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Abstract
The non-stationary nature of image characteristics calls for

adaptive processing, based on the local image content. We pro-
pose a simple and flexible method to learn local tuning of param-
eters in adaptive image processing: we extract simple local fea-
tures from an image and learn the relation between these features
and the optimal filtering parameters. Learning is performed by
optimizing a user defined cost function (any image quality metric)
on a training set. We apply our method to three classical problems
(denoising, demosaicing and deblurring) and we show the effec-
tiveness of the learned parameter modulation strategies. We also
show that these strategies are consistent with theoretical results
from the literature.

Introduction
The effectiveness of most image processing1 algorithms de-

pends on a careful parameter choice. For instance, denoising
methods commonly require a denoising strength or a patch size to
be set. These parameters can be adjusted per image, but neglect-
ing the local image characteristics leads to sub-optimal results.
Setting the filtering parameters adaptively has obvious benefits;
e.g., the denoising strength can be higher in smooth areas where
the risk of blurring out details is low, and in turn it can be lower
in highly textured areas where noise is less visible. Adaptiveness
can also be easily achieved by mixing the output of different al-
gorithms, each operating at best in a different part of an image.

Adaptiveness, however, does not come without a cost. It re-
quires to establish a rule to process the pixels, based on the local
image properties. In most cases, this means establishing a map-
ping from a collection of features, describing the image at a local
scale, to a set of parameters that determines the behaviour of the
processing algorithm. The rule to modulate the parameters across
an image can be derived heuristically, or based on a statistical
model, but better results are obtained by a learning approach. The
learning procedure can in fact be designed to optimize a specific
cost function, related to the problem in hand. Nonetheless, pre-
vious learning methods have proposed adaptive filtering only for
specific image processing problems [2, 3, 4].

In contrast, we propose a general approach to learn parame-
ter tuning for adaptive image processing. We learn the mapping
from local features to parameters on a training set, which then
generalizes to unseen images. We demonstrate the generality and
effectiveness of our approach on three classical image process-
ing problems: denoising, demosaicing and deblurring. We show
in the case of denoising that the proposed method is capable of

1We refer image processing algorithm to any algorithm that operates
on the image domain, ranging from classical signal processing to any pre-
processing step for later computer vision algorithms.

learning a parameter modulation strategy, consistent with previ-
ously derived theoretical results [5]. For demosaicing, we blend
the output of three demosaicing methods with adaptive mixing pa-
rameters; this does not only produce a better demosaiced image,
but also highlights untold strengths and weaknesses in the demo-
saicing algorithms. In the case of deblurring, we learn how to
adaptively set the regularization hyper-parameter without resort-
ing to any global, discrepancy principle [6]. Finally, we show how
the objective function affects the parameter modulation strategy,
coherently with [7].

Related work
We mainly identify three approaches2 for the development of

adaptive algorithms: 1) heuristic-driven, 2) based on local statis-
tics analysis, and 3) learning-based.

Heuristic-driven · The rules to modulate the parameters
across an image are derived from empirical observation, experi-
ence or intuition. This is the case of the adaptive unsharp masking
technique in [8]. The filter was designed to enhance high detail
areas, while leaving unaltered the smooth regions. The enhance-
ment strength is guided by the classification of the pixels into low,
medium and high dynamic classes. In the denoising context, Chen
et al. [9] proposed an adaptive Total Variation (TV) regularization
method to avoid the staircase artifact introduced by TV. The idea
is to identify edges and ramps in an image and apply `1 or `2
regularization respectively. The blending rule for the two regular-
ization terms is determined heuristically. Although the heuristic
approach generally leads to an improvement of the filter perfor-
mances, it is not suitable to reveal complex or counter-intuitive
interactions between the local image characteristics and the filter-
ing parameters [2].

Analysis of local statistics · Thaipanich et al. [10] used SVD
and K-Means to group similar patches in an image and conse-
quently derived an adaptive Non Local Means (NLM) denoising
method. Lebrun et al. described the non-local Bayes denoising
algorithm in [11], based on the local covariance matrix of a col-
lection of similar patches; they also established the connection be-
tween their algorithm and the PCA-based algorithm in [12]. Du-
val et al. performed an extended analysis of the filter parameter
of NLM denoising, for a simplified patch weight model [5]. They
showed that large patches provide a precise but biased estimate of
the noise-free image. The filter parameter has to be consequently
modulated across the image to increase the accuracy. To that end,
they proposed an iterative method to compute the filter parameter
in each pixel. Generally speaking, a careful definition of the lo-

2We are not considering here the class of linear adaptive filters
(e.g.Wiener or Kalman filters), for which a wide, well established theory
exists.
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Figure 1: Result of Approximate Non Local Mean (ANLM) denoising. ANLM works like standard NLM, but using a limited number
(here, 16) of nearest neighbor patches. Panel (d) shows the output of ANLM using the patch size and filtering parameter prescribed in [1].
Learning the global patch size and filtering parameter through optimization of PSNR on a training set of images, reduces the noise level
on the skin (see the red ellipse for ANLM and ANLMPSNR). Learning to adaptively modulate these parameters increases the contrast
of small details (see the pink ellipse on the eyelashes when using globally learned parameters in (e) ANLMPSNR, and adaptively learned
parameters in (f) aANLMPSNR). Learning adaptive parameters that optimize for MS-SSIM instead of PSNR further increases the contrast
of small details, see (g). Better seen at 4x zoom.

cal statistics of the signal guarantees superior performances when
compared to the heuristic approach, but the price to be paid is the
high computational cost of the statistical analysis. Furthermore,
complex interactions between the local image characteristics and
the optimal filter parameters cannot be identified if not included
a-priori in the statistical model. Finally, these algorithms gener-
ally optimize a statistical cost function, e.g., `2 in [5], that may
or may not be related to the application in hand.

Learning-based · Using machine learning to learn adaptive
processing has the potential to overcome these issues. The main
idea is to learn the relation between the image characteristics and
the optimal processing procedure at a local scale. Zhang et al. [13]
used this approach to learn the parameters of an adaptive bilateral
filter aiming at denoising and deblurring by minimizing a least
squares error over pixel clusters computed from Log of Gaussian
responses. Frosio et al. [2] showed how to adaptively optimize
the spatial and grey level range of the same filter, to maximize the
PSNR on a set of noisy training images. The framework described
in their paper is applied only to the case of image denoising and
Gaussian noise; furthermore, the function putting in relation the
local features and the filtering parameters is simpler than the one
we propose in Sect. . The learning approach has also been adopted
for Monte Carlo denoising in rendering, where a set of secondary
features are extracted from local mean primary features including
color, world positions, shading normals among others. These fea-
tures are mapped to the filter parameters through a perceptron [4].
Fanello et al. [14] described how to learn optimal linear filters
applied to clusters of patches, agglomerated by a random forest.
The optimal filters are found by minimizing the `2 reconstruction
error. Hammond and Simoncelli derived a closed form solution
for blending two denoising filters based on wavelets [3], whereas

Liu et al. learned adaptive regularizations for patches based on the
estimated distribution of features in transform domain [15]. It is
remarkable to notice that each of the aforementioned approaches
is targeted at a unique specific application with a pre-defined met-
ric. On the other hand, our approach is not restricted to a specific
application as long as one is able to define a task-specific objec-
tive function.

Method
To process an image, we first extract a set of features de-

scribing the characteristics of each pixel in the input image. We
use a parametric model to put in relation the feature vector and the
processing parameters for each pixel, and we estimate the model
parameters by optimizing a user-defined cost function on a set of
training images.

We describe the local image properties in position (x,y)
by a feature vector fx,y =

[
f 0
x,y f 1

x,y ... f F−1
x,y

]> with F elements,
where f 0

x,y = 1 by definition. Typical features are the local
image variance and entropies, as in [2]. The vector px,y =[
p0

x,y p1
x,y ... pP−1

x,y
]> contains the P processing parameters for the

pixel (x,y). For instance, in adaptive bilateral filter, the P = 2 pa-
rameters are the spatial and range sigmas. We relate fx,y and pk

x,y
with a logistic function:

pk
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min +
pk

max− pk
min

1+ e−h(fx,y;θ k)
, (1)
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where θ 0
k is a scalar, θ

1
k is a F×1 vector, Θ

2
k is a F×F triangular

matrix , θ k is a vector containing θ 0
k and the elements of θ

1
k and

Θ
2
k , whereas pk

min and pk
max are the minimum and maximum val-

ues of pk
x,y (these are user-defined, reasonable values for a specific

filter). We choose the logistic function since it builds a continuous
map from RP to a bounded interval, while the model in Eq. (2)
allows representing more complex interactions between features,
compared to [2].

We denote the set of M input training images with {i j}M−1
j=0 ,

while {o j}M−1
j=0 is the corresponding set of desired output images.

For instance, in the case of denoising, i j and o j are respectively
the noisy and noise-free images. Adaptive processing for the j-th
image is described by:

õ j = g
(

i j;θ 0, · · · ,θ P−1

)
, (3)

where g is the image processing algorithm of interest.
The learning procedure consists of the optimization of a

cost function E with respect to {θ 0, · · · ,θ P−1} on the set of
training pairs {

(
i j,o j)}M−1

j=0 . We typically choose a cost e =

E
(
{õ j},{o j};θ 0, · · · ,θ P−1

)
related to the quality of the pro-

cessed images (for instance, [2] uses the average PSNR of {õ j}).
Computing the derivatives of e with respect to the processing pa-
rameters may be difficult or even impossible in certain cases: for
instance, when the parameters are discrete, as in the case of the
patch size for NLM; or when the processing algorithm is iterative,
as for TV denoising [6, 16]; or when the cost function is not dif-
ferentiable, as in the case of FSIM[17]. Therefore, we resort to a
derivative-free optimization algorithm, the Nelder-Mead simplex
method [18]. After training, we use the optimal {θ̂ 0, · · · , θ̂ P−1}
to compute pk

x,y for each pixel of any image, out of the training
set, through Eqs. (1) and (2). Adaptive filtering is then performed
as in Eq. (3).

Applications
In the following we report results for the proposed learning

procedure applied to three classical image processing problems:
denoising, demosaicing and deblurring.

Image denoising
The first application we consider is denoising of color im-

ages through NLM [1]. This filter leverages the image self-
similarity to first denoise single patches in the image. Then it
averages the denoised patches to get the processed image in a col-
laborative way. Let’s consider a p0× p0 patch, qn, corrupted by
zero mean Gaussian noise with variance σ2. The denoised patch,
qd , is [1]:

qd =
N

∑
j=1

w j r j, (4)

w j = e−max{d2(qn,r j)/(p0)2−2σ 2,0}/(p1σ)2
, (5)

where {r j}N
j=1 is a set of N noisy patches, neighbors of qn, and

d(qn,r j) is the `2 distance between qn and r j. Global (non-
adaptive) values for the patch size p0 and the filtering parameter
p1σ have been empirically investigated and reported in [1] as a
function of σ . The choice of these parameters is critical when
the Approximate NLM (ANLM) is used, i.e.when N is small to

(a) aANLMPSNR, p0 (b) aANLMPSNR, p1

(c) aANLMMS-SSIM, p0 (d) aANLMMS-SSIM, p1

Figure 2: Patch size p0 and filtering parameter p1 learned by
aANLMPSNR and aANLMMS-SSIM for the image in Fig. 1.

reduce the computational cost (e.g., N = 16 in [19]) and preserve
edges better [5].

We used the procedure in Sect. to learn adapting p0 and
p1 across an image for ANLM, N = 16. The training set was
composed of 12 of the 24, 512 × 768 images in the Kodak
dataset [20], noise-free and corrupted by zero-mean, Gaussian
noise with σ = 20. We used two different cost functions: the
mean PSNR on the training set, e = ∑

N
j=1 PSNR

(
õ j,o j

)
; and the

mean MS-SSIM [21], e = ∑
N
j=1 MS-SSIM

(
õ j,o j

)
. Optimizing

for MS-SSIM is particularly interesting in the case of image de-
noising, as the final consumer of the image is a human observer
and MS-SSIM correlates with the human judgement better than
PSNR [21, 17]. We first performed the optimization using a sin-
gle, unary feature (F = 1), thus not extracting in practice any lo-
cal feature from the image. In this case h

(
fx,y;θ k

)
in Eq. (2) is

constant and our training procedure boils down to estimating the
global, non-adaptive p0 and p1 parameters that maximize PSNR
and MS-SSIM on the training set. We refer to these filters respec-
tively as ANLMPSNR and ANLMMS-SSIM. Then we used F = 7
features to describe the local image characteristics. These are,
apart from the first unary feature, the 3× 3 and 5× 5 local vari-
ance, the 3× 3 and 7× 7 entropy and the 3× 3 and 7× 7 gradi-
ent entropy. These features are sensitive to edges and textures [2].
We will refer to these adaptive filters respectively as aANLMPSNR
and aANLMMS-SSIM. Notice that the extracted features are also
expected to be noisy in this case. We therefore preprocessed the
feature maps with NLM, using a 9× 9 patch and a filtering pa-
rameter equal to 0.4σ , as suggested in [1]. Since the statistics of
the noise in the feature maps is complicated or even unknown, we
performed the nearest neighbor search and computed the patch
weights using the original, noisy image.



Noisy ANLM [1] ANLMPSNR ANLMMS-SSIM aANLMPSNR aANLMMS-SSIM

p0 - 5 9 19 Eq. (1) Eq. (1)
p1 ·σ - 0.40σ 0.51σ 0.49σ Eq. (1) Eq. (1)

PSNR 22.11 30.06 30.27 30.00 30.80 30.48
SSIM 0.6750 0.8952 0.8992 0.9006 0.9056 0.9084

MS-SSIM 0.8192 0.9417 0.9445 0.9461 0.9480 0.9496
Table 1: Average image quality metrics measured on the testing dataset for ANLM. The values of the patch size p0 and the filtering
parameter p1 are reported for the baseline and non-adaptive ANLM. The best result in each row is shown in bold.

We evaluated the performance of ANLMPSNR,
ANLMMS-SSIM, aANLMPSNR and aANLMMS-SSIM on the
12 images of the Kodak dataset not used for training. For
each filtered image we measured the PSNR, SSIM [22] and
MS-SSIM [21]. We also compared to ANLM using the patch
size p0 = 5 and filtering parameter p1σ = 0.4σ suggested in [1].
The average metrics are reported in Table 1, together with the
values of the learned, global (non-adaptive) parameters. Training
a non-adaptive filter to maximize the PSNR leads to an increase
in the average PSNR on the testing data, when compared to the
original ANLM (from 30.06dB to 30.27dB). This can be visually
appreciated in Fig. 1, showing that ANLMPSNR removes more
noise than ANLM in the smooth areas. We observe a similar
increase in MS-SSIM for ANLMMS-SSIM compared to ANLM
(from 0.9417 to 0.9461) but a slight decrease in PSRN (from
30.06dB to 30.00dB). This is due to the fact that different image
quality metrics have different local maxima. In this specific case,
optimizing MS-SSIM does not necessarily means optimizing
PSNR at the same time.

Turning the global filtering procedure into an adaptive one
(from ANLMPSNR to aANLMPSNR) results in an additional gain
of approximately 0.5dB in PSNR, and an increase in SSIM and
MS-SSIM. Fig. 1 visually demonstrates the advantages of using
learning and adaptiveness together: compared to ANLMPSNR,
aANLMPSNR produces slightly more contrasted small details (on
the eyelashes in this case). Lastly, Fig. 1 highlights the differences
between optimizing PSNR and MS-SSIM. MS-SSIM is only par-
tially affected by small residual noise close to edges, which is on
the other hand poorly visible by a human observer. This explains
the slightly higher residual noise and, at the same time, the better
visual appearance achieved by aANLMMS-SSIM, consistent with
what was reported in [7].

Fig. 2(a)-(b) shows the parameters learned by aANLMPSNR
for the image in Fig. 1. The learned strategy uses as-large-as-
possible patches in the smooth areas (e.g., the skin), and as-small-
as-possible close to the edges (e.g., at the face border) and on
irregular textures (e.g., the hat). The filtering parameter p1 in-
creases along edges, and it is at maximum in areas where sat-
uration occurs (e.g., on the necklace). This learned strategy is
remarkably similar to the one derived by Duval et al. [5], based
on a statistical analysis of NLM. Their main finding is that, close
to the edges, we cannot find exact replicas of the reference patch.
Consequently, averaging dissimilar patches introduces a bias. The
bias can be reduced by using small patches, but this increases
the uncertainty because of the poor statistics associated with the
smaller number of pixels. To compensate for this, the filtering pa-
rameter p1 is increased to include pixels from patches that are far
from the reference one. Duval et al. [5] demonstrates analytically
that such strategy is optimal when a least squares error (or, simi-

larly, PSNR) has to be optimized. Our method is capable of auto-
matically learning the same strategy and even go beyond that. For
instance, in the white area of the necklace, the filtering parameter
is increased to its maximum since noise is reduced by saturation
and the reliability of the measured pixels is consequently higher.

Even more interestingly, Fig. 2(c)-(d) shows that a different
modulation strategy has to be adopted when a different metric
(MS-SSIM in this case) is maximized. Since MS-SSIM is only
slightly affected by noise close to edges, the filtering parameter
p1 is set to its minimum here, while the patch size p0 is mini-
mal. According to the analysis of Duval et al., this reduces the
bias (i.e., the low pass filtering effect of NLM) and increases the
variance (i.e., leave more residual noise) in the filtered image, but
it also produces more pleasant images as shown in Fig. 1(g).

Image demosaicing
The second application we consider is the mixture of demo-

saicing algorithms. Demosaicing is the process of recovering a
full resolution color image from a subsampled (e.g., Bayer) pat-
tern. Several demosaicing approaches have been proposed in the
literature [23], each with strengths and weaknesses. Adaptively
blending the output of different demosaicing algorithms is ex-
pected to achieve a better overall image quality. For a mixture
of P demosaicing algorithms, the output image at pixel (x,y) is
defined as:

õx,y =
P−1

∑
k=0

pk
x,y dk

x,y/
P−1

∑
k=0

pk
x,y (6)

where dk
x,y is the output of the k-th algorithm, pk

min = 0 and
pk

max = 1, ∀k. The learned parameters here are used to compute
the blending factors, pk

x,y/∑
P−1
k=0 pk

x,y.
We consider a mixture of P = 3 recently published, state-

of-the-art demosiacing algorithms: Adaptive Residual Interpola-
tion (ARI, [26]), an algorithm based on the exploitation of inter-
color correlation (ECC, [25]), and image demosaicing with con-
tour stencils (CS, [27]). For training and testing we employed the
images of the McMaster dataset [24], after splitting it into two
separate sets. We first learned how to blend the output of the
three algorithms globally (i.e., F = 1), by maximizing the mean
PSNR (MixPSNR). For adaptive blending, we used as features the
local variance, intensity entropy and gradient entropy, computed
separately on three channels of the Bayer pattern, for a total of
F = 10 features. The local window size for extracting the fea-
tures is 7×7, close to the operating scale of most demosaicing al-
gorithms. Learning was performed to maximize the PSNR, SSIM
and MS-SSIM on the training data. The corresponding algorithms
are indicated as aMixPSNR, aMixSSIM, and aMixMS-SSIM. Results
are reported in Table 2.



The learned, adaptive mixture, aMixMS-SSIM, outperforms
the best of the three original methods by 0.96dB on average in
terms of PSNR, when MS-SSIM is maximized in training. The
improvement is consistent for all the three metrics considered
here (PSNR, SSIM and MS-SSIM) even if only one of them is
optimized during training. Consistent with the case of denoising,
training to maximize SSIM or MS-SSIM produces the best results
in terms of SSIM or MS-SSIM. This also produces an improve-
ment in terms of PSNR since these image quality metrics are cor-
related, even if they do not share the same local maxima. Remark-
ably, even without any adaptiveness, the learned mix (MixPSNR)
gains 0.86dB on average in terms of PSNR, compared to the best
of ECC, ARI and CS. The learned (non-adaptive) blending fac-
tors are in this case 0.50 for ECC, 0.44 for ARI and 0.06 for CS.
The low importance given to CS on the average is somehow ex-
pected, given the lower performance achieved by this method and
reported in Table 2. On the other hand, the fact that the blending
factor for CS is non-zero demonstrates that CS can be coupled
with the other two algorithms to increase the image quality. This
advantage is maximized when turning to an adaptive approach,
which results into an additional 0.1dB on the average compared
to the non adaptive approach.

Fig. 3 shows the blending factors for three testing images.
ECC and ARI are the best methods when used alone, and they
are almost equally distributed in the mixture. Close to the edges,
the learned modulation strategy select either one or the other of
these methods. In homogeneus areas they appear to be equally
important, with the exception of very dark or bright areas, where
the weights associated to CS becomes predominant, even if this
is the worst algorithm (among the three considered here) when
used alone. The quality of the images obtained with the proposed
method can be appreciated in Fig. 4, showing a better reconstruc-
tion of the border of the red pepper compared to state-of-the-art
ECC and ARI.

Image deblurring
The last application we consider is image deblurring through

TV regularization. This problem is of particular importance in
the medical and astronomical fields, where imaging apparatuses
with a known point spread function measure single channel im-
ages with a very limited number of photons [6, 16]. The problem
can be stated as follow. Given the vectorial representation of a
noise-free image, o, the measured, noisy, and blurred image, i, is:

i = H ·o+n (7)

where H is a matrix representing a linear blur and i is corrupted
by photon counting noise n3 with a Poisson distribution [6]. The
inverse problem of estimating o from i is formulated in a Bayesian
context as a maximum a posteriori problem. We estimate the noise
free image, õ, as:

õ = argmin
ô
− log(L(i|ô))+ p0

x,yR(ô) , (8)

where L(i|ô) is the likelihood term (the Kullback-Leibler diver-
gence for Poisson noise) and R(ô) is the regularization term. TV
regularization is often adopted for its edge preserving capability.

3With an abuse of notation, we indicate here the photon counting noise
as additional noise n.

Image Blending factors
(ECC=r, ARI=g, CS=b)

Figure 3: Blending factors learned by aMIXMS-SSIM (right col-
umn) for three images of the McMaster dataset [24]. The blend-
ing factor for ECC, p0/∑ pk, is associated with the red channel,
whereas those of ARI (p1/∑ pk) and CS (p2/∑ pk) are associated
with the green and blue channels, respectively. ECC and ARI are
the preferred methods for edges and textured areas, whereas CS
has more importance in very dark or bright areas of the images.

The regularization hyper-parameter p0
x,y is traditionally kept con-

stant across the image and chosen, for instance, through a discrep-
ancy principle [6]. For simplicity, we solve Eq. (8) by steepest
descent, even if more efficient algorithms can be used.

We used the procedure from Sect. to learn how to adapt p0
x,y

across the image. The training dataset was composed of 12 of the
24 images of the Kodak dataset, converted to grey levels. Each
image was blurred with a Gaussian kernel of 7× 7 pixels and a
standard deviation of 2 pixels. White, photon counting noise was
added to the blurred images, assuming a maximum number of
1024 photons per pixel. During learning we optimized the aver-
age PSNR and MS-SSIM on the training dataset. We first per-
formed training for F = 1 (i.e.for a global, non-adaptive hyper-
regularization parameter p0). We refer to these filters as TVPSNR
and TVMS-SSIM. We then performed training using F = 7 fea-
tures: the unary feature and the 5× 5 and 9× 9 local grey level
average, standard deviation and their ratio. The rationale for these
features is that the optimal regularization hyper-parameter may be



ECC [25] ARI [26] CS [27] MixPSNR aMixPSNR aMixSSIM aMixMS-SSIM

PSNR 38.85 38.37 36.67 39.71 39.81 39.80 39.81
SSIM 0.9666 0.9633 0.9516 0.9717 0.9725 0.9725 0.9725

MS-SSIM 0.9951 0.9945 0.9913 0.9963 0.9963 0.9963 0.9964
Table 2: Average image quality metrics on the testing dataset for demosaicing. The best result in each row is shown in bold.

Image Ground truth ECC

ARI CS MixPSNR

aMixPSNR aMixSSIM aMixMS-SSIM

Figure 4: Output of different demosaicing algorithms for the green patch in the upper left panel. The inset panels shows the residual error.
The learned blending strategy gains approximately 1dB on the average compared to previous state-of-the-art results. Better seen at 4×
zoom.

affected by the signal-to-noise ratio (which is proportional to the
number of photons) and by the presence of structure in the local
image (associated with the local variance). We refer to the corre-
sponding adaptive filters as aTVPSNR and aTVMS-SSIM.

The average image quality metrics achieved on the testing
dataset (the second half of the Kodak dataset) are reported in Ta-
ble 3. This shows a slight advantage of using the adaptive strategy
over the non adaptive one, both in the case of the maximization
of PSNR and MS-SSIM. Fig. 5(f) and 5(h) show that the adaptive
filter learned by maximizing the PSNR is capable of better recon-
structing small details in the image, like the writing on the wall.

This is achieved using a larger regularization hyper-parameter
close to the edges (Fig. 5(b) and 5(k)). Nonetheless, since most
of the pixels in the smooth part of the image are still filtered using
the global optimum hyper-parameter, the overall gain in terms of
PSNR is small. Maximizing MS-SSIM instead of PSNR leads to
a slightly different adaptation strategy and to images with more
contrast on small details, that are also a bit more noisy (Fig. 5(g)
and 5(i)).



(a) Original image (b) aTVPSNR, p0. (c) aTVMS-SSIM, p0.

(d) Ground truth (e) Noisy, blurred (f) TVPSNR (g) TVMS-SSIM (h) aTVPSNR (i) aTVMS-SSIM

(j) Original image (k) aTVPSNR, p0. (l) aTVMS-SSIM, p0.

(m) Ground truth (n) Noisy, blurred (o) TVPSNR (p) TVMS-SSIM (q) aTVPSNR (r) aTVMS-SSIM
Figure 5: TV deblurring and denoising performed with a learned global (TVPSNR and TVMSSSIM) and adaptive (aTVPSNR and
aTVMS-SSIM) regularization hyper-parameter, p0. The writing on the wall (panels a, d) is better restored by the adaptive filters (pan-
els h, i) and it is slightly more contrasted and noisy when MS-SSIM is maximized. The texture of the roof (panels j, m) is better restored
by the adaptive filter maximizing MS-SSIM (panel r).

TVPSNR TVMS-SSIM aTVPSNR aTVMS-SSIM

p0 0.0065 0.0069 Eq. (1) Eq. (1)
PSNR 28.455 28.45 28.49 28.43
SSIM 0.8745 0.8745 0.8764 0.8774

MS-SSIM 0.9410 0.9411 0.9421 0.9425
Table 3: Average image quality metrics on the testing dataset for
TV deblurring. The values of the hyper-regularization parameter
p0 are also reported. The best result in each row is shown in bold.

Conclusion
We have presented a general method to learn tuning of pa-

rameters in adaptive image processing. We applied it effectively
to three classical problems, but the same procedure can be applied
to other image processing problems (e.g., segmentation, compres-
sion, and so on), once a proper cost function and set of features
have been defined.

The proposed learning procedure always led to an improve-
ment in the quality of the processed images. We demonstrated its

application in the case of TV deblurring, an iterative processing
procedure for which it is not possible to write an analytical cost
function to optimize; the improvement in this case is small as a
single parameter is optimized and the space of the possible out-
puts is highly constrained by the filter flow-chart. For a complex
filter like ANLM, where two adaptive parameters are considered,
we obtained a gain similar to that reported in [5], where adaptiv-
ness is driven by a statistical risk criterion. For demosaicing, we
demonstrated how to apply our method to blend different filters
with orthogonal properties; this has the potential to produce large
improvements in the learned adaptive algorithm, and in fact we
achieved state-of-the-art results by learning a global mixture, and
a further slightly improvement by introducing adaptiveness.

We also observed, consistent with [7], that optimizing for
different cost functions leads to different parameter modulation
strategies. Maximizing for perceptual image quality metrics im-
proves their score and likely also the actual perceived quality.
Since we resorted to derivative-free optimization, optimizing for
complex, state-of-the-art metrics like FSIM [17], that better corre-



lates with human judgement of image quality, is also doable with
our method. We leave these aspects for future investigations.
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