
Adaptive Temporal Antialiasing
Adam Marrs

NVIDIA
Josef Spjut
NVIDIA

Holger Gruen
NVIDIA

Rahul Sathe
NVIDIA

Morgan McGuire
NVIDIA

1 spp

TAA ATAA

Mask

Figure 1: Amodern house scene in Unreal Engine 4with deferred shading, ray traced shadows, our adaptive temporal antialias-
ing technique, and a moving camera at 30 fps on NVIDIA Titan V. Zoomed details show raw 1 sample per pixel raster input,
standard TAA output, a visualization of our segmentation mask, and our ATAA 8x result.

ABSTRACT
We introduce a pragmatic algorithm for real-time adaptive super-
sampling in games. It extends temporal antialiasing of rasterized
images with adaptive ray tracing, and conforms to the constraints
of a commercial game engine and today’s GPU ray tracing APIs.
The algorithm removes blurring and ghosting artifacts associated
with standard temporal antialiasing and achieves quality approach-
ing 16× supersampling of geometry, shading, and materials while
staying within the 33ms frame budget required of most games.

CCS CONCEPTS
• Computing methodologies→ Ray tracing;

KEYWORDS
adaptive sampling, supersampling, ray tracing

ACM Reference Format:
Adam Marrs, Josef Spjut, Holger Gruen, Rahul Sathe, and Morgan McGuire.
2018. Adaptive Temporal Antialiasing. In HPG ’18: High-Performance Graph-
ics, August 10–12, 2018, Vancouver, Canada, Anjul Patney and Matthias
Niessner (Eds.). ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3231578.3231579

HPG ’18, August 10–12, 2018, Vancouver, Canada
© 2018 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in HPG ’18: High-
Performance Graphics, August 10–12, 2018, Vancouver, Canada, https://doi.org/10.1145/
3231578.3231579.

1 INTRODUCTION AND RELATEDWORK
Aliasing of primary visible surfaces is one of the most fundamental
and challenging limitations of computer graphics. Almost all ren-
dering methods sample surfaces at points within pixels, and thus
produce error when the points sampled are not representative of the
pixel as a whole, that is, when primary surfaces are undersampled.

Analytic renderers could avoid the ray (under)-sampling prob-
lem, but despite some analytic solutions for limited cases [Auzinger
et al. 2013] point samples from ray or raster intersections remain the
only fully-developed approach for efficient rendering of complex
geometry, materials, and shading. Aliasing due to undersampling
manifests as jagged edges, spatial noise, and flickering (temporal
noise). Attempts to conceal those errors by wider and more sophis-
ticated reconstruction filters in space (e.g., MLAA [Reshetov 2009],
FXAA [Lottes 2009]) and time (e.g., SMAA [Jimenez et al. 2012],
TAA [Karis 2014]) convert those artifacts into blurring or ghosting.

Under a fixed sample count per pixel across an image, the only
true solution to aliasing is to increase the sample density and band-
limit the signal being sampled. Increasing density helps but does not
solve the problem at rates affordable for real-time: supersampling
(SSAA) incurs a cost linearly proportional to the number of samples
while only increasing quality with the square root; multisampling
(MSAA, CSAA, SBAA [Salvi and Vidimče 2012], SRAA [Chajdas
et al. 2011]) samples geometry and materials and shading at vary-
ing rates to heuristically reduce the cost but also lowers quality;
and aggregation (DCAA [Wang et al. 2015], AGAA [Crassin et al.
2016]) reduces cost even more aggressively but still limits quality
at practical rates. Material prefiltering by mipmapping and its vari-
ants, level of detail for geometry, and shader level of detail can

https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579
https://doi.org/10.1145/3231578.3231579


HPG ’18, August 10–12, 2018, Vancouver, Canada A. Marrs et al.

improve undersampling by band-limiting the scene, but complicate
rendering systems without fully solving the problem.

The standard in real-time rendering is to employ many of the
aforementioned strategies simultaneously. Despite succeeding in
many cases, these game-specific solutions require significant engi-
neering complexity and careful hand-tuning of scenes by artists [Ped-
ersen 2016; Pettineo 2015]. Since all these solutions depend on a
fixed sampling count per pixel, an adversary can always place ma-
terial, geometric, or shading features between samples to create
unbounded error. Thus we consider the aliasing challenge open
for real-time rendering. Offline ray-traced renderers have long em-
ployed highly adaptive sample counts to solve aliasing (e.g. Whit-
ted’s original paper [Whitted 1980]). More recently, Holländer et.
al. [Holländer et al. 2013] aggressively identify pixels in need of an-
tialiasing from coarse shading and high resolution geometry passes
and achieve nearly identical results to SSAA with 10% reduced
frame time despite cutting the number of shading samples in half.
Importantly, rasterization requires processing all geometry, even if
only a few pixels are affected.

We describe a newmethod for practical adaptive sampling in real
time using a hybrid of ray tracing and rasterization. This method is
enabled by the recently releasedDirectX Ray TracingAPI (DXR) and
NVIDIA RTX. Although hybrid algorithms have been proposed for
heterogeneous architectures [Barringer and Akenine-Möller 2013],
they have been impractical due to duplication of data structures
between ray and raster APIs. DXR and RTX enable full interop-
erability between data structures and shaders for both types of
rendering on the GPU across the full game engine for the first time.

We build on the common idea of adaptive sampling by showing
how to efficiently combine these techniques for modern graphics
hardware. We show how to leverage adaptive sampling within
the context of temporal antialiasing to still amortize the cost of
rasterized samples in time without creating blurring or ghosting.

2 PREVIOUS TEMPORAL ANTIALIASING
Temporal antialiasing [Karis 2014] (TAA) is fast and quite good in
the cases it can handle, which is why it is the de facto standard for
games today. TAA applies a subpixel shift to the image plane each
frame and accumulates an exponentially-weighted moving average
over previous frames, each of which was rendered with only one
sample per pixel. On static scenes, this approaches the quality of
full screen supersampling. For dynamic scenes, TAA ‘reprojects’
samples from the accumulated history buffer by offsetting texture
fetches along per-pixel motion vectors generated by the rasterizer.

TAA fails in several cases. When new screen areas are disoc-
cluded (revealed) by object motion, those are not represented in the
history buffer, or are misrepresented by the motion vectors. Camera
rotation and backwards translation also create thick disocclusions
at the edges of the screen. Subpixel features such as wires and
fine material details can slip between consecutive offset samples
and thus are unrepresented by motion vectors in the next frame.
Transparent surfaces create pixels at which the motion vectors from
opaque objects do not match the total movement of represented ob-
jects. Finally, shadows and reflections do not move in the direction
of the motion vectors of the surfaces that are shaded by them.

When TAA fails, it either produces ghosting (blurring due to in-
tegrating incorrect values) or reveals the original aliasing as jaggies,
flicker, and noise. Standard TAA attempts to detect these cases by
comparing the history sample to the local neighborhood of the cor-
responding pixel in the new frame. When they appear too different,
TAA employs a variety of heuristics to clip, clamp, or interpolate in
color space. As summarized by Salvi [2015], the best practices for
these heuristics change frequently and no general purpose solution
has previously been found.

3 A NEW ALGORITHM
We designed our method for compatibility with conventional game
engines and to harness the strengths of TAA, while addressing its
failures unequivocally and simply. The core idea is to run the base
case of TAA on most pixels and then, rather than attempting to
combat its failures with heuristics, output a conservative segmen-
tation mask of where it will fail, and why. We then replace the
complex heuristics of TAA at failure pixels with robust alternatives,
adapting to the image content.

Figure 2 shows our algorithm in the context of Unreal Engine 4
(UE4) extended to support the DXR API. In the diagram, rectangular
pictures represent visualizations of buffers and rounded rectangles
represent shader passes. Not all intermediate buffers are shown.
For example, where the previous frame’s output feeds back as input
to TAA, we do not show the associated ping-pong buffers.

Aliasing 
Segmentation

LDR OutputSparse HDR
Ray ResultsHDR Color

1 spp Color

Sparse 
Ray Tracer

Sparse 
FXAA

Tone Map

Rasterizer 

TAA + 
Segment

Dense Color 

1spp HDR Color

Sparse 8spp Color LDR Output

SegmentationMotion Vectors

Figure 2: The data flow of our algorithm integrated into the
UE4 rendering pipeline. The gray passes are only slightly
modified. Most connections and the yellow passes are new.
In the Segmentation mask, red pixels will use FXAA, blue
pixels will use TAA, and yellow pixels will be ray traced

The image labeled ‘Segmentation’ in Figure 2 is a visualization
of the segmentation mask. Red pixels identify disocclusions, espe-
cially around the edges of the screen where data from previous
frames is not present. We process these areas with FXAA, since
it has a low cost, requires no historical data, and runs on the low
dynamic range post-tonemapped output to conserve memory band-
width. By running FXAA only at disoccluded pixels, we further
reduce its cost compared to full-screen applications; typically to less
than 15% even for rapid object and camera movement. Blue pixels
represent areas where our segmentation strategy determines the
existing TAA result is acceptable. Finally, yellow pixels represent
areas where our segmentation heuristic detects a high chance of



Adaptive Temporal Antialiasing HPG ’18, August 10–12, 2018, Vancouver, Canada

TAA failure. In practice, the segmentation mask is stored as two
half-precision unsigned integer values packed into a single 32-bit
memory resource. The first integer identifies a pixel’s AA method
(0 - FXAA, 1 - TAA, 2 - ATAA), and the second integer serves as
a pixel classification history that stores if a pixel has received ray
tracing via ATAA in previous frames.

The segmentation mask is generated during the full-screen TAA
post-process pass in UE4. To detect TAA failures, we use a combina-
tion of criteria. First, motion vectors are inspected to determine if
the the current pixel was previously occluded. The result of the mo-
tion vector comparison overrides all other criteria and can trigger
an early exit in the detection process. Next, the pixel classification
history is inspected to determine if a pixel has been recently ray
traced. If so, the pixel will continue to be classified for ray trac-
ing over the next few frames. This approach reduces flicker from
rapid shifts of yellow pixels in the segmentation mask. Significant
changes in a pixel’s motion vectors will reset the pixel classification
history. Pixel classification history can also trigger an early exit.
Next, we compute the temporal change in luminance by inspecting
a small neighborhood of pixels in the current and previous frames.
Last, we find the change in depth values in a 3x3 pixel neighbor-
hood of the current frame using an edge detecting Sobel filter, and
compare the magnitude of the Sobel gradient against a threshold.
Depth and temporal luminance are weighted equally.

At pixels marked for ATAA, we cast rays in either the 8×, 4×,
or 2× MSAA n-rooks subpixel sampling patterns. Ray casts are
spawned from a DXR Ray Generation Shader and do not use tem-
poral jittering; however, we plan to explore this in future work. At
ray hits we execute the full UE4 node-based material graph and
shading pipeline, using identical HLSL code to the raster pipeline.
Since forward-difference derivatives are not available in DXR Ray
Generation Shaders, we treat them as infinite to force the highest
resolution of textures. Thus, we rely on supersampling alone to
address material aliasing (which is howmost film renderers operate,
for the highest quality); an alternative would be to use distance and
orientation to analytically select a mipmap level, or to employ ray
differentials [Christensen et al. 2003; Igehy 1999].

Since frames are almost always dominated by blue-classified
(TAA) pixels, the cost of ray tracing is highly amortized and requires
a ray budget far less than one sample per pixel. For example, we
can adaptively employ 8× ray traced supersampling for 6% of the
scene at a cost of fewer than 0.5 rays per pixel. The quality is
then comparable to 8× supersampling everywhere; were it not, the
boundaries between segmented regions would flicker in the final
result due to different algorithms being employed.

4 RESULTS
We implemented the ATAA algorithm in Unreal Engine 4 and gath-
ered results using Windows 10 v1803, Microsoft DXR, the NVIDIA
RTX enabled 398.11 driver, and a NVIDIA Titan V GPU. To demon-
strate the image quality achievable with ATAA, Figure 3 shows a
comparison of ATAA and other common antialiasing algorithms
used in games, zoomed to challenging areas of the scene.

The No AA row demonstrates the baseline aliasing that is ex-
pected from a single raster sample per pixel. The FXAA and TAA
rows are the standard implementations available in UE4. SSAA 4x

Plant Boat Stern Boat Bow

N
o 

A
A

FX
A

A
TA

A
M

as
k

AT
A

A
 2

x
AT

A
A

 4
x

AT
A

A
 8

x
SS

A
A

 1
6x

Figure 3: A zoomed comparison of ATAA with other com-
mon AA algorithms used in games. The diagonal cutout in
the top image shows the contribution of ATAA’s sparse ray
tracing. Images captured at 1080p.



HPG ’18, August 10–12, 2018, Vancouver, Canada A. Marrs et al.

is 4× supersampling. We show the segmentation mask and three
variations of ATAA with 2, 4, and 8 rays per pixel. Since the draw-
backs of standard TAA are difficult to capture in still images, and
all images in Figure 3 come from a stable converged frame, the
supplemental video provides a more faithful comparison between
standard TAA and ATAA in practice, including motion artifacts.

The ‘Plant’ inset column of Figure 3 shows regions where TAA
misses or blurs out thin geometry that falls in the sub-pixel area
between samples. ATAA’s segmentation step identifies much of the
region surrounding these tough areas and avoids undersampling by
ray tracing. The ‘Boat’ inset columns demonstrate how ATAA pro-
duces antialiased curves from the boat geometry, and fills in areas
where the sub-pixel geometry of the thin ropes are either missed
(FXAA) or blurred until they are no longer visible (TAA). There
are minor differences in ATAA’s antialiased result caused by the
material evaluation in DXR not correctly computing and evaluat-
ing texture mipmap level, while TAA uses screen-space derivatives
provided by the rasterizer to compute mipmap level. Methods to per-
form mipmap level selection are well known; however, are difficult
to implement in practice for arbitrary material graphs containing
multiple dependent textures of varying resolution.

On a NVIDIA Titan V GPU at 1920×1080 resolution, ATAA runs
in 18.4ms at 8× supersampling, 9.3ms at 4× supersampling, and
4.6ms at 2× supersampling for the image in Figure 1. This includes
the creation of the standard TAA result, our segmentationmask, and
adaptive ray tracing (including 1 shadow ray per light per primary
ray). For the view shown in Figure 3, 107,881 pixels are selected for
adaptive ray tracing, representing 5.2% of the total image resolution.
The specific number of rays identified for antialiasing varies per
frame according to the segmentation mask. In addition, the FXAA
pass adds as much as 0.75ms when the whole frame is new, but in
practice scales linearly down to 0 as fewer of the pixels are identified
for FXAA in the mask. Under typical camera motion fewer than
5% of pixels are selected for FXAA. Our ATAA solution integrated
successfully operates within the 33 millisecond frame budget for
a typical UE4 frame across all settings. Operating within a total
frame budget of 16ms, while also ray tracing 1spp shadows at screen
resolution, is possible with the 2× and 4× ATAA variants. As DXR
is an experimental feature of Windows 10 v1083, we are optimistic
that performance will improve as the runtime and driver receive
important release optimizations.

5 CONCLUSIONS
Primary surface aliasing is a cornerstone problem in computer
graphics. The best known solution for offline rendering is adaptive
supersampling. This was previously impractical for rasterization
renderers in the context of complex materials and scenes because
there was no way to efficiently rasterize sparse pixels. Even the
most efficient GPU ray tracers required duplicated shaders and
scene data. While DXR solves the technical challenge of combin-
ing rasterization and ray tracing, applying ray tracing to solve
aliasing by supersampling was nontrivial: knowing which pixels to
supersample when given only 1spp input, and reducing the cost to
something that scales are not solved by naively ray tracing.

We have demonstrated a practical solution to this problem; so
practical that it runs within a commercial game engine, operates in

real-time even on first-generation real-time ray tracing commodity
hardware and software, and connects to the full shader pipeline.
Where film renderers choose pixels to adaptively supersample by
first casting many rays per pixel, we instead amortize that cost
over many frames by leveraging TAA’s history buffer to detect
aliasing. We further identify large, transient regions of aliasing due
to disocclusions and employ post process FXAA there rather than
expending rays. This hybrid strategy leverages advantages of the
most sophisticated real-time antialiasing strategies but avoids their
limitations. By feeding our supersampled results back into the TAA
buffer, we also increase the probability that those pixels will not
trigger supersampling on subsequent frames, further reducing cost.

Our method’s performance is dominated by the ray trace. We
cannot advocate it for immediate wide-spread deployment in games
at current performance, but that is not concerning given that main-
stream gaming GPUs have not yet appeared that support the DXR
API. The real-time ray tracing ecosystem of drivers, GPUs, and
algorithms must emerge together over the next few years.

ACKNOWLEDGMENTS
We wish to thank Ignacio Llamas, Edward Liu, and the entire ray
tracing team at NVIDIA for their help and feedback.

REFERENCES
Thomas Auzinger, Przemyslaw Musialski, Reinhold Preiner, and Michael Wimmer.

2013. Non-Sampled Anti-Aliasing. In Proceedings Vision, Modeling and Visualization.
169–176.

Rasmus Barringer and Tomas Akenine-Möller. 2013. A4: Asynchronous Adaptive
Anti-aliasing Using Shared Memory. ACM Trans. Graph. 32, 4, Article 100 (July
2013), 10 pages. https://doi.org/10.1145/2461912.2462015

Matthäus G. Chajdas, Morgan McGuire, and David Luebke. 2011. Subpixel Re-
construction Antialiasing for Deferred Shading. In Symposium on Interactive
3D Graphics and Games (I3D ’11). ACM, New York, NY, USA, 15–22 PAGE@7.
https://doi.org/10.1145/1944745.1944748

Per H Christensen, David M Laur, Julia Fong, Wayne L Wooten, and Dana Batali. 2003.
Ray differentials and multiresolution geometry caching for distribution ray tracing
in complex scenes. In Computer Graphics Forum, Vol. 22. Wiley Online Library,
543–552.

Cyril Crassin, MorganMcguire, Kayvon Fatahalian, and Aaron Lefohn. 2016. Aggregate
G-Buffer Anti-Aliasing. 22 (06 2016), 1–1.

Matthias Holländer, Tamy Boubekeur, and Elmar Eisemann. 2013. Adaptive Supersam-
pling for Deferred Anti-Aliasing. Journal of Computer Graphics Techniques (JCGT)
2, 1 (02 March 2013), 1–14. http://jcgt.org/published/0002/01/01/

Homan Igehy. 1999. Tracing ray differentials. In Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques. ACM Press/Addison-Wesley
Publishing Co., 179–186.

Jorge Jimenez, Jose I. Echevarria, Tiago Sousa, and Diego Gutierrez. 2012. SMAA:
Enhanced Morphological Antialiasing. Computer Graphics Forum (Proc. EURO-
GRAPHICS 2012) 31, 2 (2012).

Brian Karis. 2014. High Quality Temporal Anti-Aliasing. (2014).
Tim Lottes. 2009. FXAA. (2009). http://developer.download.nvidia.com/assets/

gamedev/files/sdk/11/FXAA_WhitePaper.pdf NVIDIA White Paper.
Lasse Jon Fuglsang Pedersen. 2016. Temporal Reprojection Anti-Aliasing in INSIDE.

(2016).
Matt Pettineo. 2015. Rendering The Alternate History of The Order: 1886. (2015).

SIGGRAPH Advances in Real-Time Rendering in Games Course.
Alexander Reshetov. 2009. Morphological Antialiasing. In Proceedings of the Conference

on High Performance Graphics 2009 (HPG ’09). ACM, New York, NY, USA, 109–116.
https://doi.org/10.1145/1572769.1572787

Marco Salvi. 2015. Anti-Aliasing: Are We There Yet? (2015).
Marco Salvi and Kiril Vidimče. 2012. Surface Based Anti-aliasing. In Proceedings of the

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D ’12). ACM,
New York, NY, USA, 159–164. https://doi.org/10.1145/2159616.2159643

Yuxiang Wang, Chris Wyman, Yong He, and Pradeep Sen. 2015. Decoupled coverage
anti-aliasing. (08 2015), 33-42 pages.

Turner Whitted. 1980. An Improved Illumination Model for Shaded Display. Commun.
ACM 23, 6 (June 1980), 343–349. https://doi.org/10.1145/358876.358882

https://doi.org/10.1145/2461912.2462015
https://doi.org/10.1145/1944745.1944748
http://jcgt.org/published/0002/01/01/
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://doi.org/10.1145/1572769.1572787
https://doi.org/10.1145/2159616.2159643
https://doi.org/10.1145/358876.358882

	Abstract
	1 Introduction and Related Work
	2 Previous Temporal Antialiasing
	3 A New Algorithm
	4 Results
	5 Conclusions
	Acknowledgments
	References

