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Figure 1: Illustration of our formulation. We formulate direct illumination as the product of the unshadowed illumination and the
illumination-weighted shadow, and we combine real-time shadowless illumination techniques with raytraced and denoised shadows. This
yields a ratio estimator of direct illumination that has low variance and can be denoised without blurring shading details.

Abstract

In this paper, we propose a ratio estimator of the direct-illumination
equation that allows us to combine analytic illumination techniques
with stochastic raytraced shadows while maintaining correctness.
Our main contribution is to show that the shadowed illumination
can be split into the product of the unshadowed illumination and
the illumination-weighted shadow. These terms can be computed
separately — possibly using different techniques — without affect-
ing the exactness of the final result given by their product.

This formulation broadens the utility of analytic illumination tech-
niques to raytracing applications, where they were hitherto avoided
because they did not incorporate shadows. We use such methods to
obtain sharp and noise-free shading in the unshadowed-illumination
image and we compute the weighted-shadow image with stochastic
raytracing. The advantage of restricting stochastic evaluation to the
weighted-shadow image is that the final result exhibits noise only
in the shadows. Furthermore, we denoise shadows separately from
illumination so that even aggressive denoising only overblurs shad-
ows, while high-frequency shading details (textures, normal maps,
etc.) are preserved.

1 Introduction

This research is motivated by the lack of shadowing in certain state-
of-the-art real-time shading techniques, such as the area-lighting
framework developed by Heitz et al. [2016]. While it accurately
models the effects of complex materials and lighting, the lack of
shadowing ultimately produces unrealistic images (Fig. 2(a)) and
this problem cannot be solved robustly by using a shadow map
or a fake soft shadow (Fig. 2(b, c)). Given the recent progress in
real-time path-tracing [Schied et al. 2017; Mara et al. 2017], it is
tempting to believe that current real-time techniques might soon
be replaced by fully stochastic approaches combined with efficient
denoising algorithms. However, these stochastic techniques either
suffer from noise or overblurred shading details due to the aggres-
sive denoising that needs to be used for reconstruction (Fig. 2(d)).
In summary, on the one hand we have real-time shading techniques

that produce clean and sharp shading details but miss shadowing
effects, and on the other we have stochastic techniques that incor-
porate all of the effects but yield noisy or overblurred results.

In this paper, we show how to get the best of both worlds by com-
pleting real-time shading techniques with ray-traced shadows in a
way that is mathematically correct. Our main insight is the formu-
lation of shadowed illumination as the product of the unshadowed
illumination and the illumination-weighted shadow. Based on this
idea, we develop the following contributions:

• A ratio estimator of shadowed illumination, in which shadowing
is the only source of variance. The estimator produces noise-free
results in unshadowed regions of the image.

• A denoising formulation that allows for denoising shadows sep-
arately from shading. Thanks to this, we can denoise our results
without compromising the sharpness of shading details as only
the shadows are overblurred (Fig. 2(e)). Note that any existing
denoiser can benefit from this formulation.

• A real-time implementation of our estimator and a custom real-
time denoiser renders high-quality results using only 1-4 shadow
rays per light per pixel.

(a) no shadow (b) point-light shadow (c) AO modulation

(d) stochastic+denoising (e) our result (f) offline reference

Figure 2: Comparison of real-time options for incorporating shad-
ows in the direct illumination of an area light. Options (d) and (e)
are rendered at 2spp and denoised with the same bilateral filter.



1.1 Mathematical Overview of our Method

Shadowed direct illumination The shadowed direct illumina-
tion at a point is the integral of the cosine-weighted Bidirectional
Reflectance Distribution Function (BRDF), the incident lighting,
and the visibility towards the light:

S =

∫
Ω

BRDF× Light× Visibility. (1)

Real-time unshadowed direct illumination Many real-time
techniques provide efficient ways for computing the direct illumi-
nation with various surface materials and light types but without
accounting for visibility, i.e. they compute the unshadowed direct
illumination:

U =

∫
Ω

BRDF× Light. (2)

For instance, Heitz et al. [2016] provide a closed-form evaluation
for integrating the BRDF against polygonal area lights. Another
typical example is the precomputation of the integral of the BRDF
and an environment map using a prefiltered representation, which is
a common practice in games [Kautz et al. 2000; Karis 2013]. These
techniques produce shadowless results, as shown in Figure 2(a).

Problem Adding mathematically correct shadows on top of an
analytic computation of U is complicated because in general the
visibility is not separable:

S 6=
∫

Ω

BRDF× Light×
∫

Ω

Visibility. (3)

Assuming separability of the visibility is mathematically wrong and
might produce unrealistic results, as in Figure 2(c). Mathematically
correct visibility is thus a stumbling block for real-time rendering
and there is currently no alternative for obtaining exact and robust
shadows other than turning to fully stochastic methods.

Our solution Our insight is to split the shadowed illumination
into two parts:

S =

∫
Ω

BRDF× Light︸ ︷︷ ︸
unshadowed illumination U

analytic or precomputed

×
∫

Ω
BRDF× Light× Visibility∫

Ω
BRDF× Light︸ ︷︷ ︸

illumination-weighted shadow W

stochastic + denoising

.

(4)

We refer to the first part as the unshadowed illumination U , which
we compute via existing analytic or precomputed real-time tech-
niques as in Equation (2). The second part is the illumination-
weighted shadow W , which we compute via stochastic raytracing
followed by denoising. This formulation is inspired by the ratio
estimator, a variance-reduction technique from the field of statis-
tics [Hartley 1989; Mickey 1959].

Advantages This formulation provides two main advantages.
First, only the illumination-weighted shadow W is computed
stochastically. Consequently, only shadowed regions of the final
image appear noisy and lit regions are rendered noise-free even at
1 sample per pixel. Second, the unshadowed illumination U con-
taining all of the sharp shading details (textures, normals, etc.) is
analytic and does not need to be denoised. Hence, we denoise only
the stochastic illumination-weighted shadowW such that agressive
denoising overblurs only shadows while sharp shading details are
preserved in the final image.

2 Previous Work

2.1 Unshadowed Direct Illumination

Our technique is built on top of existing real-time techniques that
compute direct illumination without shadows in an efficient man-
ner, i.e. they provide an efficient and noise-free solution to Equa-
tion (2) and can be used in our formulation of the illumination
shown in Equation (4).

Analytic illumination techniques originated from the study of form
factors that yield the irradiance arriving at a point — i.e. di-
rect illumination with a diffuse BRDF — from various geometric
shapes [Baum et al. 1989]. The advantage of diffuse BRDFs is that
they do not depend on the view direction, making it possible to
derive the irradiance from complex emitters such as linearly vary-
ing area lights [Chen and Arvo 2000]. The concept of using an-
alytic form factors has been extended to non-diffuse BRDFs with
area lights [Arvo 1995; Snyder 1996]. For a long time these com-
putations were too costly, so real-time rendering applications used
coarser approximations [Drobot 2014], but they were recently made
affordable thanks to accurate approximations [Lecocq et al. 2016].
The derivation of new directional distributions that offer analytic
integration properties for area lighting is an active research topic
[Heitz et al. 2016; Heitz and Hill 2017; Dupuy et al. 2017].

Precomputed illumination techniques are used for image-based
emitters such as scene lighting represented as an environment map.
Tyically, diffuse BRDFs use precomputed irradiance maps [Ra-
mamoorthi and Hanrahan 2001] and glossy BRDF models use pre-
convolved environment maps [Kautz et al. 2000; Ramamoorthi and
Hanrahan 2002; Karis 2013]. The same approach can also be used
for refraction [de Rousiers et al. 2011].

2.2 Variance-Reduction Techniques

Ratio estimators Ratio estimators are variance-reduction tech-
niques often used in statistics [Hartley 1989; Mickey 1959]. The
goal is to estimate the expectation of a random variable Y by tak-
ing advantage of the information provided by a positively correlated
random variable X whose expectation is known. A classic estima-
tor consists in averaging observations yn from Y :

E [Y ] = lim
N→∞

1

N

N∑
n=1

yn. (5)

IfX and Y are positively correlated and if the expectation E [X] of
X is known, it is possible to reduce the variance using:

E [Y ] = E [X] lim
N→∞

∑N
n=1 yn∑N
n=1 xn

. (6)

We obtained Equation (4) by applying this ratio estimator using
the unshadowed direct illumination for X and the shadowed direct
illumination for Y .

A ratio estimator has been employed previously in rendering by
Stachowiak [2015], who uses a precomputed integral of the BRDF
alone in order to absorb the variance due to imperfect importance
sampling of the BRDF. To our knowledge, the idea of using ratio
estimators when the integral of one or several terms of the integrand
is known has not been used further in rendering applications.

Control variates method The main concurrent approach that
takes advantage of analytic integrals is the control variates method,
which has been used in rendering [Hery and Villemin 2013]. We



compare against in Section 3. Control variates are a variance reduc-
tion technique that consists of using an easily integrable approxima-
tion of the function to integrate, together with an error-correction
term that is computed stochastically:

S = c

∫
Ω

BRDF×Light︸ ︷︷ ︸
control variate (analytic)

−
∫

Ω

BRDF×Light×(c−Visibility)︸ ︷︷ ︸
error (stochastic)

, (7)

where c is a correlation coefficient that needs to be chosen care-
fully to ensure effective variance reduction. Computing the optimal
value for c requires either supplemental computations or dedicated
optimizations and data structures [Fan et al. 2006; Clarberg and
Akenine-Moeller 2008]. In this paper, we are interested in esti-
mators that work as a replacement for a fully stochastic evaluation
without precomputations or supplemental data structures. Hence,
the optimal value for c is unknown, so we use c = 1 by default for
our comparisons. In Section 3, we show that a control variate used
with a default value does not perform well. The main advantage of
our formulation in Equation (4) is that it does not require finding
such a coefficient and hence it does not require supplemental com-
putations nor data structures to be effective. Furthermore, we show
that our formulation allows us to make robust separate approxima-
tions or denoising for the illumination and the shadows, which is
not possible with control variates.

3 Ratio Estimator

In this section, we introduce our formulation of the direct illumina-
tion, build a ratio estimator based on this formulation, and discuss
its properties and performance in terms of variance reduction. For
brevity we will use a more compact notation: R denotes the cosine-
weighted BRDF, L the incident lighting, and V the visibility, and
the shadowed and unshadowed direct illumination are

S =

∫
Ω

R(ω)L(ω)V (ω) dω, (8)

U =

∫
Ω

R(ω)L(ω) dω. (9)

3.1 Previous Estimators of the Shadowed Illumination

Full-stochastic estimator A classic estimator of S is

Ssto
N =

1

N

N∑
n=1

R(ωn)L(ωn)V (ωn)

p(ωn)
, (10)

where the directions ωn are importance sampled from a Probability
Density Function (PDF) p. We call it the full-stochastic estimator,
since all of the terms are evaluated randomly.

Control-variate estimator Following Equation (7), with a corre-
lation coefficient c = 1 as explained in the previous work section,
we obtain the control-variate estimator

SCV
N = U − 1

N

N∑
n=1

R(ωn)L(ωn) (1− V (ωn))

p(ωn)
, (11)

which uses an analytic expression for the unshadowed illumination
U and a stochastic estimator for the additive error term.

3.2 Split Formulation of the Shadowed Illumination

Following Equation (4), we formulate direct illumination as

S = U ×W, (12)

W =
S

U
, (13)

where W is the illumination-weighted shadow. Intuitively, it is the
average visibility of the rays weighted by their contribution to the
illumination integral. This is shown more clearly if we write

W =

∫
Ω
R(ω)L(ω)V (ω) dω∫
Ω
R(ω)L(ω) dω

=

∫
Ω

R(ω)L(ω)∫
Ω
R(ω)L(ω) dω

V (ω) dω,

(14)

which emphasizes that RL/
∫
RL acts as a normalized filter over

the binary visibility values V . As a result, the values of the
weighted-shadow image are always distributed in [0, 1] and the
more a ray contributes to the illumination — i.e. it has both high
BRDF and light values — the more it is accounted for in the
weighted-shadow image.

Interpretation of the illumination-weighted shadow The value
W can be seen as the probability that a ray sampled perfectly from
the normalized product of the BRDF and the light is unshadowed.

3.3 Ratio Estimator of the Shadowed Illumination

The formulation of Equation (12) yields our ratio estimator:

Sratio
N = U × Ssto

N

U sto
N

, (15)

Ssto
N =

1

N

N∑
n=1

R(ωn)L(ωn)V (ωn)

p(ωn)
,

U sto
N =

1

N

N∑
n=1

R(ωn)L(ωn)

p(ωn)
,

where Ssto
N and U sto

N are stochastic estimators of the shadowed and
unshadowed illumination that are computed with the same samples
ωn generated from PDF p, i.e. they use the same random numbers.
It is important that the R(ωn)L(ωn)/p(ωn) values are the same in
Ssto
N and U sto

N to ensure that the result of their division is a normal-
ized average of visibility values V (ωn) that remains in [0, 1].

Note that any other sampling strategy can be used to evaluate Ssto
N

and U sto
N as long as they use the same samples. In our implementa-

tion, we use Multiple Importance Sampling (MIS) to compute all of
the estimators with lower variance, i.e. we generate samples from
both the BRDF and the light and we weight them with the balance
heuristic [Veach and Guibas 1995].

The ratio estimator is biased The expectation of the ratio esti-
mator is not the shadowed illumination. Indeed, for a fixed number
of samples N , the expectation and the fraction do not commute:

E
[
Ssto
N

U sto
N

]
6= S

U
⇒ E

[
Sratio
N

]
6= S, (16)

and the analytic U does not cancel out with the expectation of U sto
N

such that only S would remain.



The ratio estimator is consistent The ratio estimator converges
toward the right result as the number of samples increases because
the limit and the fraction commute:

lim
N→∞

Ssto
N

U sto
N

=
S

U
⇒ lim

N→∞
Sratio
N = U × S

U
= S, (17)

and the analyticU effectively cancels out with the limit ofU sto
N such

that only S remains.

full-stochastic CV ratio (ours) reference

7 3 3

3 7 3

7 7 7
Figure 3: Variance of the estimators at 4spp. Note that the control-
variate (CV) estimator produces negative values that are clamped
to 0 (black pixels). Because of this, the shadow appears gray but its
average is effectively 0. Furthermore, in the last row, the control-
variate result appears less noisy, but the black pixels actually span
more variance in the negative domain.

The ratio estimator has low variance In our experience, the
variance of our ratio estimator is generally lower or similar to the
variance of both the full-stochastic and control-variate estimators.
However, we could not find a mathematical proof of this. To sup-
port this observation, we investigate the problem through numer-
ical experiments. A comparison of the noisy results produced by
the different estimators is available in Figures 3 and 6, and our sup-
plemental material provides a numerical convergence analysis with
an equivalent 1D problem. Our results show that the full-stochastic
estimator is generally good in shadowed regions but noisy in lit re-
gions, while the control-variate estimator has the opposite property.
Our ratio estimator is as good as the both estimators in their respec-
tive good configurations: i.e. it yields noise-free results in lit regions
like the control-variate estimator and does not increase the variance
in shadowed regions. In penumbra regions, the three estimators are
roughly equivalent.

3.4 Approximate Ratio Estimators

Grayscale approximation of illumination-weighted shadows
We must compute the estimator for each RGB channel to be ex-
act. This means storing three RGB images: analytic, stochastic
shadowed, and stochastic unshadowed. To save memory and band-

width, especially in denoising, it is possible to compute and pro-
cess stochastic shadowed luminance and stochastic unshadowed lu-
minance as before, but only a grayscale weighted-shadow image
(Figure 4). The approximation diverges from the exact result if
the scene exhibits strong correlation between directions and light-
source colors, as in Figure 4. However, the approximate result re-
mains plausible and noise-free, and for many applications superior
to using no shadow at all.

no shadow gray shadow (approx.) RGB shadow (exact)

Figure 4: Grayscale approximation of the illumination-weighted
shadows. In order to save memory and bandwidth it is possible to
compute a grayscale (rather than RGB) weighted-shadow image.

Approximate real-time unshadowed illumination So far, we
assumed that the exact unshadowed illumination was available an-
alytically or through a precomputed representation. However, in
many cases, only an approximate result is available in real-time.
Our method allows us to extend even approximate real-time shad-
ing techniques with robust shadows, as shown in Figure 5. For in-
stance, the integral of the BRDF and environmental lighting is hard
to precompute for complicated BRDFs. The common real-time ap-
proximation for this is to use an environment map prefiltered by an
approximate isotropic filter [Karis 2013]. The approximation intro-
duced by this technique is thus the replacement of the exact BRDF
R by an approximate BRDF R̃:∫

Ω

R̃ L 6=
∫

Ω

RL, (18)

which is what we desire to obtain a sharp and clean real-time result.
However, for the stochastic computation of the weighted shadow,
it is simpler to use the exact material R. Indeed, we usually know
how to importance sample the exact R but we might not know how
to sample the approximate R̃ that has been used to prefilter the en-
vironment map, especially if the prefiltering has been further ap-
proximated and optimized [Manson and Sloan 2016]. In this case,
the denominator of the weighted shadow no longer cancels with the
unshadowed illumination in our formulation:∫

Ω

R̃ L×
∫

Ω
RLV∫

Ω
RL

6=
∫

Ω

RLV. (19)

Fortunately, this approximation is visually plausible and artifact-
free. Indeed, the weighted shadow

∫
Ω
RLV /

∫
Ω
RL is a value

in [0, 1] that modulates the approximate unshadowed illumination∫
Ω
R̃ L. What we obtain in Figure 5 is thus the approximate un-

shadowed illumination modulated such that the exact shadow ap-
pears. This result is plausible if the real-time unshadowed illumi-
nation approximation is plausible.

3.5 Denoising the Ratio Estimator

We now explain how to apply our ratio estimator with a generic
denoise(). In Section 4, we propose a novel denoiser for shadows.



unshadowed illumination shadowed illumination
real-time approx. reference ratio approx. reference

[Karis 2013] :
∫
Ω

R̃ L

∫
Ω

RL

∫
Ω

R̃ L ×

∫
Ω RLV∫
Ω RL

∫
Ω

RLV

Figure 5: Approximate real-time unshadowed illumination. We
use our formulation to incorporate the exact shadow with a real-
time approximation of the unshadowed illumination.

Computations We compute three images: the analytic unshad-
owed illumination image U , the stochastic shadowed illumination
SN , and the stochastic unshadowed illumination UN :

U =

∫
Ω

R(ω)L(ω) dω, (20)

SN =

N∑
n=1

R(ωn)L(ωn)V (ωn)

p(ωn)
, (21)

UN =

N∑
n=1

R(ωn)L(ωn)

p(ωn)
, (22)

The analytic image U can be computed using an exact solution if it
is available or with an approximate real-time technique otherwise,
as explained in Section 3.4. We obtain the stochastic illumination-
weighted shadow WN with the division

WN =
SN

UN
, (23)

and our stochastic (noisy) result is the product

result = U ×WN . (24)

Denoising before dividing An important point is that one should
denoise the stochastic shadowed and unshadowed illuminations be-
fore computing their division:

denoised result = U × denoise[SN ]

denoise[UN ]
, (25)

instead of denoising WN directly.

Mathematical justification An alternative could be to denoise
the ratio instead, i.e. performing denoising after the division. To
get an intuition, let us consider denoising a set of pixels that have
exactly the same BRDF, light, and visibility, and should therefore
evaluate to the same result. In this case, the denoising operation
between these pixels should not introduce bias and we expect con-
vergence towards the exact result as the number of denoised pixels
increases. Similar to Equation (16), denoising after the division
does not make the denoising operation converge toward the right
result because the estimator is biased:

denoise
[
SN

UN

]
6−→ S

U
. (26)

Similar to Equation (17), denoising before and dividing after makes
the denoising operation converge toward the right result because the
estimator is consistent:

denoise[SN ]

denoise[UN ]
−→ S

U
. (27)

Practical justification Besides being the right mathematical
approach, denoising before dividing (as in Equation (27)) also
presents the advantage of being robust to pixels with low denom-
inators or undefined values. Let us consider the case where the
illumination weight evaluates to 0, i.e.

SN = UN = 0 =⇒ WN =
SN

UN
=

0

0
= NaN. (28)

If we denoised the weighted-shadow values WN = SN/UN , this
NaN value would propagate and cause visual artifacts. In contrast,
by denoising SN and UN before dividing as we suggest, they get
mixed with their neighboring pixel values and become positive (as
long as they are positive for at least one pixel in the neighborhood)
and the division is well-defined. In general, with this approach,
pixels with small denominators UN do not contribute to themselves
or their neighborhoods, which is the expected behavior. Indeed, the
weighted-shadow is by definition a weighted sum of shadow values.
The smaller the weights, the less relevant the shadow values.

Robustness for denoising Figures 6 and 7 apply a naive bi-
lateral filter over the different estimators. This simple denoising
model demonstrates the robustness of the estimators against aggres-
sive filtering; we later show a more sophisticated denoiser. Naive
denoising works well for all the estimators where neighboring pix-
els expect similar results. However, if the image contains high-
frequency shading details, the methods behave differently. Denois-
ing the full-stochastic estimator blurs these details. Denoising the
control-variate estimator introduces visual artifacts because some
pixels might have negative values of high magnitude. These neg-
ative values can be spread safely to similar neighboring pixels but
they should not be spread to different pixels that do not expect so
much variance in the negative domain. The consequence in this
example is that denoising the control-variate estimator makes the
shadow disappear. In contrast, denoising our weighted-shadow im-
age, as explained above, only makes the shadow appear blurrier and
shading details are preserved.

Using better denoisers Recent denoisers, such as that of Schied
et al. [2017], produce significantly less overblurring of shading de-
tails and achieve better results compared to our simple bilateral fil-
ter in Figures 6 and 7. We did not choose such a state-of-the-art
denoiser for our comparisons because we wanted to validate the ro-
bustness of our formulation against rough denoising techniques, i.e.
in the worst case.

Furthermore, the objective of recent research focusing on denoising
is to produce the best possible denoise [SN ] as a final result. Our
denoising formulation U × denoise[SN ]

denoise[UN ]
works on top of that. It uses

the information provided by the analytic U to prevent shading noise
and shading overblur. Thanks to this, our formulation ensures that,
for any given denoise() function, our result is always better. Hence,
even the most efficient direct-illumination denoisers can only be
improved by our formulation. Furthermore, our formulation with
an existing denoiser comes at negligible cost because the analytic
computation of U is usually cheap and the denoising of UN is ex-
actly the same as SN , so most computations can be factorized.

In summary, we directly benefit from existing (and future) effi-
cient direct-illumination denoisers and, reciprocally, our formula-
tion provides an improved way to use them that is simple to imple-
ment and comes at negligible overhead.



full-stochastic ratio denoised full-stochastic denoised ratio offline reference
SN U × SN

UN
denoise [SN ] U × denoise[SN ]

denoise[UN ]
S

Figure 6: Our ratio estimator. All results are rendered using 4 shadow rays per pixel and the denoiser is a bilateral filter. In contrast
to a classic full-stochastic estimator, our ratio estimator renders noise-free results in unshadowed regions of the image. Furthermore, the
denoising formulation of the ratio estimator only overblurs shadows and shading details remain sharp.

stochastic denoised
full-stochastic CV ratio (ours) full-stochastic CV ratio (ours)

blurred shading 7 shadow disappears 7
blurred shadow
sharp shading 3

Figure 7: Robustness for denoising. Estimators denoised by a σ = 4-pixel Gaussian. Denoising the estimators on a smooth surface
produces acceptable results. With this normal map, denoising the full-stochastic estimator blurs the shading details, denoising the control-
variate estimator removes the shadow because it spreads negative values from the error correction terms, and denoising the ratio estimator
produces the best result.



4 Our Real-Time Algorithm

In this section, we describe our real-time implementation dedicated
to our primary motivating case of efficiently shadowing area lights.

U UN SN

E denoise[SN ]
denoise[UN ]

U × denoise[SN ]
denoise[UN ]

Figure 8: Our real-time algorithm: computations, intermediate
terms and result. The figures are at 1920×1080 each; zoom in to
see stochastic sampling noise.

4.1 Main algorithm

Our main algorithm operates in five full-screen passes per frame, as
illustrated in Figure 8:

1. Compute the noise estimate E from WN = SN
UN

2. Denoise E itself via a 3× 3 box filter
3. Horizontally joint-bilateral filter SN and UN simultaneously
4. Vertically joint-bilateral filter SN and UN simultaneously and

produce a single output: final image U × denoise[SN ]
denoise[UN ]

5. Temporally integrate the final image via reverse reprojection

Filter passes 3 and 4 use an underlying Gaussian kernel with the
bilateral weights driven by plane differences between the G-buffer
position and normal at the center of the kernel and at the tap loca-
tion. This is a standard denoising practice.

We set the standard deviation of the Gaussian kernel proportional to
the noise estimate E. This allows the filter to grow in noisy regions
produced by large penumbrae without overblurring where shadows
harden, near surfaces and under small light sources. It also means
that our filter incurs almost no cost outside of the penumbrae. These
are innovations over previous real-time denoising approaches.

We take advantage of the need to denoise two signals by computing
them in the same pass with multiple render targets, which amor-
tizes the cost of the G-buffer memory access for bilateral filter co-
efficients. We also directly write the final image in the vertical pass
without explicitly computing the illumination-weighted shadow im-
age WN = SN/UN , to reduce output bandwidth requirements.
The visualizations shown in our result figures are for exposition
and do not exist in memory in the actual implementation.

The final temporal integration is the game industry’s standard prac-
tice for antialiasing [Salvi 2015]. It reduces all forms of image
aliasing, including any residual low frequency noise from shadow
undersampling.

4.2 Noise Estimate

Total-variation noise estimation The choice of estimator E is
key. At first, one might consider statistical variance of each neigh-
borhood, but this is actually a poor choice because it ignores order-
ing. For example, the variance of a comb function (impulse train)
and a step function can be the same, but in our application the comb

is probably a noisy shadow that should be blurred and the step func-
tion a well-sampled hard-shadow edge that should be preserved. So,
we instead designed an estimator that considers pixel ordering.

We compute E at each pixel x from the total variation of the color
gradient of WN = SN

UN
estimated by n path integrals across a set

of uniformly-angled lines {`} through x:

E[x] =
1

n

n∑
i

∫
`i

∣∣∣∣ ||d2WN [`i(t)]||
dt2

∣∣∣∣ dt. (29)

When both SN and UN are close to zero, arbitrarily let WN = 1.

E[x] is a robust measure for the amount of “wiggle” in the 2D
neighborhood. We use an asterisk shape of n = 4 lines with a
random per-pixel offset to avoid bias. The idea of total variation
as a noise estimate was first introduced by Rudin et al. [1992], and
has previously been used for denoising by solving a nonlinear op-
timization problem to minimize it. We instead use this measure to
drive a joint-bilateral filter and work with derivatives. As desired,
our method preserves both gradients and is much more efficient be-
cause it admits a closed-form implementation within a pixel shader,
whereas an iterative solver would create execution divergence.

Because we estimate E from randomly chosen paths, it is slightly
noisy itself. Rather than increasing n towards convergence, we sim-
ply box-filter the result. See the supplement for a GLSL implemen-
tation of the noise estimator.

SN E denoise[SN ] Final Image

Figure 9: Detail of denoising terms from the teapot scene.

Validation of our noise estimate The definition of E in Equa-
tion (29) ensures that only penumbrae and not stochastic sampling
of shading or materials are considered noise; after all, we have an-
alytic shading results and this term is only computing shadowing.
This point is subtle, but the implications for the difference from full-
screen denoising are profound in both potential quality and perfor-
mance, because the filter cost is dominated by bandwidth required,
which is proportional to the radius.

Figure 9 shows detail near the top knob from the teapot scene of
the numerator term undergoing denoising. Observe in the cen-
ter that the E estimate accurately identifies the penumbra. The
denoise[SN ] subimage is the denoised numerator. It shows that
no blurring (and thus, minimal cost) occurs outside of the penum-
bra. The umbra on the back of the teapot near the bottom of the
figure and the unshadowed highlight remain untouched. Yet, the
highlight is not noisy in the denoised weighted shadow or the fi-
nal image Figure 2(e) because that stochastic noise is identical in
the denominator denoise[UN ] and thus cancels. See Figure 10 for
more examples of accurate noise estimation.



4.3 Real-Time Area Lights

Heitz et al. [2016] give an efficient analytic solution suitable for
use as U , for unshadowed direct illumination from polygonal area
sources. We render a G-buffer and then compute U , UN , and SN

in a single deferred shading pass. The terms used to compute the
stochastic estimates are three textures that store the shadow ray ori-
gins (with start distance offset in the alpha channel), the shadow ray
directions (with end distance in the alpha channel), and the radiance
from the source along that ray. For a budget of N rays per pixel,
these textures are N times larger than full-screen images.

Following the deferred shading pass, we cast all of the shadow rays
in parallel. (Our implementation uses OptiX for peak performance;
FireRays and Embree are viable alternatives). Then, we add the cor-
responding radiance contribution at each pixel to SN if the shadow
ray is unoccluded.

The stochastic images UN and SN depend on the choice of rays,
i.e., points on the light to match with the fixed surface point at each
pixel. To compute these, we apply weighted multiple importance
sampling to the light surface and the BRDF at each pixel, with
a fixed ray budget per light per pixel. For each ray, we choose
BRDF (vs. light) sampling with probability proportional to the an-
alytic reflected illumination U . For BRDF samples, we choose
glossy (vs. matte) lobe sampling with probability proportional to
the glossy reflected illumination divided by the total reflected illu-
mination (again from U ). For light samples, we use the solid angle
sampling approach of Ureña et al. [2013]. To minimize clumping,
we make all of these choices in a low-discrepancy fashion in screen
space, so we use Halton sequences with 2, 3, 5, and 7 jittered by
a 2D screen-space blue noise distribution as in [Georgiev and Fa-
jardo 2016], for the four pseudo-random values required. See our
supplement for the GPU implementation and normalization terms.

5 Results

Figure 8 shows the key terms, including the implicit conditional
shadow image, for lights of increasing size casting shadows on
cubes, using our area source application. Note the low-discrepancy
pattern of the stochastic samples, and the preservation of texture
and edge detail since only shadows and not the final image are de-
noised. The high-noise estimate is correctly tightly restricted to
the noisy shadow edge for the left-most cube with the small light
source and simultaneously correctly grows to fill the penumbra for
the large source.

Figure 11 compares final images from two different state-of-the-art
approaches: our area-light shadowing method, and a nearly con-
verged reference image produced from 256 shadow rays per light
per pixel. The state of the art for real-time rendering is analytic
shading either with no shadows at all (left column) or with point
shadows from the center of the light (right column). Point shadows
can be produced by shadow maps or ray tracing; we use ray tracing
here to avoid shadow map filtering issues. Our result (second col-
umn) produced with two shadow rays per light per pixel is closer
to the reference image (third column) than these alternatives. The
primary remaining error in our result is slight overblurring of some
penumbrae due to aggressive denoising. Observe that material de-
tails, glossy highlights, and geometric edges are never blurred by
our technique.

The first row shows a living room lit by two area sources that sim-
ulate indirect light. There is a slightly blue area light on the ceil-
ing simulating reflected light that passed through the windows from
the sky, and a slightly orange area light light off to the camera’s
left simulating indirect light from artificial sources inside the room.

The extremely soft shadows throughout the room resemble ambient
occlusion. Compare this to the implausible result from point lights.

The second row shows a breakfast room lit by sunlight through the
window on the right. There is also a dim environment probe in this
room so that the backs of objects are not black. The shadows in
our result correctly soften with distance from the window and the
shading wraps around the curve of the chair and the pitcher.

The third row shows the Sponza atrium with the Lucy statue in it.
Lucy is backlit by a large area source the reflects in the glossy floor.
The “reflection” of the statue is actually only a shadow that masks
the area light analytic reflection, but due to the contrast may read
visually as indirect light. Again, the point light and unshadowed
analytic results are poor approximations compared to ours. The
varying smoothness of the marble and sharp edges of the light in
reflection are preserved because we only denoise the shadow, not
the light or material.

Table 1 gives timings for the GPU render passes of this scene. The
essential point is that it produces reasonable area light shadows in
milliseconds, versus seconds for convergence by stochastic meth-
ods. The GPU ray casting dominates our denoising and weighted
shadow computations. GPU ray casting is both very fast now and on
a strong acceleration trend (especially for shadow rays). As ray cast
cost decreases in the future, the net cost the passes in Table 1 for
high-quality area lights could soon be less than the cost of shadow
map generation and filtering for medium-quality point lights.

The fourth row shows San Miguel at sunset. The sky is modeled as
very large purple area light overhead and the sun is a smaller orange
light off the left of the frame. In the video, the sun sets and the sky
dims as the camera tracks. The sky shadows are extremely diffuse
due to the size of that source, yet are stable and noise free in our
result.

Table 1: Pass timings with a GeForce 1080 at 1920×1080 on
Sponza, using 16-bit float precision for all buffers and N shadow
rays per pixel.

Shade Pass Time Denoise Pass Time
Generate rays N × 0.36 ms Estimate noise 2.12 ms
OptiX ray cast N × 3.68 ms Horizontal bilateral 0.70 ms
Accumulate N × 0.10 ms Vertical bilateral 0.70 ms

6 Conclusion and Future Work

We have shown that our formulation, based on the ratio estimator,
allows us to combine real-time illumination techniques with ray-
traced shadows. We believe that a similar approach could be fruitful
for other problems:

Adding shadows from dynamic objects to precomputed irra-
diance maps Irradiance (a.k.a. light) maps contain precomputed
illumination that is typically precomputed via radiosity or path trac-
ing, or computed at runtime with very infrequent updates. As a re-
sult, dynamic objects such as animated characters do not correctly
shadow irradiance-mapped surfaces.

To correct this, consider a light map rendered with no final-bounce
shadowing to be a converged, shadow-less illumination image U ,
and compute stochastic final-bounce illumination with (SN ) and
without (UN ) shadows. Then, compute and apply the denoised
weighted shadow image to incorporate dynamic shadowing.

BRDF-aware denoising Separately denoising glossy and matte
illumination-weighted shadowing terms with separate noise esti-



mates and thus kernel sizes would avoid overblurring glossy shad-
ows at the cost of doubling the number of terms to be denoised.

Low-variance estimators for multiple-bounce path tracing,
photon mapping, or virtual point lights The weighted
“shadow” terminology follows from our explanation of the algo-
rithm in terms of direct illumination. But nothing in our deriva-
tion precludes its application to indirect illumination, or requires
the error in the U image to be brighter than the true result. We
can apply the technique with U as any noise-free approximation of
the illumination, UN as a stochastic estimator of U , and SN as a
stochastic estimator of the true result, so long as the error has only
low-frequency terms that are robust to denoising.

For a path tracer, we can compute U and UN inexpensively using
only direct illumination and let SN capture a noisy estimate of the
net global illumination. In this case,W will primarily contain mag-
nitudes greater than 1 as its role is increasing illumination.
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Figure 10: Validation of our noise estimate. Our noise estimate detects regions where the stochastic weighted-shadow image WN is noisy
and is insensitive if only SN is noisy. Thanks to this property, we use large denoising kernels only in shadowed regions of the image. The
figures are at 1920×1080 each; zoom in to see stochastic sampling noise.

no shadows our result offline reference point shadow

Figure 11: Our real-time algorithm: results with post-processed antialiasing, color grading, and tone mapping. All methods use analytic
shading of area lights. The three undesirable state-of-the-art results: no shadows, offline rendering with 256 shadow rays per light per pixel
(high quality but too slow), and point shadows via ray tracing or shadow maps. Our result in the second column provides a good balance
between performance and image quality. The figures are at 1920×1080 each.


