
INVITED: A Modular Digital VLSI Flow for High-Productivity
SoC Design

Brucek Khailany†, Evgeni Krimer†, Rangharajan Venkatesan†, Jason Clemons†, Joel S. Emer†^,
Matthew Fojtik†, Alicia Klinefelter†, Michael Pellauer†, Nathaniel Pinckney†, Yakun Sophia Shao†,

Shreesha Srinath‡, Christopher Torng ‡, Sam (Likun) Xi∗, Yanqing Zhang†, Brian Zimmer†

†NVIDIA, ‡Cornell University, ∗Harvard University, ^Massachusetts Institute of Technology

ABSTRACT
A high-productivity digital VLSI flow for designing complex SoCs
is presented. The flow includes high-level synthesis tools, an object-
oriented library of synthesizable SystemC and C++ components,
and a modular VLSI physical design approach based on fine-grained
globally asynchronous locally synchronous (GALS) clocking. The
flow was demonstrated on a 16nm FinFET testchip targeting ma-
chine learning and computer vision.

KEYWORDS
High-Level Synthesis, VLSI Design, SoC Design, Machine Learning

1 INTRODUCTION
As Moore’s law has provided an exponential increase in transistor
density in SoCs, the unique features we are able to include in SoCs
are no longer predominantly limited by chip area constraints. In-
stead new capabilities are increasingly limited by the engineering
effort and team sizes associated with digital design and verifica-
tion. As markets demand more performance, energy efficiency, and
specialization, SoC design effort is increasing each generation.

Today’s most complex SoCs contain billions of transistors and
take thousands of engineer-years to implement. They are primarily
designed using hand-coded Register Transfer Level (RTL) models
with hierarchy and replication for managing complexity. RTL mod-
els are verified for functionality and performance against golden ref-
erence models using fast RTL simulators and a mix of constrained-
random coverage-driven verification, directed tests, and formal
techniques. For physical design, hierarchy is used to divide these
large SoCs into manageable partition sizes that can be handled by
floorplanning and place-and-route tools. However, inter-partition
interfaces and timing closure for fully synchronous designs are still
a challenge, particularly in the presence of on-chip variation. To
address these challenges, we introduce two novel improvements to
a digital SoC design flow that reduce the large engineering effort
associated with implementing complex SoCs:

This research was, in part, funded by the U.S. Government, under the DARPA CRAFT
program. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government. Distribution Statement "A" (Approved
for Public Release, Distribution Unlimited).

ACM acknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3199846

• Object-Oriented High-Level Synthesis (OOHLS) based design:
We propose a C++ object-oriented library-based approach
to digital design. The OOHLS approach includes a communi-
cation abstraction and SystemC implementation for latency-
insensitive design [4];MatchLib, a library of commonly used
hardware components in SystemC and C++; and an HLS-
based flow for synthesizing SystemC/C++ models to RTL.

• Fine-grained Globally Asynchronous Locally Synchronous (GALS)
Clocking: We propose a GALS system to simplify hierarhi-
cal digital VLSI design. Per-partition clock generators and
correct-by-construction top-level asynchronous interfaces
eliminate top-level clock distribution and timing closure re-
quirements without substantial area or latency penalties.

In this paper, we describe these innovations in more detail as
part of an overall high-productivity C++-to-layout design flow. We
also demonstrate the suitability of the design flow to a real chip
by implementing a 87M transistor SoC testchip targeting machine
learning and computer vision in 16nm FinFET technology.

2 FRONT-END DESIGN METHODOLOGY
2.1 Background
Several approaches have recently emerged to raise the level of
design abstraction above RTL for reduced design effort. For example,
Chisel [3] and PyMTL [9] let hardware designers code in Scala
and Python by augmenting these programming languages with
hardware-specific features. Bluespec [11] provides a HDL which
uses triggered operations for sequencing and method-based module
interfaces. Generator-based approaches, such as Genesis2 [13] or
the Chisel Rocket Chip generator [2], reuse code by defining flexible
templates for hardware blocks that the designer can customize using
architectural parameters.

HLS has also emerged as another promising approach for rais-
ing the level of design abstraction [10]. HLS tools for ASIC design
such as Catapult (Mentor Graphics) or Stratus (Cadence) take de-
scriptions of hardware functionality in C, C++, or SystemC, then
run compilation and scheduling transformations to map to an opti-
mized RTL implementation. C++ can be coded in an untimed style
and SystemC can be coded in a “loosely-timed” style, with HLS
tools managing automatic pipelining and resource contention man-
agement, enabling design exploration tradeoffs without changing
source code. Even with recent advancements in HLS tools, adoption
at SoC design houses is still typically limited to simple feedforward
pipelines, such as small blocks for image or signal processing func-
tions. Connecting hardware blocks using memory or interconnect
structures still typically relies on RTL scaffolding. More wide-scale

https://doi.org/10.1145/3195970.3199846

Legend

C++ simulation

HLS Compilation

MatchLib
 (C++/SystemC)

Automatic RAM
mapping

Specification

Logic Synthesis

Verified SystemC
models

HLS-able
Architectural

Model
(C++/SystemC)

Verification
Testbenches

(SystemC)

HLS scripts
(TCL)

HLS-generated RTL

RTL cosim

FSDB trace

Power Analysis

Netlist

Syn scripts
(TCL)

Designer
inputs

Libraries

Intermediate
Files

Tools

Performance

Results and
Metrics

PowerArea

LI Channels
(SystemC)

Figure 1: Proposed OOHLS design methodology

adoption of HLS has been limited due to concerns about Quality
of Results (QoR), usability for complex pipelines and control struc-
tures, lack of formal C-to-RTL equivalence tools, and compatibility
with typical design and verification flows that support coverage
metrics and ECOs.

2.2 OOHLS Overview
Our goals with the development of an OOHLS flow were to lever-
age the familiarity of C++ and growing maturity of HLS tools,
embrace library-based design for its reuse and modularity advan-
tages, and address some of the shortcomings of existing HLS-based
flows. Figure 1 shows an overview of our proposed front-end design
methodology. Architectural models are coded using a mix of Sys-
temC and C++ code synthesizable by HLS tools [14]. Testbenches
are written using a mix of SystemC and C++ functions, but are free
to use arbitrary C++ code including common libraries such as STL
and Boost. The novel aspects from OOHLS are highlighted in green,
where we provide the following contributions to reduce design and
verification effort:

• Latency-Insensitive Channels: an on-chip communication
abstraction and implementation for latency-insensitive de-
sign [4] compatible with HLS tools that enables a fast and
accurate SystemC performance model.

• MatchLib (Modular Approach To Circuits and Hardware Li-
brary): a well-maintained object-oriented library of com-
monly used hardware components synthesizable by HLS.

Once architectural models are developed with instantiated LI
channels and MatchLib components, we use a more standard down-
stream flow. HLS tools run compilation, pipelining, and scheduling

optimizations that map loosely-timed SystemC models to cycle-
accurate RTL. Standard logic synthesis flows generate gate-level
netlists and area estimates. Power analysis tools are used to estimate
power dissipation.

One key advantage provided by OOHLS is support for native
C++ simulation of synthesizable architectural models with high
simulation speed and performance accuracy. Since C++ is already
commonly used for architectural simulators and testbenches, de-
signers are able to quickly ramp up on OOHLS compared to other
approaches built on less commonly-used programming languages.
OOHLS also enables code reuse of well-maintained libraries by
leveraging C++ language support for modularity, encapsulation,
and abstraction within MatchLib and LI channel implementations.
Compared to IP reuse at the RTL level, modularity and reuse can
be increased by using libraries at the C++ level. HLS tools allow
the decoupling of functionality in the architectural models from
design constraints and process information in HLS and synthesis
scripts. This decoupling also enables design space exploration with-
out changing source code or using generator-based approaches for
optimal pipelining.

Encapsulation of high Quality of Result (QoR) C++ coding styles
within MatchLib components also allows HLS-generated RTL to
have area, power, and performance more competitive with hand-
optimized RTL. While we do not expect state-of-the-art HLS tools
to necessarily outperform well-tuned hand-written RTL, prelimi-
nary experiments across a range of datapath modules and small
functional units show that comparable QoR (±10%) can be achieved
through appropriate code optimizations and design constraints.
With fixed design team resources and higher design team produc-
tivity, the proposed methodology can in fact lead to new archi-
tectural features being implemented that would have otherwise
been excluded due to time constraints. More time can then be spent
on researching and designing such new units or features in order
improve the overall area, power, or performance of a product com-
pared to a baseline flow using manual RTL design and verification.

2.3 Latency Insensitive channels
The ability to separately develop components within the proposed
OOHLS flow is essential. The Latency-Insensitive (LI) design para-
digm [4] proposes a methodology guaranteeing functional correct-
ness of the system with arbitrary communication delays between
components. As such, LI design is widely used in Networks-on-
Chip (NoCs) and interconnect protocols such as the ARMAdvanced
Extensible Interface (AXI) [1]. The LI design paradigm can naturally
be implemented using LI channels [6]. LI channels are a natural fit
for inter-unit communication in an HLS-based environment [12, 15].
Since HLS tools automatically pipeline units to schedule the design
under given constraints, unit latencies are not known a priori. LI
channels provide the flexibility of connecting separately compiled
units with arbitrary latency and throughput while maintaining func-
tional correctness on inter-unit interfaces. LI channels also provide
the extensibility of adding retiming registers on inter-unit interfaces
to ease timing pressure or aid floorplanning. Moreover, the physical
implementation of LI channels can include clock-domain crossing
logic or even packetize/depacketize logic to send data between a
producer and a consumer across a NoC.

2

(a) Combinational (b) Bypass

(c) Pipeline (d) Buffer

(e) Packetizer and DePacketizer

msg

valid

ready

msg

valid

ready

msg

valid

ready

msg

valid

ready

msg

valid

ready

P
ac

ke
ti

ze
r packet

valid

ready

packet

valid

ready
D

eP
ac

ke
ti

ze
r

msg

valid

ready

ProducerProducer ProducerProducerConsumerConsumer ConsumerConsumer

ProducerProducer ProducerProducerConsumerConsumer ConsumerConsumer

ConsumerConsumerProducerProducer

Figure 2: Connections channel implementations

To support LI channels within SystemC, we found the following
design characteristics to be important. First, the API must sup-
port complex datatypes in C++ included templated structs. Second,
for modularity, the implementation of channel ports within each
unit should not need to modified for different channel properties
(e.g. buffered versus combinational, blocking versus non-blocking
interfaces). Third, implementations should support performance-
accurate simulations in SystemC, where elapsed cycle counts during
C++ simulation are similar to HLS-generated RTL for performance
signoff. Finally, channel implementations should contain verifica-
tion hooks for perturbing timing in order to simulate the effects of
timing differences that will arise after HLS maps designs to RTL. Af-
ter surveying existing SystemC communication libraries provided
by HLS tool vendors, we determined that the above criteria were
not satisified. Therefore, we developed a new C++ API and library
called Connections. In this paper, we highlight three contributions
of Connections:

• A novel API that decouples ports from channels.
• Introduction of a sim-accuratemodel that enables performance-
accurate simulation.

• Enhanced verification support through stall injection capa-
bilities in the channel enabling designers to verify hard-to-
cover test cases.

Table 1: Proposed API of Connections, reflecting unified ter-
minals (ports) and different kinds of channels

Port Functions
In<T> Pop(), PopNB()
Out<T> Push(), PushNB()

Channel Description
Combinational<T> Combinationally connects ports
Bypass<T> Enables DEQ when empty
Pipeline<T> Enables ENQ when full
Buffer<T> FIFO channel
Packetizer<T>, DePacketizer<T> Network channels

The proposed API, summarized in Table 1, uses unified end-
point objects as input/output terminals (or ports) regardless of the
connecting channel type selected later. Such polymorphic ports
enable the functionality of individual components to be captured in
a reusable library. Connections supports communication between

components via a wide range of channel types ranging from combi-
national direct connections to packetizer/depacketizers used within
a network as shown in Figure 2. Designers can choose the appro-
priate channel type depending on context. For example, the same
on-chip memory module could be used in an accelerator as well
as a many-core processor by connecting it using a dedicated com-
binational/buffered channel to meet the bandwidth requirements
of the accelerator, while using an on-chip network to ensure the
scalability of a many-core processor.

Connections also supports performance-accurate simulation na-
tively in SystemC. Connections implements both a signal-accurate
model used during HLS and a sim-accurate model used for SystemC
performance simulations. The following code snippet of a producer
executing a non-blocking push illustrates the differences:

v a l i d . w r i t e (true) ; / / s e t v a l i d b i t
msg . w r i t e (b i t s) ; / / w r i t e da ta b i t s
wai t () ; / / one c y c l e d e l a y
v a l i d . w r i t e (f a l s e) ; / / c l e a r v a l i d b i t
s u c c e s s = ready . r ead () ;

In the code example, data bits are written to the channel when
the valid signal is set. With the signal-accuratemodel, in the next cy-
cle, the valid bit is cleared and ready bit is checked for success of the
operation. A wait statement is used to describe the delay between
set and clear operations of valid signal. Since the valid bit clear
occurs a cycle later, we refer to it as a delayed operation. Similarly,
a pop routine uses a delayed operation to clear the ready signal. In
the case of multiple ports used in a single loop, all wait statements
would be compiled and overlapped by the HLS scheduler. However,
a SystemC simulator would execute these wait statements sequen-
tially, which can at best result in an elapsed-cycles discrepancy and
at worst result in functional errors or deadlocks.

In the sim-accurate model we provide an alternative implementa-
tion of these handshake routines using non-synthesizable SystemC
mechanisms. We achieve accurate performance behavior in the sim-
accurate model by avoiding handling delayed operations within the
main execution thread. Instead, in the case of a producer, for a push
operation, data is written into an output buffer and a helper thread
is used to transmit data from all output buffers with valid data.
Similarly, on the consumer side, a helper thread is responsible for
receiving data. For a pop operation, data is consumed from an input
buffer. Thus, the delayed operations of handling ready and valid
signals are eliminated from the main thread of execution, allowing
the model to maintain cycle accuracy.

Figure 3 depicts measured cycles per transaction in an arbitrated
crossbar design with a varying number of ports using different
approaches. For the signal-accurate model, since the source of error
for measured cycles is in IO port routines, the error grows with
the number of ports. However, the sim-accurate model matches
measured RTL throughput for all configurations.

Connections also contains built-in support for assisting func-
tional verification of SystemC models. System-level verification is
a challenging task, requiring rigorous examination of all possible
timing interactions between different blocks. Leveraging the advan-
tages of LI design, we add an option to inject random stalls into any
channel by randomly withholding valid. Using this technique, mod-
ified timing of unit interactions can be created without changing

3

0

5

10

15

20

2 4 8 16

C
YC

LE
S

P
ER

 T
R

A
N

SA
C

TI
O

N

NUMBER OF INPUT/OUTPUT PORTS

RTL

sim-accurate

signal-accurate

Figure 3: Simulated SystemC cycles per transaction for an
arbitrated crossbar with varying number of ports
any design or testbench code. Such testing assists in quickly cov-
ering complex corner case scenarios that otherwise would require
significant dedicated test development effort.

2.4 MatchLib
Inspired by object-oriented libraries in software engineering, we en-
vision that a well-maintained library of commonly used hardware
components will enable significant design productivity benefits.
MatchLib1 is the proposed hardware library for implementing this
OOHLS methodology vision. A list of currently implemented com-
ponents is presented in Table 2. All components are classified as
either C++ functions, C++ classes, or SystemC modules. C++ func-
tions are untimed, process one or more inputs, and produce one or
more outputs. They are generally used to describe datapath func-
tions and are often called from other parts of MatchLib. C++ classes
are objects that include state and untimed methods or functions
that read and/or update the state. For example, the mem_array
class includes an array of data as internal state with read and write
methods for accessing or updating the state. Similarly, the arbiter
includes state for storing priorities and a pick method for selecting
among its inputs and updating its state. Finally, SystemC modules
are used for hardware primitives with feedback or clocked behavior
more easily described within clocked processes. SystemC modules
are coded in a loosely-timed manner where details of hardware
pipelining can be left to the HLS tool.

One advantage provided by OOHLS is simple abstractions for
common functions and data structures that enable designers to
easily achieve good QoR compared to naively written synthesizable
C++ code. MatchLib’s preoptimized component implementations
allow designers to focus on higher level algorithmic decisions. As
an example, we discuss a case study of a crossbar implementation.
Consider a N-element crossbar modeled in C++ as a permutation of
data elements between an input and output array. A naive approach
would loop over elements in the input array and write elements to
the output array using the following implementation. In this case,
src is a loop index, dst is a N-element array indicating which output
each src input should be routed to, and out is an output port with a
write method. We refer to this as a src-loop implementation:

for (in t s r c =0 ; s r c <LANES ;++ s r c) {
out [d s t [s r c]] . w r i t e (i n [s r c]) ; }

1MatchLib is currently shared with a limited audience of collaborators from industry
and academia. As part of our future work, we are considering making some or all of
the library available as an open source project.

Table 2: MatchLib components
Component Description

C
++

fu
nc

ti
on

s 
Float Floating-point arithmetic functions (mul, add,

mul-add)
Crossbar N-to-N switch w/ configurable bitwidths
Encoder/Decoder 1-hot encoders and decoders

C
++

cl
as
se
s



FIFO Configurable FIFO
Arbiter 1-out-of-N round-robin selector
Mem_array Abstract memory class
Vector Vector helper container w/ vector operations
Connections Modular IO supporting LI channels
Arbitrated Crossbar Crossbar w/ conflict arbitration & queuing
Arbitrated Scratchpad Banked memories w/ arbitration & queueing
Reorder Buffer Queue w/ in-order reads, out-of-order writes

Sy
st
em

C
m
od

ul
es



Serializer/Deserializer N-bit packets to/from M cycles of (N/M)-bit
packets

Cache Configurable linesize, capacity, associativity
Scratchpad Banked memory array with crossbar
SFRouter Store-and-Forward NoC router
WHVCRouter Wormhole NoC router with virtual channels
AXI Components Master/Slave Interfaces & bridges for AXI in-

terconnect

Alternatively, in the following example, dst is a loop index and
src is a N-element array indicating which input each output should
be routed from. We refer to this as a a dst-loop implementation:

for (in t d s t =0 ; ds t <LANES ;++ d s t) {
out [d s t] . w r i t e (i n [s r c [d s t]]) ; }

Naively, both C++ implementations may appear to have identical
behavior with a similar number of array accesses and complexity.
However, HLS can generate significantly different RTL. The src-loop
implementation requires priority decoders to control the generated
multiplexers, since multiple inputs could be selecting the same
output destination and the higher index would have priority. This
design creates an undesirable dependency path from all dst[src]
signals to all outputs. In comparison, the dst-loop implementation
will only have a path from each src[dst] control input to each corre-
sponding output port. Moreover, since the dst-loop implementation
has fewer operations that must be scheduled after loop unrolling by
HLS, significantly shorter compilation times and better scalability
to larger N is observed.

Experimenting with a 32-lane 32-bit crossbar, we measured a
25% area penalty for the src-loop implementation over the dst-loop
implementation in Catapult HLS. Although this example is triv-
ial, we have observed similar behavior across many components
from Table 2. Our results emphasize the advantage of encapsulat-
ing efficient C++ coding-style optimizations within MatchLib for
achieving good QoR from HLS tools.

3 BACK-END DESIGN METHODOLOGY
After running through the front-end flow shown in Figure 1, gate-
level netlists can be mapped to layout using standard back-end
tool flows (floorplanning, automatic place-and-route, clock-tree
syntheis, static timing analysis, and physical verification signoff).
To manage the large design sizes and replication typical of today’s
large SoCs, unit-level netlists are grouped into a hierarchy of parti-
tions. Partitions are composed of place-and-routed standard cells
and islands of macro blocks such as SRAM for caches. Splitting
large designs into smaller partitions can make back-end tool flows
manageable, reduce runtime, enable physical reuse, and allow de-
sign teams to parallelize their work on physical design closure for
each partition. However, with these productivity advantages come

4

Figure 4: Fine-grained GALS pausible clocking

tradeoffs such as more top-level timing signoff on inter-partition
interfaces and top-level clock distribution challenges.

3.1 Fine-grained GALS Clocking
To close timing on inter-partition interfaces, it is typical to use
synchronous clocking from a single on-chip or off-chip clock source.
This process involves both global clock distribution for sending
a balanced clock to each partition with additional delay elements
for fine tuning. Synchronous timing paths which span multiple
partitions must close timing across many setup and hold corners,
which can be challenging in the presence of on-chip variation.

As an alternative, we propose a novel clocking approach based
on fine-grained GALS clocks, shown in Figure 4. Each partition
has its own self-contained small local clock generators. Local adap-
tive clock generators are able to better track local power supply
noise [7] to reduce design margin. All communication between
partitions pass through Pausible Bisynchronous FIFOs [8]. These
FIFOs allow low-latency, error-free clock domain crossings that
work by integrating the synchronizers and clock generators. With
this clocking scheme, the complexity of top-level clock distribution
is completely eliminated from the SoC. Furthermore, correct-by-
construction top-level timing can be achieved with asynchronous
handshake signals passing between partitions, greatly simplifying
timing closure effort compared to synchronous interfaces. In our
implementation, all asynchronous interfaces are implemented as
LI channels and can interface with Connections ports from HLS-
generated RTL. Although we incur a small area penalty for local
clock generators and pausible bisynchronous FIFOs, we estimate
this overhead to be less than 3% for typical partition sizes.

4 CASE STUDY: PROTOTYPE SOC
To study the productivity benefits of our methodology on a real
design, we developed an 87M-transistor Machine Learning (ML)
prototype SoC using OOHLS and fine-grained GALS clocking. The
design process helped drive the flow development and provided a
testbed for experimenting with performance modeling, fine-grained
GALS, and benefits to productivity. Table 3 lists the EDA tools used
for the project. The design was implemented in a TSMC 16nm
FinFET technology node with a signoff clock frequency of 1.1 GHz
in a typical process corner, typical voltage, and high temperature.

Table 3: Design Tools
HLS compiler Mentor Graphics Catapult HLS v10.0a
C++ Coverage tool Testwell CTC++ 8.1
Verilog simulator Synopsys VCS mx-2015.09
Logic Synthesis Synopsys Design Compiler Graphical v2013.12
Place and Route Synopsys ICC2 v2014.12

RISCV
Rocket
Core A

X
I B

u
s

Spatial Computation Array

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

PE
R

I/O

C
o

n
tr

o
l

Datapath

Scratchpad

Processing Element

Router Interface

SerDes

Global
Memory

Control

Bank0 Bank1 BankN

Crossbar LI Channels

MatchLib

Figure 5: Prototype SoC

Figure 5 shows the overview of the prototype SoC. It includes
a RISC-V processor [2], a ML accelerator similar to a more pro-
grammable Eyeriss [5], and a banked on-chip global memory. The
programmable ML accelerator supports applications such as con-
volutional neural networks, K-means clustering, and other image
processing workloads. It consists of a spatial array of processing
elements (PEs), connected via a dedicated Network-on-Chip (NoC).
Each PE contains a scratchpad, vector datapath unit, control unit,
and router interface logic. Each PE is programmed to support ex-
ecution of different compute kernels such as vector multiply, dot-
product, and reduction. The RISC-V processor acts as a global con-
troller, initiating the execution by configuring the control registers
in PE and global memory and orchestrating the data transfer across
different levels in memory hierarchy—(i) PE scratchpad, (ii) global
memory, and off-chip. The prototype chip is attached to a daugh-
tercard, which is connected to an off-the-shelf FPGA prototyping
system attached via PCI to a PC for testing and demonstration.
OOHLS Design: Using the OOHLS methodology (Figure 1), we
developed synthesizable SystemC architecture models for all com-
ponents of the prototype SoC (except for the Chisel-generated
RISC-V processor Verilog) and corresponding testbenches in Sys-
temC. Many units of the prototype SoC were designed by directly
instantiating theMatchLib components shown in orange in Figure 5,
while Connections and various MatchLib helper functions and class
containers were used throughout the design. In the PE, we used the
MatchLib vector library to design the datapath unit, Serializer/De-
serializer in the router interface, and arbitrated scratchpad from
MatchLib to design the scratchpad memory. In the Global Mem-
ory, the different memory banks were designed using our abstract
memory class, mem_array, and were connected to the multiple
input/output ports using the MatchLib crossbar. For communica-
tion, we used the Connections implementation of LI channels to
interconnect different units inside the PE and the Global Memory,
and used WHVCRouter to design the NoC.

5

15

20

25

30

35

0.50% 1.00% 1.50% 2.00% 2.50% 3.00%

SI
M

U
LA

TI
O

N
 W

A
LL

 T
IM

E
SP

EE
D

U
P

(S
ys

te
m

C
 v

s
R

TL
)

ELAPSED CYCLES ERROR (SystemC vs RTL)

Figure 6: Performance accuracy of SoC-level tests

Back-end Design: For VLSI implementation, we split the design
into five unique digital partitions: 15 replicated PEs, 1 left Global
Memory, 1 right Global Memory, 1 RISC-V, and 1 I/O partition. Fine-
grained GALS was implemented with a local clock generator and a
NoC router per partition. Asynchronous router-to-router interfaces
included a pausible bisynchronous FIFO for low-latency error-free
crossing. With the small partition sizes and fine-grained GALS
approach, we were able to implement a 12-hour RTL-to-layout
turnaround time. This enabled dozens of daily iterations during the
march-to-tapeout phase of the project to tweak floorplans, timing
constraints, and tool settings until the design converged.
Verification: OOHLS benefited verification productivity in multi-
ple ways. Reuse of pre-verified MatchLib components allowed us to
focus our effort on integration and architectural verification. Stall
injection mechanisms in Connections helped quickly find timing-
interaction corner cases. C++ models and advanced debug support
in MatchLib helper functions enabled fast debug by quickly locating
bugs. Standard C++ code coverage tools were used to identify test
coverage holes. RTL simulations were primarily used to test scaf-
folding aroundHLS-generated blocks such as clock domain crossing
FIFOs and sanity-check full-system simulations. Design and verifi-
cation effort was tracked closely during the project. We estimate
that by leveraging OOHLS, we were able to achieve a productivity
of between 2K-20K gates (NAND2 equivalents) per engineer-day on
unique unit-level designs, estimated to be significantly higher than
a baseline RTL-based design methodology. Future work is needed
to study quantitative improvements in OOHLS design productivity
versus contemporary approaches, since it is challenging to compare
across different designs or engineering teams.
Performance Modeling: We primarily verified SoC performance
using the sim-accurate model in Connections. This approach has
several benefits: (i) it eliminates the need to maintain a separate ar-
chitectural performancemodel, thereby reducing design effort; (ii) it
accurately captures the effect of data and control flow dependencies
on performance; and (iii) it enables significant simulation speed-up
compared to cycle-accurate RTL. Figure 6 shows the accuracy of
our performance model for six SoC-level tests. Tests were run on
both SystemC and HLS-generated RTL models, comparing elapsed
cycles and wall-clock runtime. For each test, SystemC speedup
(with the sim-accurate LI channels model) versus RTL is shown on
the Y axis. The X axis shows the relative difference in elapsed cycles.
We observed a 20 − 30× wall run time reduction when using the
SystemC-based performance model with performance inaccuracy
below 3%. We attribute the innacuracies to unit pipeline latencies
not included in the SystemC models.

CONCLUSIONS
Two novel design methodology innovations for digital SoCs were
described: An object-oriented HLS-based design flow and a fine-
grained GALS clocking methodology. These innovations were inte-
grated as part of an overall C++-to-layout end-to-end design flow
and applied to an 87M-transistor prototype SoC for machine learn-
ing. As part of our future work, we intend to continue to improve
and enhance OOHLS-based design and MatchLib and apply the SoC
design flow to future SoC development projects.

ACKNOWLEDGMENTS
The authors thank additional members of the NVIDIA team who
contributed to the architecture and testing of the RC17 testchip,
including Bill Dally, Christopher Fletcher, Stephen Keckler, Angshu-
man Parashar, and Stephen Tell. We also thank Ben Keller, Ziyun
Li, Antonio Puglielli, and Gopalakrishnan Srinivasan, who con-
tributed to design methodology research during their internships
at NVIDIA. We thank Bryan Bowyer and the Catapult engineering
team at Mentor Graphics who helped provide useful feedback about
LI channels and MatchLib. Finally, the authors would like to thank
our collaborators at Harvard University and sponsors at DARPA
for many insightful discussions and feedback about OOHLS and
MatchLib under the CRAFT program.

REFERENCES
[1] AMBA ARM. 2010. Axi protocol specification (rev 2.0). (2010).
[2] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio, H. Cook,

D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar, B. Keller, D. Kim, and J. Koenig.
2016. The Rocket Chip Generator. Technical Report UCB/EECS-2016-17. University
of California at Berkeley.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J. Wawrzynek,
and K. Asanovic. 2012. Chisel: Constructing Hardware in a Scala Embedded
Language. In DAC’12. 1212–1221.

[4] L.P. Carloni, K.L. McMillan, A. Saldanha, and A.L. Sangiovanni-Vincentelli. 1999.
A methodology for correct-by-construction latency insensitive design. In DAC’99.
309–315.

[5] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze. 2016. Eyeriss: An Energy-Efficient Re-
configurable Accelerator for Deep Convolutional Neural Networks. In Proceedings
of the International Solid State Circuits Conference. 262–263.

[6] K.E. Fleming, M. Adler, M. Pellauer, A. Parashar, Arvind, and J.S. Emer. 2012.
Leveraging latency-insensitivity to ease multiple FPGA design. In Proceedings
of the ACM/SIGDA 20th International Symposium on Field Programmable Gate
Arrays (FPGA). 175–184.

[7] D.A. Kamakshi, M. Fojtik, B. Khailany, S. Kudva, Y. Zhou, and B. Calhoun. 2016.
Modeling and Analysis of Power Supply Noise Tolerance with Fine-grained GALS
Adaptive Clocks. In IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC).

[8] B. Keller, M. Fojtik, and B. Khailany. 2015. A Pausible Bisynchronous FIFO for
GALS Systems. In IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC). 1–8.

[9] D. Lockhart, G. Zibrat, and C. Batten. 2014. PyMTL: A Unified Framework
for Vertically Integrated Computer Architecture Research. In Proceedings of the
International Symposium on Microarchitecture (MICRO). 280–292.

[10] M.C. McFarland, A.C. Parker, and R. Camposano. 1990. The high-level synthesis
of digital systems. Proc. IEEE 78, 2 (1990), 301–318.

[11] R.S. Nikhil and K.R. Czeck. 2010. BSV by Example: The Next-generation Language
for Electronic System Design. Bluespec.

[12] L. Piccolboni, P. Mantovani, G. Guglielmo, and L.P. Carloni. 2017. COSMOS:
Coordination of High-Level Synthesis and Memory Optimization for Hardware
Accelerators. ACM TECS 16, 5s (2017), 150.

[13] O. Shacham, M.Wachs, A. Danowitz, S. Galal, J. Brunhaver, W. Qadeer, S. Sankara-
narayanan, A. Vassiliev, S. Richardson, and M. Horowitz. 2012. Avoiding game
over: Bringing design to the next level. In DAC’12. 623–629.

[14] SystemC Synthesis Working Group. 2016. SystemC Synthesis Subset Standard
v1.4.7. Technical Report. Accellera.

[15] R. Zhao, G. Liu, S. Srinath, C. Batten, and Z. Zhang. 2016. Improving high-level
synthesis with decoupled data structure optimization. In DAC’16. 137–142.

6

