matrices. Here, a single
transposition means n calls to mkl_somatcopy on CPU
or cublasSgeam on GPU in order to fully exchange two
modes. The dark lines include only a single transposition
and the lighter lines include 2, 3, and 6 transpositions.

On CPU, the STRIDEDBATCHEDGEMM evaluation out-
performs the conventional approach for all n < 512.
On GPU, the benefit from performing a single flattened
GEMM eventually outweighs the cost of performing the
transposition and for n & 200 the conventional approach
achieves a speedup over the STRIDEDBATCHEDGEMM. This
speaks to the highly optimized GEMM in CUBLAS and
that, perhaps, additional optimization gains from CUBLAS’s
BATCHEDGEMM may be available.
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Figure 4: Performance ratio for a BATCHEDGEMM over a
flattened GEMM in evaluation of Cases 1.1, 1.5, and 6.1.
(Left) CPU. (Right) GPU.

B. Extended BLAS Evaluation

In this section, we compare evaluation strategies given
the extended BLAS kernels. On GPU, the STRID-
EDBATCHEDGEMM interface is provided by modifying
cublasSgemmBatched from CUBLAS 7.5. On CPU, the
STRIDEDBATCHEDGEMM interface is implemented in serial
with looped calls to cblas_sgemm from MKL 11.2. Both
implementations thereby avoid additional allocation and/or
precomputation at the call site. The serial execution on CPU
emphasizes the cache effects discussed in the following
sections.

1) Flattening: Cases 1.1, 1.5, and 6.1 can be evaluated
without explicit transpositions with either a single flattened
GEMM or a single BATCHEDGEMM. We expect the flattened
GEMM evaluation to outperform the BATCHEDGEMM eval-
uation due to the optimization level of existing GEMMs over
that of the recently emerging BATCHEDGEMM functions.

In Figure 4, we plot the speedup achieved by using a flat-
tened GEMM evaluation over a STRIDEDBATCHEDGEMM
evaluation. In Figure 4, the speedup is greater than
one when FlattenedGEMM is faster than the STRIDED-
BATCHEDGEMM. Clearly, most of the time, flattened GEMM
is faster. Furthermore, we note the CUBLAS implementation
of STRIDEDBATCHEDGEMM is a great candidate for opti-
mization as it appears to be significantly underperforming
with respect to GEMM.

We also note the dependence of the performance on
the shape of the flattened GEMM and the mode of the
STRIDEDBATCHEDGEMM. On CPU, we find that the major
determining factor in performance is the batching mode of
the output. That is, the STRIDEDBATCHEDGEMM evaluation
performs best when batched in the third mode of C – in
Case 1.5 [p] and 1.1 [p]. On GPU, the output batching mode
makes no difference. It is unclear why the batched evaluation
performs so well on Case 1.5 [p].

2) Batching: In this section, we attempt to quantify the
performance gain by batching in the last mode versus an
earlier mode and whether the input tensor or the output
tensor should be prioritized for this optimization.

Case 1.1 and 2.1 can both be batched in the second ([n])
or third ([p]) mode. In Figure 5, we plot the speedup in
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Figure 5: Speedup obtained from batching in the last mode,
[p], rather than the middle mode, [n], for Cases 1.1 and 2.1.
(Left) CPU. (Right) GPU.

performing the BATCHEDGEMM in [p] over performing it in
[n]. When the size of the tensor is small, n . 256, batching
in the third mode is advantageous and can result in up to
1.25x speedup on CPU. When n & 256, it is approximately
1.1x faster to batch in the second mode rather than the third.
We expect this is an effect of the 256KB L1 cache, which
would house the contiguous Bkn submatrix for each p when
n . 256. Beyond that size both batching strategies will have
forced cache misses within each GEMM, but by batching in
the middle mode more data is shared between individual
GEMMs.

On GPU, we see no discernible preference in the choice
of batching mode. The GPU has a much less sophisticated
memory system with no prefetcher and the performance
difference is primarily determined by the number of global
memory transactions issued. When n ≥ 32, the coalescing
width is reached so nearly the same number of transactions
will be issued in each case – with small differences caused
by alignment. We confirmed this by profiling the number
of global memory reads and writes issued by each kernel
and verifying that they correlate with the small differences
in performance observed.

Additionally, we consider the mixed-mode batching evalu-
ations to determine if the input or output array is the primary
determination of batching performance. In Figure 6, we plot
the speedup in performing STRIDEDBATCHEDGEMM in the
last mode of the output but the middle mode of the input,
[p], over performing it in the middle mode of the output and
the last mode of the input, [n], for Cases 1.2 and 2.2. The
results are very similar to those of Figure 5 indicating that
batching mode of the output tensor C is more important than
the batching mode of the input tensor B on CPU. This is
consistent with reference implementations of GEMM which
accumulate results directly into the output matrix.

3) Exceptional Cases: In this section, we demonstrate the
feasibility of evaluation strategies for the exceptional cases.

The Polyhedral Parallel Code Generator (PPCG) [28] is
a source-to-source compiler capable of generating CUDA
kernels from nested control loops in C. We use PPCG
to generate a CUDA kernel for exceptional Case 6.4 and
compare its performance against other evaluation strategies.
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Figure 6: Speedup obtained from batching in the last output
mode, [p], rather than the middle output mode, [n], for Cases
1.2 and 2.2. (Left) CPU. (Right) GPU.
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Figure 7: GPU tiling parameter profile from PPCG on K40c
for Case 6.4. Performance values are log10([µsec]) and tests
performed for m = n = k = p = 256. White indicates the
run failed.

First, Case 6.4 has four nested loops and PPCG accepts
a tiling parameter for each. We search the parameter space
(m,n, p, k) ∈ [1, 2, 4, 8, 16, 32, 64, 128]4 for the most effi-
cient variant in Figure 7. The kernels were generated with
α = 1 and β = 0 statically known as generated versions
with dynamic α, β had significant branching and divergent
overhead, whereas we are primarily interested in the access
patterns and tiling.

The tiling parameters that result in the highest perfor-
mance are (16, 4, 32, 4). Via inspection, we verify that the
generated kernel is performing a 2D shared memory tiling
for A, a “3D” shared memory tiling for B, and accumulating
the C results in registers.

Using the (16, 4, 32, 4) kernel, we benchmark against two
possible evaluation strategies: (1) A BATCHEDGEMV which
requires no explicit transposition, and (2) A mode transpo-
sition in k and m followed by a BATCHEDGEMM in [n].
In Figure 8, we show the execution time for each with the
explicit transposition/GEMM stacked to show their relative
proportion in the two-step evaluation. The PPCG kernel
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outperforms the explicit transposition/GEMM evaluation for
small matrices and remains within a factor of 2-3x as n
grows. We expect an expert implementation of the extended
transpose parameter kernel would be able to close this gap
and remain competitive with BATCHEDGEMM for all n.
C. Machine Learning Application

In this section, we present the benchmarking results
for the application that we discussed in Section II-C. For
simulations on the CPU, we compare the performance on
the Tucker decomposition using TensorToolbox, BTAS, CY-
CLOPS and our STRIDEDBATCHEDGEMM. For simulations
on the GPU, we don’t have available GPU library to compare
with, so we just evaluate our GPU implementation against
STRIDEDBATCHEDGEMM. We fix the number of iterations
as T = 200, set the core tensor size as i = j = k = 10, and
set the dimensions as m = n = p. From Figure 9, using
our CPU STRIDEDBATCHEDGEMM, we obtain more than
10 times speedup compared to CYCLOPS/TensorToolbox and
almost four orders of magnitude compared to BTAS. Also,
as expected, our GPU STRIDEDBATCHEDGEMM confers
further speedup.
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Figure 9: Performance on Tucker decompostion.

D. Evaluation Priorities

Rather than attempt to model the algorithm and machine
as in [22], [19], we simply provide evaluation guidelines

based on the data provided. These are a number of heuristics
that may be important in constructing the most efficient
evaluation strategy.

1) Flatten modes whenever possible. A single large GEMM
is more efficient.

2) In the interest of performing the highest intensity
computation within a BATCHEDGEMM, we recom-
mend performing the largest GEMMs possible within a
BATCHEDGEMM and batching in the mode with largest
dimension.

3) Preferring to batch in the last mode versus earlier modes
can depend on the input parameters and machine.

We summarize these evaluation guidelines with pseudocode
for performing a single-index tensor contraction without
copy or transposition in Algorithm 2.

V. CONCLUSIONS AND FUTURE WORK

Our experience reveals that the emergence of
BATCHEDGEMM provides significant computational
advantages for multi-linear algebraic computations. The
primitive allows us to push a larger high intensity
computations to vendor-provided implementations. Leading
implementations already provide BATCHEDGEMM on
highly parallel machines. To simplify their use and
provide additional optimization opportunities, we
propose STRIDEDBATCHEDGEMM and demonstrate
its use for generalized tensor contractions. Calls to
STRIDEDBATCHEDGEMM have significant opportunity to
perform at or near the performance of GEMM and, by
avoiding explicit transpositions or permutations of the data,
accelerate these computations significantly.

Our improvement is most significant on small and mod-
erate sized tensors. This is very important because in many
applications, e.g. deep learning for training a recursive tensor
network, we require evaluating a large number of tensor
contractions of small sizes.

Although we focused on single-node performance, these
evaluations may be used as building blocks for distributed
memory implementations, which we intent to pursue as part
of our future work. Further study into the optimized im-
plementations, architecture-dependent implementations, and
performance of the exceptional case kernels is warranted.
More complicated contractions, such as multi-index con-
tractions or sparse tensor algebra, also pose challenging
problems.
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Algorithm 2 Single-Mode Tensor Contraction
1: In: Tensor AA, A = [a1, . . . , aM ],
2: In: Tensor BB , B = [b1, . . . , bN ], A ∩ B = {k}.
3: In, Out: Tensor CC , C = [c1, . . . , cN+M−2]. WLOG, c1 ∈ A.
4: Common substrings in A, B and/or C for flattening candidates.
5: Relabel flattened modes
6: Compute P = {ci | i 6= 1, ci 6≡ a1, ci 6≡ b1}
7: if |C \ P| = |{c1}| = 1. then
8: [Case Cc1··· = Ak···c1···Bk···]
9: Let c∗ ∈ P \ A be index with max dimension

10: Let c+ ∈ P \ {c1, c∗} be index with max dimension
11: Nested in all cj ∈ P \{c∗, c+}, BATCHEDGEMM in c1, c∗, k, [c+]
12: else if |C \ P| = |{c1, cb}| = 2 then
13: [Case Cc1···cb··· = Ak···c1···Bcb···k···]
14: Let c∗ ∈ P be index with max dimension
15: Nested in all cj ∈ P \ {c∗}, BATCHEDGEMM in c1, cb, k, [c

∗]
16: else if |C \ P| = |{c1, ca}| = 2 then
17: [Case Cc1···ca··· = Aca···c1···k···Bk···]
18: Let c∗ ∈ P \ A be index with max dimension
19: Nested in all cj ∈ P \{c∗}, Ex. BATCHEDGEMM in c1, c∗, k, [ca]
20: else if |C \ P| = |{c1, ca, cb}| = 3 then
21: [Case Cc1···ca···cb··· = Aca···c1···k···Bcb···k···]
22: Nested in all cj ∈ P , Ex. BATCHEDGEMM in c1, cb, k, [ca]
23: end if
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