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Abstract
We describe a new technique for obtaining a spatially varying BRDF (svBRDF) of a flat object using printed fiducial markers
and a cell phone capable of continuous flash video. Our homography-based video frame alignment method does not require
the fiducial markers to be visible in every frame, thereby enabling us to capture larger areas at a closer distance and higher
resolution than in previous work. Pixels in the resulting panorama are fit with a BRDF based on a recursive subdivision
algorithm, utilizing all the light and view positions obtained from the video. We show the versatility of our method by capturing
a variety of materials with both one and two camera input streams and rendering our results on 3D objects under complex
illumination.

CCS Concepts
•Computing methodologies → Reflectance modeling; Computational photography; Texturing;

1. Introduction

Artistic expression in the creation of virtual objects has grown
tremendously in recent years thanks to research in computer gener-
ated geometry, lighting, and materials. However, many real-world
surfaces exhibit irregular variations in texture and reflectance that
are unique and difficult to reproduce algorithmically. Examples in-
clude organic materials such as specific pieces of wood or gran-
ite, hand-made surfaces such as paintings, and well-worn objects
with particular patterns of dirt, scratches, and aging effects. High-
quality results can be achieved when these missing details are filled
in manually by artists, but doing so requires significant expertise,
well-sourced input images, and hours of manual adjustment. Alter-
natively, it is also possible to obtain high-quality materials through
direct capture, but the capture process is also cumbersome due to
the specialized equipment typically required.

There are several ways to represent opaque surface reflectances
using data derived from the real world. The most common exam-
ples are artist-designed materials, direct measurements of real ob-
jects, and parametric reflectance models. Artist-designed materials
are represented by a set of layers derived from images, wherein
each layer describes a component of the reflectance such as the
diffuse color, specular behavior, or normal displacement. The pro-
cess for creating these materials typically involves sourcing a high-
quality photograph of a nearly-flat object, and then recombining
filtered versions of the photo with procedurally-generated noise
layers [Ble13, Ble05]. To obtain a realistic result, artists must ex-
pend significant time tweaking parameters via trial-and-error. Li-
braries of materials, called “material packs” are also widely avail-

able for purchase [Pri16], demonstrating both the value of using
realistic material models and the effort required to create them.
Hand-designed material models generally do not accurately cap-
ture the actual reflectance behavior of the real-world material that
they are based on. Rather they mimic the real material’s appear-
ance, which is sufficient for many rendering applications.

The most complex and complete representations of real materi-
als come from direct measurement. The surface appearance of the
object is measured over a densely sampled hemisphere of light and
view angles, using a device such as a gonioreflectometer, and these
data are interpolated at render time from a lookup table [Mat03].
The measurements span a six dimensional space — azimuth and
elevation angles for both the camera and light source and 2D co-
ordinates on the surface — called a spatially varying bi-directional
reflectance distribution function (svBRDF) [NRH∗77]. Obtaining
a measured svBRDF is a time-consuming and memory-intensive
process that requires a sample to be brought into a lab with con-
trolled lighting and specialized equipment. Not only are there very
few measured svBRDFs available, but this high level of physical
accuracy is also generally excessive when only visually plausible
images are required.

In many cases the physical plausibility of the material is impor-
tant, but the reflectance behavior is simple enough it can be ac-
curately represented by a parametric model with only a few pa-
rameters. In this case a parametric BRDF model can be created
either by choosing arbitrary parameter values, navigating the space
of BRDFs with a user interface, or fitting a model to observations
of a real object. Well-designed BRDF models adhere to physical
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Figure 1: Four materials captured using our method and rendered with Mitsuba. Objects are illuminated by the Uffizi environment map
(courtesy of the USC Vision & Graphics Lab) along with two point light sources. The left two materials were captured with one camera,
and the two on the right were captured with two cameras. From left to right: green faux leather, blue damask fabric, red velvet lamé, and
wrapping paper. Inset image shows the average color per pixel as described in section 3.2.1.

limitations such as conservation of energy and reciprocity, without
requiring the significant memory overhead of a measured BRDF.

We propose a method for allowing artists to create paramet-
ric svBRDF representations of nearly-flat surfaces using simple
printed fiducial markers and video obtained from a mobile phone
with a flash that can be constantly illuminated. Our technique does
not require any specialized equipment and delivers a representation
of the scanned material that is suitable for many artistic applica-
tions. We demonstrate the versatility of our method by reproduc-
ing a variety of spatially varying materials including leather, fabric,
metal, wood, paint, and tile. Figure 1 shows four example materials
captured with our method and rendered using Mitsuba [Jak10].

2. Related Work

Generalized surface capture encompasses a wide variety of materi-
als and techniques. Some examples include the Bi-directional Tex-
ture Function (BTF) for materials with significant normal variation
[DVGNK99], the Bi-directional Scattering Distribution Function
(BSDF) for materials with transparency or translucency [BDW81],
and the Bi-directional Reflectance Distribution Function (BRDF)
for homogeneous and relatively flat opaque materials [Nic65]. In
this paper we focus on the spatially varying BRDF (svBRDF), a
particular variant of the BRDF also introduced by Nicodemus et
al. [NRH∗77] that allows for different BRDF parameters at each
point on the captured surface.

2.1. Sparse svBRDF Acquisition

A complete sampling of the six-dimensional svBRDF may be per-
formed using a spatial gonioreflectometer [MLH02], although this
is a lengthy and data-intensive task. Efforts have been made to sim-
plify this process while still accurately capturing all the necessary
variation in surface reflectance. Dong et al. [DWT∗10] proposed a
hand-held array of LEDs mounted to a camera, along with inter-
polated svBRDF estimation based on manifold bootstrapping. Ait-
tala et al. [AWL13] used structured light with basis illumination to
estimate reflectance. Francken et al. [FCMB09] also obtain high-
quality surface normals and gloss estimation from structured LED
lighting. Similarly, Ghosh et al. [GCP∗09] used structured LEDs
with polarizing filters to estimate the reflectance of spherical ob-
jects. Zhou et al. [ZCD∗16] optimized a sparse blending of sparse

basis BRDFs with a limited number of input views. In another min-
imalist setup, Xu et al. [XNY∗16] obtain uniform isotropic BRDFs
from the MERL database with a two-shot capture system.

There have also been a variety of capture systems that employ
polarized light to separate the diffuse and specular components
[MHP∗07, GCP∗10, RRFG17, TFG∗13]. Chen et al. use a linear
light source on an electronic rig to estimate anisotropic BRDFs,
and Ren et al. [RWS∗11] proposed a portable setup involving a
static mobile phone, a hand-held linear light source, and a collec-
tion of carefully selected materials with known BRDFs. However,
all of these methods still require expensive or highly specialized
equipment for capture.

2.2. Appearance Matching

Another body of work focuses on tools to help artists match the
appearance of a material through user input or by simplifying the
material representation. Dong et al. [DTPG11] estimate a simpli-
fied model svBRDF for a single texture image and allow users
to adjust the behavior of regions of similar appearance until they
are satisfied. Di Renzo et al. [DRCP14] produce a layered BRDF
plus texture image based on user edits in material space. Xuey et
al. [XWT∗08] create a static image with material weathering effects
for a single lighting environment. Haro et al. [HE03] also produce
a static image with a single light source “baked in” to the material
appearance. All of these tools circumvent the need for capturing
multiple lighting and viewing angles in favor of simplified appear-
ance estimation.

Aittala et al. [AWL15] combined texture synthesis from a no-
flash photo with reflectance capture from a single flash photo to
produce an svBRDF and normal map, however their technique was
limited to highly regular, repeated textures. In subsequent work
they replicated these results using a single flash image and deep
learning techniques, but with less consistent results [AAL16]. Most
recently, Li et al. [LDPT17] also used deep learning to estimate the
ambient lighting and thereby generate a diffuse, specular, and nor-
mal map decomposition of a single arbitrary image.

2.3. Image-Based Approximation

Our work is most closely related to a group of approaches that ap-
proximate a full svBRDF model using a limited set of input images.
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Wang et al. [WZT∗08] produce anisotropic svBRDFs by synthesiz-
ing a spatially varying Normal Distribution Function (NDF) from
sparse light positions. Zickler et al. [ZREB06] estimate an isotropic
svBRDF with known geometry using a fixed camera with a mov-
ing point light source in a controlled lighting environment. Gold-
man et al. [GCHS10] use a simplified studio setup with multiple
high resolution photographs as well as BRDF clustering to esti-
mate the svBRDF of an object. Lensch et al. [LKG∗03] also used
BRDF clustering, and their iterative subclustering method is similar
to ours, although our capture setup is much simpler. Similarly, Zhou
et al. [ZWT13] estimate an isotropic svBRDF for an arbitrary-
shaped object by employing structure from motion (SFM), a ring
light source, and a linear combination of basis BRDFs. Two ap-
proaches have been proposed for estimating large scale geometry,
specularity, and diffuse albedo based on input from a light field
camera [WCER16] and a small number of rendered input images
[HS17].

In the space of mobile phone capture, Thanikachalam et al.
[TBF∗17] estimated reflectance from video and optimized the sam-
pling density and capture path, but with very low resolution out-
put. The approach proposed by Hui and colleagues [HSL∗17] re-
quires capturing several images of a texture sample from different
viewpoints with the flash providing illumination and then using a
dictionary-based approach to select a BRDF that matches the obser-
vations of each pixel. They provide an elegant proof showing that it
is insufficient to fit a BRDF using only observations where the light
is collocated with the camera, as is the case for a cellphone, but by
using a dictionary they are able to still obtain plausible results for
cases where the subject materials match an example stored in their
library. We overcome this limitation in our approach by allowing
the user to add a second cellphone camera to obtain observations
from other perspectives that are not collocated with the light. This
approach allows us to fit a BRDF model directly to the data so that
each pixel’s appearance is not restricted to an existing dictionary
of materials. However, even when only one cell phone is used, our
initialization strategy still allows the fitting process to obtain rea-
sonable results.

Finally, Riviere et al. [RPG16], also demonstrated svBRDF cap-
ture using mobile phone video. Our proposed method improves on
their capture system in two ways. First, our unique video frame
alignment technique allows us to capture reflectance data from a
much closer distance (10cm vs 50cm) and does not require the en-
tire sample to be visible in each input image. By stitching together
many partial observations from a closer view distance, we can ob-
tain very high resolution results even for large samples. We have
found that high resolution is generally required to obtain good re-
sults when rendering the svBRDFs on objects in 3D scenes, partic-
ularly for materials with fine-scale specular features such as gold
thread or metallic flakes. The closer viewing distance also produces
more oblique lighting and viewing angles and a brighter specular
highlight, allowing us to accommodate capture under more varied
ambient lighting conditions. We captured most of our data sets un-
der approximately 400 LUX ambient illumination (compared to 40
LUX by Riviere et al.). Second, our method does not require either
radiometric calibration of the device nor the inclusion of a specific
color chart at capture time. Our fiducial markers are less than 2cm
square and can be printed anywhere and easily carried in a wallet.

These differences expand the possible use cases of casual svBRDF
estimation to more varied lighting environments and more accessi-
ble tools for capture.

3. Approximate svBRDFs With Mobile Phone Video

Our proposed capture and fitting technique requires only one or two
cell phone cameras with continuous flash video capability and a set
of four small fiducial markers which may be printed on standard
copy paper. Using these commonly available tools, we are able to
fit an svBRDF to mostly-flat, opaque surfaces that have spatially
varying reflectance and uneven surface texture.

We first place the fiducial markers around the area of interest and
capture a short, hand-held flash video at a relatively fixed distance
over the object surface. We then align and warp the resulting video
frame images into a single panorama in the global coordinate space
with observations from multiple light and view locations for each
pixel. In the second step, we cluster the pixels by similar appear-
ance, fit a BRDF to the clusters, and then recursively sub-divide
and fit a BRDF and normal vector displacement to each sub-cluster
until the residual fit error at each pixel is sufficiently low.

Our output is a high-resolution svBRDF based on the Ward
model [War92] that can be easily applied to 3D objects for ren-
dering in applications such as Mitsuba. Additionally, because we
do not require the fiducial markers to be visible in each frame, we
can capture larger regions at a closer distance than previous work,
enabling us to obtain a high-resolution output with a more well-
defined specular lobe in each sample image.

3.1. Alignment and Pose Estimation

Aligning the video frames is essentially a panorama stitching prob-
lem, but for our application the quality of the alignment must be
very precise. Although a traditional panorama need only avoid no-
ticeable seams and distortions, in our case every pixel location
needs to be correctly matched across all light and view positions
to avoid spurious correlations between lighting and appearance.

The use of a mobile phone camera for this task creates several
difficulties that must be overcome for good quality results. Mobile
phone camera lenses are usually wide-angle, wide-aperture, and
fixed focal length, with a very narrow depth of field (DOF) and sig-
nificant barrel or moustache distortion. Traditionally, the lens dis-
tortion would be corrected using a checkerboard calibration tech-
nique [Zha00], but such techniques require either a wide DOF or a
relatively large viewing distance so that the entire checkerboard is
in focus for all rotated camera positions. Furthermore, in our case it
is necessary to use auto-focus to accommodate the hand-held cam-
era motion, but lens "breathing" effects are known to cause lens
distortion to vary dramatically across different focus states. Stitch-
ing the panorama, therefore, requires solving for both the camera
pose and the current lens distortion for every video frame indepen-
dently.

One possible solution for correcting the distortion would be to
use a parametric lens model in conjunction with a homography for
the camera pose. However, in practice we found that typical low-
order models with two or three parameters were not sufficiently
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Alignment Parameters
Scale SURF SIFT Max. Dist. Min. Inliers

0.25 1,200 3,000 (1,200) 20 pixels 20 points
1 4,800 12,000 (4,800) 60 pixels 60 points

Table 1: The parameters used for the coarse and fine alignment
steps. Column 1 shows the scale of the input image (coarse or fine).
Columns 2 and 3 show the number of SURF and SIFT features ex-
tracted from each image (the number of selected SIFT features for
matching is shown in parentheses). Columns 4 and 5 show the max-
imum distance between matched inlier points and the minimum
number of inlier points for the MLESAC procedure, respectively.

accurate for our application, and higher-order models with up to
seven parameters were cumbersome, slow to converge, and eas-
ily derailed by local minima. Another solution is to include fidu-
cial markers to establish known physical locations from which one
might compute a homography for each frame. To undistort the en-
tire image, the markers would need to be placed on the outside
edges of the captured area and all the markers would need to be
visible in each video frame. Even for a relatively small sample of
10x10 cm, this arrangement requires a capture distance of at least
30 cm. However, we found that a capture distance closer to 10-
15 cm was more ideal because it produces more oblique lighting
and viewing angles, provides a brighter specular highlight, and al-
lows for a higher resolution image of the surface for BRDF fitting.

In order to capture larger areas at a close distance, we instead
perform a feature-based alignment for each frame using multiple
overlapping homographies to obtain a piece-wise linear approxi-
mation of the lens distortion, as explained in section 3.1.4. We es-
tablish a global coordinate system by placing four printed fiducial
markers at the far edges of the captured region and obtaining a sin-
gle reference image of the entire area. The homography solution
for each sub-frame is then calculated relative to this global space,
allowing us to estimate the 3D world coordinate camera and light
positions for all frames, even though 50-80% of frames have no
fiducial markers visible.

3.1.1. Fiducial Markers and Reference Image

Fiducial markers were created and detected using the ArUco
“6x6_250” predefined library [GJMSMCMJ14]. The actual size of
the printed markers was 1.6 cm square. Four markers were placed
on the flat capture surface, one in each corner of the area to be cap-
tured. An additional reference image containing all four markers
was also captured at a distance of approximately 20 cm perpendic-
ular to the surface. The android app “Level Camera” was used to
ensure the camera sensor was parallel to the surface for the refer-
ence image [Wen13]. The locations of the fiducial marker corner
points were recorded separately for both the reference image and
in each video frame where the fiducials were visible.

3.1.2. Removing Blurry and Disconnected Frames

Because the camera motion is hand-held without any physical
guide or apparatus, irregular motion can sometimes produce blurry

frames as a result of intermittent defocus or motion blur. To de-
tect blurry frames we computed a blur metric f based on the power
spectrum for each image i such that

f (i) = mean(log10(0.001+ |F(i)|) (1)

where F(i) is the Fourier transform of the image, and the absolute
value, log, and addition operators are applied competent-wise and
the mean is taken across the result. Frames with a value of f (i) less
than 1.5σ below the mean across all frames were discarded.

When removing frames due to blur or insufficient feature
matches, there is a potential for a small subset of frames to be well-
connected to each other but lack at least four points of connection
to any other frame in the sequence. In that case it is impossible to
determine an unambiguous projective transformation of that subset
to the global space. At the end of the feature matching process we
therefore obtain the connected sub-graph of the connectivity map
with the most members and remove any frames not contained in
that sub-graph.

3.1.3. Coarse Alignment

Although each video frame may be trivially assumed to overlap
with its immediate neighbors in time, accurate stitching of a full
panorama also requires accurate loop closure for non-neighboring
frames. However, feature matching across all pairs of frames at full
resolution is costly and also likely to return many false matches for
self-similar textures. We therefore first perform a coarse alignment
step at a subsampled scale to determine overlapping frames, then
repeat the process for the full resolution images to obtain the lo-
cations of matching features for the final homography estimation.
Parameters for both alignment steps are shown in Table 1.

For the coarse alignment step, each frame was downsampled 4x,
and a maximum of up to 1,200 uniformly distributed SURF fea-
tures [BETVG08] and 3,000 SIFT features [Low04] were extracted
from each frame. SIFT features were obtained and matched using
the CudaSIFT library [BBK14]. Features within a 75 pixel radius
of the center of the image were discarded to avoid false matches of
the specular highlight. During the feature matching process, all the
SURF features and a random subset of 1200 SIFT features were
uniquely matched (1 to 1) to all the features from each other frame.
The matched feature points were used to estimate a similarity trans-
formation between each pair of frames using MLESAC [TZ00],
with a maximum distance of 20 pixels between inlier feature lo-
cations. Any number of inliers greater than 20 was recorded as a
potential match.

The resulting matrix of inlier counts (the connectivity map) was
further thresholded and filtered to remove spurious matches. The
threshold for the minimum number of inliers was determined by
the 50th percentile of those frame pairs with some overlap. This
ensured that no more than 50% of all frames could be overlapping
and only the strongest connections remained. Finally, the connec-
tivity map was smoothed using a 5x5 median filter to remove any
non-continuous matches.
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Figure 2: The top subfigure shows an example reference image with
the user-selected output region outlined in white, while the bottom
subfigure shows an example video frame from the same data set
with sub-frame boundaries overlaid. The contrast of the example
video frame has been decreased for visualization. The width of the
black lines indicates the overlap between adjacent sub-frames.

3.1.4. Fine alignment and subdividing frames

In the fine alignment step, full-scale feature point locations are di-
vided into sub-frame regions and we obtain a global least-squares
solution for the homography transformation of each sub-frame.

Feature matching was only performed for overlapping image
pairs from the coarse alignment connectivity map, with slightly
modified parameters. The flash feature removal radius, maximum
number of SURF features, and the max number of SIFT features
were all scaled up by 4x. The maximum feature location distance
for MLESAC was set at 60 pixels, and the minimum number of
inliers was 60. The large allowable MLESAC distance error is a
reflection of the amount of lens distortion. Although larger allow-
able error may cause incorrect matching, restricting the inliers to
only precise matches causes only the undistorted portions of each
frame to be matched, and this defeats the purpose of the alignment
process completely. It is therefore much better to have a larger dis-
tance error and enforce precision by increasing the number of in-
liers. Ideally, any remaining false matches are greatly outnumbered
in the final least squares minimization process.

The inliers from each frame were divided up into a 5x11 grid of
uniformly sized sub-frames whose dimensions were determined by
empirically examining the level of lens distortion in the phone cam-
eras we used. An illustration of the sub-frame divisions is shown in
Figure 2. The size of each sub-frame was 448x370 pixels with an
X and Y overlap of 25 and 22 pixels, respectively. Due to similarity

of camera hardware specifications across mobile phones, it is likely
that these values would be appropriate for other devices as well.

3.1.5. Linear approximation solution

Once we have obtained the corresponding feature locations, we
solve for a homography transformation matrix for each sub-frame
to the global space defined by the location of the fiducial markers
in the reference image.

To obtain the transformation matrices, we perform a global least-
squares fit simultaneously for all corresponding feature pairs across
all overlapping frames. Our solution is the set of homography ma-
trices that minimizes the sum of squared differences between the
projected global positions of each shared feature point p such that

min∑‖Fpi ·Hi−Fp j ·H j‖2 (2)

where Fpi and Fp j correspond to the [x,y,w] homogeneous coor-
dinates of feature point p in each pair of overlapping sub-frames
i, j, and Hi and H j are the corresponding homography matrices that
project each image into the global space.

Unraveling and concatenating all homography matrices Hi into
a single vector h allows us to construct a large sparse matrix Fpi j
where each column corresponds to one entry of h, and each row cor-
responds to pi− p j in homogeneous coordinates. Our minimization
problem then becomes

Fpi j ·h = 0. (3)

Furthermore, since a homography is only precise up to a scale fac-
tor, we add the following constraints to define the global space:

Hi(3,3) = 1 (4)

such that the (3,3) entry of each homography matrix is defined to
be one, and

Fm ·hm +F/∈m ·h /∈m = 0 (5)

F/∈m ·h /∈m =−km (6)

where Fm is the set of rows in Fpi j containing the m fiducial marker
points, hm is the corresponding entries of h, and F/∈m and h /∈m are
the remaining entries of Fpi j and h, respectively. The i entries of Fm
are from the marker point locations in each sub-frame, while the j
entries are from the marker point locations in the reference image.
In (6) the product of the known entries is moved to the righthand
side of the equation, yielding −km, so that h /∈m may be obtained
via least squares.

3.1.6. Pose estimation

We determine the real world position of the camera using the ho-
mography of the center sub-frame of each input image. Each trans-
formation matrix is decomposed into its component rotation matrix,
Ri, and translation vector, ti according to the process described in
Malis et al. [MV07]. We use these components to construct a set
of 3D homogeneous matrices as shown in (7), wherein each ma-
trix transforms from the reference image pose to the corresponding
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camera pose for each frame. Ri ti

0 0 0 1

 (7)

The reference image camera pose and light position are deter-
mined as follows. The field of view (FOV) of the camera is cal-
culated offline using a one-time calibration image with an object
of known size at known distance. Both the rigid offset of the flash
relative to the camera and the size of the fiducial markers are also
measured offline. In our case FOV was measured to be 70◦, the
XYZ offset of the flash was [1.4, -0.3, 0] centimeters, and the fidu-
cial markers were each 1.6 centimeters tall.

At capture time, the global XYZ origin point is defined to be
the point on the captured surface corresponding to the center of the
reference image. The reference camera pose is therefore located at
[0, 0] in XY. The Z distance is triangulated from the FOV and the
average size of the reference fiducial markers in pixels relative to
their known physical size in centimeters. The reference light posi-
tion is obtained by applying the known flash offset to the reference
camera pose.

Finally, the world-to-image transformation matrix described in
(7) is applied to both the reference camera and light positions to
obtain the camera and light positions for each frame. Unreliable
camera poses located outside the fiducial marker boundaries are
discarded, along with their corresponding video frames.

3.2. Clustering and BRDF Fitting

For each point on the surface, our sparse input samples typically
cover only a very tiny sliver of the 4-dimensional hemisphere used
to fit a BRDF. However, most materials are made up of many re-
gions that share similar reflectance properties and would all be
well-described by a single BRDF with minimal loss of accuracy.
We take advantage of this self-similarity by clustering similar pix-
els together and fitting a BRDF to each cluster.

Determining the number and size of the clusters presents a trade-
off between generalizability and fidelity to the observed data. There
are many ambiguous BRDF solutions that can produce the same ap-
pearance behavior. Larger clusters are likely to include a more com-
plete sampling of the BRDF hemisphere and therefore converge
to a more accurate representation, but they are also more likely to
obscure the small details and variation which make spatially vary-
ing materials interesting. If the clusters are too small, however, it
is probable that over-fitting will produce an incorrect result which
does not generalize to novel light and view positions which were
absent from the captured video.

Similar to Lensch et al. [LKG∗03], our solution is to initialize the
BRDF with very large clusters and a constrained BRDF model, and
then recursively subdivide the clusters, initializing each sub-cluster
with the fitting output of its parent. Our initial clusters are grouped
based on the average observed color of each pixel and then each
cluster and sub-cluster is subdivided based on the per-pixel resid-
ual of the fitted BRDF. This encourages each smaller sub-cluster
to find a solution in the neighborhood of solutions defined by the

Figure 3: Initial and final sub-clusters for the two-camera red velvet
lamé material. The left image shows the average color. Five clusters
were obtained in the initial clustering (middle), and the final result
included 5,152 sub-clusters (right).

larger parent cluster, greatly reducing the likelihood of obtaining an
incorrect ambiguous solution.

For each sub-cluster we produce an anisotropic Ward svBRDF
[War92] and a normal map. We are therefore able to fit opaque
materials that do not have any Fresnel effects. Due to our feature-
based homography alignment process, we also require the scanned
material to be relatively flat and have at least some medium-scale
albedo variation to align the input video frames.

3.2.1. Clustering and svBRDF Initialization

Using the aligned images, we coarsely approximate the diffuse
albedo color by the average color of each pixel in the global coordi-
nate space. This average color image is then converted to CIE 1976
L*a*b* color space. We then apply k-means clustering with k-
means++ initial centroid positions [AV07] to the normalized albedo
color values. The number of clusters, k, is chosen based on the lin-
ear bisection point of the summed squared euclidean error across
all values of k in the range k = [2:20]. For our data, typically k=4.

For each initial cluster, we fit an isotropic BRDF (see sec-
tion 3.2.3) with a single normal vector for the cluster, constrained
to be perpendicular to the surface (that is, n = [0,0,1]). This step
initializes the ρd , ρs, and α to reasonable values for the average
normal vector orientation. The initial conditions for the isotropic
fitting step are the average color over the entire cluster for the the
diffuse component (ρd) and twice the average of the standard devi-
ation across frames for the specular component (ρs). The roughness
parameter (α) is initialized to 0.1.

Once an isotropic BRDF has been fit to each initial cluster, we
calculate the least squares fit error for each pixel in the cluster and
recursively subdivide the pixels into two sub-clusters according to
the threshold

t = median(Epx)+mad(Epx) (8)

where mad is the median absolute deviation and Epx is the per-
pixel fit error averaged over all observations for each pixel. Each
sub-cluster is then fit with a full anisotropic BRDF and a normal
offset, and the per-pixel fit error is calculated for the next itera-
tion. We continue to subdivide clusters in this way until we reach a
minimum cluster size of 50 pixels. Figure 3 shows an example of
the progression from initial to final clusters for the red velvet lamé
material.
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3.2.2. Redundant Observations

Larger clusters tend to contain many redundant observations of
similar materials from almost identical viewpoints. These extra ob-
servations dramatically increase the BRDF optimization runtime
without improving the accuracy of the fit. To simplify our fitting
process, we apply a binning and averaging step to obtain unique
viewpoints. At each sub-clustering iteration, we group all observa-
tions for all pixels in the subcluster into 5◦ increments for each of
θi, φi, θr, and φr, and 1 cm increments for the light radius, r. For
each unique combination of these variables, all the BRDF input pa-
rameters (including light and view positions and observed color)
are averaged together into a single unique observation for fitting.
The contribution of each unique observation to the calculated fitting
error is then weighted by the number of raw observations included
in its average, according to Equation 11. To calculate the per-pixel
fitting error, the fitted value for each unique viewpoint is applied to
all the raw observations in its group.

3.2.3. Reflectance Modeling

We model the surface appearance for each point as the incident
light from the camera flash multiplied by the BRDF and modulated
by the solid angle of the light source as a function of the incident
light angle.

The surface appearance is therefore described as

Lr(θr,φr) =
∫ 2π

0

∫ π

2

0
Li · (θi,φi) ·ρbd(θi,φi;θr,φr) ·

cos(θi) ·dA
r2

(9)
where

Lr is the reflected radiance to the camera
Li is the incident radiance from the light
ρbd is the BRDF
θr and φr are the camera elevation and azimuth angles
θi and φi are the light elevation and azimuth angles
dA is the differential surface area of each pixel
r2 is the radial distance to the light source

and all angles are relative to the normal vector. Similar to Aittala
et al. [AWL15] and many others, the ambient light is not explicitly
modeled but rather implicitly incorporated into the BRDF.

The ρbd term in (9) is the Ward BRDF model, described by the
following equation

ρbd(θi,φi;θr,φr) =
ρd
π

+
ρs · e

− tan2(θh)·
(

cos2(φh)
α2

x
+

sin2(φh)
α2

y

)
4π ·αx ·αy ·

√
cos(θi) · cos(θr)

(10)

where

ρd and ρs are the diffuse and specular albedo values
αx and αy are the roughness parameters in X and Y
θh and φh are the elevation and azimuthal angles of the half-
vector between the light and camera

In the initial clustering step, an isotropic variant of this model
is used wherein αx = αy. Subsequent subclustering iterations are
fitted using the full anisotropic BRDF model and two normal vector
offset angles, nθx and nθz , which describe the rotation of the normal
vector about the X and Z axes respectively. In the final svBRDF

and normal map, all the pixels in each sub-cluster are therefore
represented by the eight BRDF parameters above (one per color
channel for ρd and ρs) and two normal vector offset parameters.

Our optimization problem is therefore

minimize ∑w ·∑(L f −Lo)
2

subject to {ρd ,ρs} ≥ 0 0◦ ≤ nθx ≤ 45◦

{αx,αy}> 0 0◦ ≤ nθz ≤ 180◦

ρd +ρs ≤ 1

(11)

where Lo is the observed color values, L f is the fitted BRDF evalu-
ated at corresponding angles to Lo, and w is the number of samples
per unique viewpoint as described in section 3.2.2. We solve for
(11) using a sequential quadratic programming (SQP) optimization
function [NW06].

3.3. Joining Two Video Streams

Although the reflectance properties of many materials are well-
described by observations using a single collocated camera and
light source, incorporating a second simultaneous video stream al-
lows us to also capture somewhat more complex materials without
requiring other specialized tools. By capturing one video with the
camera flash turned on alongside a second no-flash video, we can
observe the behavior of the scanned material at more oblique light
and view angles and thereby obtain a more complete sampling of
the BRDF.

The majority of our pipeline is image-based and accepts a second
video stream without any modification. Our only requirement is
that the two video streams be temporally synchronized at the first
frame of each video, and that the length of the no-flash video be
shorter than the flash video. This ensures that the position of the
light source is known for all observed input frames.

To synchronize the time streams, we simply begin the no-flash
recording first and then crop the start of the no-flash video to the
frame where the light from the flash camera first appears. At the
frame rates used in our capture setup the actual transition frame is
typically highly visible because the rolling shutter effect produces
an obvious transition line across the frame. This method afforded
acceptable synchronization for our application where the hand held
cameras are moving relatively slowly.

4. Results

Our capture data were obtained using a Samsung Galaxy S6 (or S7
for the second camera). The resolution of the reference images was
5312x2988, and the videos were captured at a rate of 30 frames
per second (fps) and resolution of 2160x3840 pixels. We captured
video in Pro-Mode with the flash turned on, using a shutter speed
of 1/500 seconds and an appropriate ISO setting for the ambient
light level, between 50 and 400. White balance was manually set at
the beginning of each video to ensure consistency across frames.

The camera was moved over the surface by hand in a sinusoidal
top-to-bottom and side-to-side fashion to achieve relatively even
coverage of the entire captured area. Typical video capture dis-
tance was between 10-20 centimeters from the surface, and refer-
ence image capture distance was usually around 20-30 centimeters.
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Figure 4: All of the scanned materials rendered onto spheres with Mitsuba and illuminated by the Pisa environment map and a single
additional point light source. The top row is captured with two cameras, the middle row depicts the same materials captured with a single
camera, and the bottom row shows additional materials captured with only one camera. From top to bottom and left to right: abstract oil
painting, green faux leather, red velvet lamé, woven rattan mat, wrapping paper, corkboard, shiny white tile, aged metal patina, blue damask
fabric, buffalo leather, metallic embossed paper, orange ceramic tile, damask fabric reversed, and wood block.

The supplemental material includes a diagram of our capture setup.
Each video was 15-30 seconds in duration, covering an area of ap-
proximately 20x20 cm. From this sequence we extracted every 5th
frame (6 fps) for the single-camera examples and every 10th frame
(3 fps) for the two-camera examples. We found this sampling rate
to be an acceptable trade-off between sampling density and data
processing limitations.

We provide examples of seven materials captured with only
a single camera (aged metal patina, blue damask fabric, buffalo
leather, metallic embossed paper, orange ceramic tile, damask fab-
ric reversed, and wood block), and seven materials captured with

Figure 5: A natural scene with three scanned materials rendered
with Mitsuba and illuminated by the Pisa environment map and
a single additional point light source. The table surface is textured
with the damask fabric reversed material, the teapot is textured with
the faux green leather material, and the teacup is textured with the
aged metal patina material.

both one and two cameras for comparison (abstract oil painting,
green faux leather, red velvet lamé, woven rattan mat, wrapping
paper, corkboard, and shiny white tile).

Figure 4 shows a rendering of all the captured materials mapped
onto spheres and illuminated by the Pisa environment map with a
single additional point light source. The examples in the top row
are captured with two cameras, the middle row depicts the same
materials captured with a single camera, and the bottom row shows
additional materials captured with only one camera. Figure 5 also
shows several of the same materials used in a more natural scene
under the the same illumination.

In Figure 6 we include a comparison to ground truth for the
example materials from Figure 1 using a very oblique light po-
sition (the supplemental material includes the same visualization
for all other materials). This comparison is very challenging be-
cause the lighting configuration is very different from anything in
the input data for fitting the svBRDF, so our algorithm must rely
on smoothness assumptions implicit in the Ward model. It is appar-
ent that some high frequency texture and corresponding specular
highlights are missing for several materials. These highlights most
likely occupy a very sharp peak of the BRDF, and are thus diffi-
cult for any method to accurately reproduce without direct obser-
vation. Nonetheless our method produces a plausible appearance
for these samples. Additionally, in a supplemental video we also
show a comparison between the input video frames and a render-
ing of the fitted svBRDF output using the input light and camera
locations, for all materials.

Each of the svBRDF output layers is also included for more de-
tailed analysis. Figure 7 shows the raw results for the same subset
of example materials. The leftmost column is the average color as
described in section 3.2.1. The remaining columns are the diffuse
color (ρd), the specular color (ρs), the roughness parameter in the X
direction (αx), the roughness parameter in the Y direction (αy), and
the normal offset map. For materials captured with both one and
two cameras, the results are shown side by side for comparison.
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The supplemental material also includes a second video showing
the materials textured onto a 3D object with animated illumination
changes, as well as a comparison between the one- and two-camera
results.

The differences between the quality of the single and dual cam-
era results for the red velvet lamé and wrapping paper materials
reveal the importance of broader sampling for more complex ma-
terials. The diffuse parameter color is slightly darker for the two-
camera wrapping paper example, but the overall result is very sim-
ilar to the one camera result. However, for the red velvet lamé, the
single camera case has much more trouble separating and distin-
guishing reflectance behavior that changes quickly with direction,
as predicted by Hui et al. [HSL∗17]. We still get usable results with
a single camera, but the algorithm is unable to disambiguate be-
tween a bright surface tilted away from the camera and a darker sur-
face tilted toward the camera, resulting in over-fitting to the data.
This problem could potentially be corrected manually, but given
that it is relatively easy to use two cellphones, we feel that two
cameras is the preferred option when accurate reproduction is de-
sired.

5. Conclusion and Future Work

We have demonstrated a new technique for capturing and modeling
the appearance of nearly flat surfaces using printed fiducial markers
and a mobile phone video with continuous flash. Our technique em-
ploys a very simple capture process using off-the-shelf hardware,
and the output of our system may be directly textured onto 3D ob-
jects using standard rendering software. We have also provided ex-
amples showing a variety of materials captured with both one and
two cameras and rendered under complex lighting environments.

Our technique has several limitations. Because we align the
video frame images using homographies, we are only able to cap-
ture flat surfaces with relatively minimal surface relief. Our feature-
based alignment also requires captured materials to have some ir-
regular, medium-scale textural variation, which means we are un-
able to align extremely repetitive textures. However, Aittala and
colleagues have already proposed two excellent solutions for cap-
turing self-similar materials and we consider our work to be com-
plementary to theirs [AWL15, AAL16].

The results shown in this paper are generated with very sparse
sampling and a very simple BRDF model, and we are therefore
unable to capture phenomena such as Fresnel effects. However,
we place no restrictions on the model used, and it has been sug-
gested that some micro-facet models may be better suited to ap-
proximating more complex reflectance behavior [BLPW14]. Our
panorama stitching method could also be combined with the dictio-
nary approach proposed by Hui and colleagues [HSL∗17] to obtain
high-resolution models of complex materials that require sampling
at very oblique light and camera angles. For materials with much
more complicated reflectance, our implementation would easily al-
low the second no-flash camera to be placed on a tripod at an
oblique angle to the surface to capture the entire flash sequence
from the side.

Finally, our research-quality code is not yet optimized and takes
about 2 hours to align and fit an svBRDF from a 20 second video,

half of which is taken up by feature extraction and matching. We
speculate that using optic flow information for loop closure might
produce a better estimation of overlap across frames without the
need for feature matching in the coarse alignment step, providing a
significant time savings.

However, on the whole we believe that the reduced equipment re-
quirements and simplicity of our capture methodology are a valu-
able contribution to the state of the art. Any content creator with
access to a printer and a mobile phone can quickly and easily cap-
ture a variety of interesting materials encountered in everyday life.
We hope that our system will inspire more widespread capture of
real-world materials and encourage future development of svBRDF
fitting techniques using sparse data.

References
[AAL16] AITTALA M., AILA T., LEHTINEN J.: Reflectance modeling

by neural texture synthesis. ACM Transactions on Graphics (TOG) 35,
4 (2016), 65. 2, 9

[AV07] ARTHUR D., VASSILVITSKII S.: k-means++: The advantages
of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms (2007), Society for Industrial and Ap-
plied Mathematics, pp. 1027–1035. 6

[AWL13] AITTALA M., WEYRICH T., LEHTINEN J.: Practical
SVBRDF capture in the frequency domain. ACM Trans. Graph. 32, 4
(2013), 110. 2

[AWL15] AITTALA M., WEYRICH T., LEHTINEN J.: Two-shot
SVBRDF capture for stationary materials. ACM Transactions on Graph-
ics (TOG) 34, 4 (Aug. 2015), 110. 2, 7, 9

[BBK14] BJÖRKMAN M., BERGSTRÖM N., KRAGIC D.: Detecting,
segmenting and tracking unknown objects using multi-label mrf infer-
ence. Computer Vision and Image Understanding 118 (2014), 111–127.
4

[BDW81] BARTELL F. O., DERENIAK E. L., WOLFE W. L.: The
Theory And Measurement Of Bidirectional Reflectance Distribution
Function (Brdf) And Bidirectional Transmittance Distribution Function
(BTDF). vol. 0257, pp. 154–160. 2

[BETVG08] BAY H., ESS A., TUYTELAARS T., VAN GOOL L.:
Speeded-up robust features (SURF). Computer vision and image un-
derstanding 110, 3 (2008), 346–359. 4

[Ble05] BLEVINS N.: Leather Material, June 2005. 1

[Ble13] BLEVINS N.: Layering Materials, Sept. 2013. 1

[BLPW14] BRADY A., LAWRENCE J., PEERS P., WEIMER W.: genbrdf:
discovering new analytic brdfs with genetic programming. ACM Trans.
Graph. 33 (2014), 114:1–114:11. 9

[DRCP14] DI RENZO F., CALABRESE C., PELLACINI F.: AppIm: lin-
ear spaces for image-based appearance editing. ACM Transactions on
Graphics (TOG) 33, 6 (2014), 194. 2

[DTPG11] DONG Y., TONG X., PELLACINI F., GUO B.: AppGen: in-
teractive material modeling from a single image. In ACM Transactions
on Graphics (TOG) (2011), vol. 30, ACM, p. 146. 2

[DVGNK99] DANA K. J., VAN GINNEKEN B., NAYAR S. K., KOEN-
DERINK J. J.: Reflectance and texture of real-world surfaces. ACM
Transactions on Graphics (TOG) 18, 1 (1999), 1–34. 2

[DWT∗10] DONG Y., WANG J., TONG X., SNYDER J., LAN Y., BEN-
EZRA M., GUO B.: Manifold bootstrapping for SVBRDF capture. In
ACM Transactions on Graphics (TOG) (2010), vol. 29, ACM, p. 98. 2

[FCMB09] FRANCKEN Y., CUYPERS T., MERTENS T., BEKAERT P.:
Gloss and normal map acquisition of mesostructures using gray codes.
In International Symposium on Visual Computing (2009), Springer,
pp. 788–798. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



R. Albert, D. Chan, D. Goldman, & J. O’Brien / Approximate svBRDF Estimation From Mobile Phone Video

blue damask fabric green faux leather

red velvet lamé wrapping paper

Figure 6: Comparison to a ground truth photo with an oblique light angle not included in the input fitting data. For each material shown,
the first image is the ground truth and the second image is a rendering with the same light pose as the ground truth using the data captured
with one camera, and the third image (if available) shows the same rendering using the data captured with two cameras. Images have been
cropped square and resized to fit.

[GCHS10] GOLDMAN D. B., CURLESS B., HERTZMANN A., SEITZ
S. M.: Shape and Spatially-Varying BRDFs from Photometric Stereo.
IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 6
(June 2010), 1060–1071. 3

[GCP∗09] GHOSH A., CHEN T., PEERS P., WILSON C. A., DEBEVEC
P.: Estimating specular roughness from polarized second order spherical
gradient illumination. In SIGGRAPH 2009: Talks (2009), ACM, p. 30. 2

[GCP∗10] GHOSH A., CHEN T., PEERS P., WILSON C. A., DEBEVEC
P.: Circularly polarized spherical illumination reflectometry. In ACM
Transactions on Graphics (TOG) (2010), vol. 29, ACM, p. 162. 2

[GJMSMCMJ14] GARRIDO-JURADO S., MUÃŚOZ-SALINAS R.,
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blue damask fabric

green faux leather (one camera)

green faux leather (two cameras)

red velvet lamé (one camera)

red velvet lamé (two cameras)

wrapping paper (one camera)

wrapping paper (two cameras)

Figure 7: Example results showing the fitted svBRDF output. The top row of each material shows the results for one camera, while the bottom
row (if available) shows the results for two cameras. Each row, from left to right: average color, ρd , ρs, αx, αy, and the normal offset map.
Images have been cropped square and resized to fit.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.


