
Correlation-Aware Semi-Analytic Visibility for
Antialiased Rendering

Cyril Crassin
NVIDIA

Chris Wyman
NVIDIA

Morgan McGuire
NVIDIA

Aaron Lefohn
NVIDIA

Figure 1: Our approach (left) accounts for geometry semi-analytically, approaching 256× multisampled quality (see insets),
despite aggregating contributions from up to 50 triangles per pixel. The heatmap (right) shows per-pixel fragment counts.

ABSTRACT
Geometric aliasing is a persistent challenge for real-time rendering.
Hardware multisampling remains limited to 8×, analytic coverage
fails to capture correlated visibility samples, and spatial and tempo-
ral postfiltering primarily target edges of superpixel primitives.

We describe a novel semi-analytic representation of coverage
designed to make progress on geometric antialiasing for subpixel
primitives and pixels containing many edges while handling corre-
lated subpixel coverage. Although not yet fast enough to deploy, it
crosses three critical thresholds: image quality comparable to 256×
MSAA, faster than 64×MSAA, and constant space per pixel.

CCS CONCEPTS
• Computing methodologies→ Visibility; Rasterization;

KEYWORDS
Visibility, Filtering, Antialiasing

ACM Reference Format:
Cyril Crassin, Chris Wyman, Morgan McGuire, and Aaron Lefohn. 2018.
Correlation-Aware Semi-Analytic Visibility for Antialiased Rendering. In
HPG ’18: High-Performance Graphics, August 10–12, 2018, Vancouver, Canada.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3231578.3231584

HPG ’18, August 10–12, 2018, Vancouver, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in HPG ’18: High-
Performance Graphics, August 10–12, 2018, Vancouver, Canada, https://doi.org/10.1145/
3231578.3231584.

1 INTRODUCTION
The aliasing artifacts of flicker, jaggies, and edge crawl in rendered
images arise due to undersampling of geometry, materials, and
shading. Important progress on reducing these artifacts has allowed
the industry to produce useful real-time applications, but no current
approach seems likely to solve the underlying aliasing problem
while also scaling with scene complexity.

GPU-based supersampling is limited to eight samples per pixel,
as adding samples linearly increases space and cost with diminish-
ing returns. Analytic solutions have inherent performance limits
[Auzinger et al. 2013; Catmull 1978] or restrict the geometry [Loop
and Blinn 2005; Manson and Schaefer 2013]. The best temporal post-
processing fails on subpixel features and overblurs large ones [Karis
2014] as it builds on aliased inputs. Prefiltering methods [Crassin
et al. 2009; Lacewell et al. 2008; Neyret 1998; Qin et al. 2014] often
filter poorly, especially for correlated visibility (e.g., objects lined
up in depth), and require redesigning scene data structures.

Given aliasing’s significance the difficulty existing techniques
have with severely minified geometry, we believe it requires a fresh
start, even if initial prototypes do not achieve the performance re-
quired by today’s games. We isolate geometric aliasing and propose
a radical approach, resurrecting the classic A-buffer and making it
scalable. A-buffering has two logical parts: accumulate fragments,
and then resolve them. A scalable (i.e., constant space and linear
time) method must perform those simultanously as an on-line al-
gorithm. The resolve step determines image quality, which is a
prerequisite for relevance.

This short paper introduces a novel, scalable, constant-space,
linear-time resolve step. For simplicity and flexibility, our strawman

https://doi.org/10.1145/3231578.3231584
https://doi.org/10.1145/3231578.3231584
https://doi.org/10.1145/3231578.3231584

HPG ’18, August 10–12, 2018, Vancouver, Canada Crassin et al.

Figure 2: We represent geometry with (left) analytic cover-
age and filtered color, (center left) a sampled coverage mask,
and (center right) a depth range and depth plane. Aftermerg-
ing primitives,we store (right) adepth slabwith an aggregate
plane and bounds containing all merged primitives.

accumulation step presents fragments in depth order using an A-
Buffer [Carpenter 1984]. Our results show achieved image quality
comparable to 64 − 256× supersampling. We thus propose this as
a promising, if initial, step to some ultimate visibility algorithm.
Preprocessing to eliminate the A-buffer storage, fragment sort, and
enable fully streaming triangle processing is important future work.

Our key differences from prior work include:
• We use a discrete fragment coverage mask, but only to de-
termines if the our fragment is correlated, anti-correlated,
or uncorrelated with existing pixel geometry,

• We also use an analytic coverage, allowing us to accumulate
subpixel triangles finer than our coverage mask,

• Unlike prior techniques, our geometric representation for
pixel aggregates allows us to merge interpenetrating primi-
tives. We assume uniform geometric distribution where we
are uncertain of correlation behavior.

2 ALGORITHM
Our resolve algorithm extends the ideas of discrete coverage masks,
previously used for antialiasing [Crassin et al. 2015; Jouppi and
Chang 1999; Kerzner and Salvi 2014; Wang et al. 2015], order-
independent transparency [Wyman 2016], and fragment aggrega-
tion methods [Crassin et al. 2015; Salvi et al. 2011; Salvi and Vidimče
2012]. These representations alone: do not degrade gracefully when
processing geometry finer than the coverage mask, decoupling
depth and coverage often fails when triangles interpenetrate, and
previous aggregates fail on correlated visibility. However, combin-
ing aspects of these algorithms helps address their limitations.

2.1 Geometric Representation
As shown in Figure 2, we represent each fragment with:
α : analytic scalar coverage computed from edge equations
M : coverage bit mask from table lookup [Waller et al. 2000]
S : oriented slab (initially just the triangle’s plane) expressed as

plane coefficients and thickness
zmin, zmax: depth range within the pixel
C: color, assumed to exhibit no shading or material aliasing
Recall that we target just geometric aliasing, combining fragment
colors based on primitive visibility within the pixel. We store two
coverage measures: our analytic value has exact magnitude while
our mask encodes spatial distribution. Analytic coverage represents
the normalized area of the triangle clipped to the pixels. When

Figure 3: Whenmerging, we start with an aggregate of prior
fragments (left), with coverage, depth slab, and z-range. An
incoming fragment (center left) has its own coverage, depth
plane, and z-range. We identify regions of no overlap (blue),
where the fragment is closer (green) or further (red) than
the aggregate, or the two may interpenetrate (yellow). After
applying our merge rules (right), we get a new aggregate.

Figure 4: After identifying overlapping samples (left), we
find those in front, behind, and interpenetrating our aggre-
gate (right). To partition samples, we intersect the fragment
z-plane with the front and back of the aggregate depth slab
and project these intersections onto the pixel.

intergrating visibility, we assume this analytic area is uniformly
distributed among the covered discrete mask samples.

To achieve constant per-pixel storage, in anticipation of a future
streaming algorithm, all fragments at a pixel are aggregated into a
single representation as they pass through the resolve step. Thus,
the fragment and the aggregate pixel representation are the same;
we use the subscript ‘a’ to distinguish aggregate properties.

2.2 Merging a Fragment
The resolve operation simply merges each fragment in turn into
a pixel’s aggregate. The final pixel color is C ′

a, the final aggregate
color. The merge operation for a fragment comprises four steps:

(1) Partition xy into fragment-distinct, aggregate-distinct, and
overlapping subpixel regions by the coverage masksM

(2) Within the overlapping xy, further partition into three z
regions by comparing the slabs S and depth ranges: strictly
in front (over), strictly behind (under), and [potentially]-
interpenetrating

(3) Separately merge the xy regions and the z-interpenetrating,
z-over, and z-under fragment regions with the aggregate

(4) Combine the independently-merged regions into an updated
representation of the aggregate

Partition via coverage. We compute the xy-overlap between frag-
ment i and the aggregate by bitwise-ANDing their coverage masks
(Mi &Ma). The fragment-distinct region is (Mi & ∼Ma), the aggre-
gate-distinct region is (∼Mi &Ma), and the uncovered region is
(∼Mi & ∼Ma).

Correlation-Aware Semi-Analytic Visibility for Antialiased Rendering HPG ’18, August 10–12, 2018, Vancouver, Canada

Partition overlap. In overlapping xy-regions, we further classify
subpixel samples (see Figure 4). Samples can clearly lie in front or
behind the aggregate. But fragment samples can also lie within the
aggregate’s depth slab, where we cannot identify which is closest. In
that case, we assume an uniform distribution of aggregate geometry
inside the slab, and we classifies those samples as fuzzy.

Merge separate regions. After partitioning our discrete samples,
we blend their contributions together. Within each region, we com-
pute the merged color as:

C ′
a =

Ca · ba +Ci · bi
ba + bi

,

For blending factor b, that we compute differently in each region:
• Only covered by the fragment: bi = 1, ba = 0
• Only covered by the aggregate: bi = 0, ba = 1
• Fragment over the aggregate: bi = α li , ba = α la(1 − α li)

• Aggregate over the fragment: bi = α li (1 − α la), ba = α la
• Interpenetrating regions: bi = α li (1 − ∆), ba = α la∆.

Here α l = α × 32
|M |

represents the fragment- or aggregate- local
analytic coverage value. It is the global α value of the fragment or
aggregate normalized by the ratio of the coverage bits enabled in
the associated maskM to the total coverage bits in our mask (we
use a 32-bit coverage mask).

∆ is the degree of interpenetration, describ-
ing the relative fragment position within the
aggregate’s depth slab. We compute fragment
i’s centroid within the fuzzy region. We com-
pute the triangle’s depth and aggregate slab
extents at this centroid. Then ∆ represents a
ratio of the relative distances, shown at right.

Combining regions. After aggregating in each region, we combine
into our new aggregate using the regions’ relative coverages:

C ′
a =

∑
w jC

′
j , α ′

a =
∑

w jα
′
j ,

For j iterating over our 5 subpixel regions, andw j being the ratio
of coverage bits in a region to the total coverage bits in our mask.

Our new aggregate mask is (Mi |Ma). For the new aggregate’s
depth slab, the plane is a final coverage-weighted blend of the prior
planes. The slab extent depends on the maximal distance from the
fragment to the combined plane (or the input slab extent, if larger).

2.2.1 Handling Tiny Triangles. When a triangle covers no sam-
ples in its bitmask, but has non-zero analytic area, we activate a
single sample in the mask (closest to the triangle’s center position),
in order to locate the analytic coverage. To handle connected tiny
triangles, we also assume anti-correlation over the overlapping
regions (instead of de-correlation): bi = α li , ba = min{α la, 1 − α li }

2.3 Rendering With This Representation
Above we described our subpixel aggregate and how to merge with
incoming fragments. But the order of incoming fragments also
matters. Since we aggregate into a scalar visibility, this behaves
similar to order-independent transparency.

To simplify development, we started by assuming our fragments
arrive in sorted order. We first create an A-buffer [Carpenter 1984],

than traverse each pixel’s fragments from front-to-back, sequen-
tially merging each into our aggregate.

Obviously, this simplifies the problem. But order-independent
transparency research has shown that multilayer techniques [Salvi
and Vaidyanathan 2014] can closely approximate out-of-order prim-
itives even when the merge operator relies on sorted geometry.

We have a promising initial multilayer prototype using multiple
aggregates, but have not robustly addressed all corner cases or yet
fully optimized performance bottlenecks.

3 RESULTS
We evaluate image quality on scenes exhibiting different character-
istics in terms of geometric distributions. The classroom in Figure 1
exhibits heterogeneous density with some pixels containing over
50 fragments, due to highly-tessellated geometry. Often such frag-
ments arise from connected triangles in a mesh, so they have similar
depth ranges with perfect anti-correlation. We get comparable qual-
ity to 256×multisampling but render 7× faster, even with our naive
accumulation and fragment sort. One of the hardest cases in this
scene is the draw string on the window blinds, which is modeled as
separate braided subpixel strands of thread. Absolute performance
for this scene at 720p on Titan V is 30.2ms for our method, 198ms for
256×MSAA, 78ms for 128×MSAA, and 24ms for 32×MSAA. For
fair comparisons, we implemented those high MSAA rates using a
combination of super-resolution and 8× hardware MSAA.

Figure 5 (top) shows a uniformly high-density hairball, where
all triangles are subpixel. The challenge here is capturing the net
opacity versus the background. Hardware 8×MSAA fails for this;
at least 64× supersampling is needed to converge.

The boat in Figure 5 (bottom) has thin details on the rigging
and around windows, but more complex materials and shading
than the hairball. It requires 256× supersampling for convergence
of the shading on the braided ropes. Our accompanying video
demonstrates our analytic integration provides extremely stable
results under motion.

The total memory required for per-pixel aggregate storage is 32
bytes per pixel, which is less than an 8× MSAA buffer. In total, our
analytic method approaches the quality of 256× MSAA with only
the coverage mask requirement of 32×/memory requirement of 8×
MSAA and runs faster than 64×MSAA. We therefore conclude that
our method shows promise for tackling geometric aliasing under
extreme minification.

4 DISCUSSION
This short paper demonstrates a promising new approach to solving
the fundamental geometric aliasing problem for rasterization.

To enable fast iteration while developing our resolve step, we
relied on an A-buffer rather than streaming fragments in primitive
order. This imposed a significant performance overhead in exchange
for simplifying aggregation due to a guarantee of ordered inputs.
The next stage for geometric aliasing is to eliminate the A-buffer,
either by making the aggregation process more robust to ordering
or by prefiltering the primitives themselves before rasterization,
effectively pushing the aggregation process into the geometric
model as a new form of level of detail or coverage representation.

HPG ’18, August 10–12, 2018, Vancouver, Canada Crassin et al.

Figure 5: Suzanne’s Revenge (courtesy of Greg Zaal, blendswap.com) and hairball rendered using our visibility representation,
at low resolution to exacerbate aliasing. 8x MSAA is the best natively supported by GPUs, 32x MSAA has same coverage bit as
our method, at 64x MSAA our prototype is already faster than multisampling, and 256x MSAA is our target quality.

Due to shader level of detail and MIP-maps, shading and material
aliasing are less urgent problems than geometric aliasing. However,
as all current solutions there are biased towards blur or energy loss,
they also remain important open areas for future work.

While our representation using coverage masks helps address
leaking due to correlations of coverage, it doesn’t fully solve it,
partly due to precision issues with the handling of intersections
and partly due to the assumption of uniform distribution of analytic
coverage inside covered sampled.

REFERENCES
Thomas Auzinger, Przemyslaw Musialski, Reinhold Preiner, and Michael Wimmer.

2013. Non-Sampled Anti-Aliasing. In Proceedings Vision, Modeling and Visualization.
169–176.

Loren Carpenter. 1984. The A-buffer, an antialiased hidden surface method. In Pro-
ceedings of SIGGRAPH. 103–108.

Edwin Catmull. 1978. A Hidden-surface Algorithm with Anti-aliasing. In Proceedings
of SIGGRAPH. 6–11.

Cyril Crassin,MorganMcGuire, Kayvon Fatahalian, andAaron Lefohn. 2015. Aggregate
G-buffer Anti-aliasing. In Symposium on Interactive 3D Graphics and Games. 109–
119.

Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. 2009. GigaVoxels
: Ray-Guided Streaming for Efficient and Detailed Voxel Rendering. In Symposium
on Interactive 3D Graphics and Games.

Norman P. Jouppi and Chun-Fa Chang. 1999. Z3: An Economical Hardware Technique
for High-quality Antialiasing and Transparency. In Graphics Hardware. 85–93.

Brian Karis. 2014. High-quality temporal supersampling. In SIGGRAPH Course Notes:
Advances in Real-Time Rendering in Games.

E. Kerzner and M. Salvi. 2014. Streaming G-buffer Compression for Multi-sample
Anti-aliasing. In Proceedings of High Performance Graphics. 1–7.

D. Lacewell, B. Burley, S. Boulos, and P. Shirley. 2008. Raytracing prefiltered occlusion
for aggregate geometry. In Symposium on Interactive Ray Tracing. 19–26.

Charles Loop and Jim Blinn. 2005. Resolution independent curve rendering using
programmable graphics hardware. ACM Transsactions on Graphics 24, 3 (2005),
1000–1009.

Josiah Manson and Scott Schaefer. 2013. Analytic Rasterization of Curves with Poly-
nomial Filters. Computer Graphics Forum 32, 2 (2013), 499–507.

Fabrice Neyret. 1998. Modeling, Animating, and Rendering Complex Scenes Using
Volumetric Textures. IEEE Transactions on Visualization and Computer Graphics 4,
1 (Jan. 1998), 55–70.

Hao Qin, Menglei Chai, Qiming Hou, Zhong Ren, and Kun Zhou. 2014. Cone Tracing
for Furry Object Rendering. IEEE Transactions on Visualization and Computer
Graphics 20, 8 (Aug. 2014), 1178–1188.

Marco Salvi, Jefferson Montgomery, and Aaron Lefohn. 2011. Adaptive Transparency.
In Proceedings of High Performance Graphics. 119–126.

Marco Salvi and Karthik Vaidyanathan. 2014. Multi-Layer Alpha Blending. In Proceed-
ings of the Symposium on Interactive 3D Graphics and Games. 151–158.

Marco Salvi and Kiril Vidimče. 2012. Surface Based Anti-aliasing. In Symposium on
Interactive 3D Graphics and Games. 159–164.

Marcus D. Waller, Jon P. Ewins, Martin White, and Paul F. Lister. 2000. Efficient
Coverage Mask Generation for Antialiasing. IEEE Comput. Graph. Appl. 20, 6 (Nov.
2000), 86–93.

Yuxiang Wang, Chris Wyman, Yong He, and Pradeep Sen. 2015. Decoupled Coverage
Anti-aliasing. In High-Performance Graphics. 33–42.

Chris Wyman. 2016. Exploring and Expanding the Continuum of OIT Algorithms. In
High Performance Graphics. 1–11.

	Abstract
	1 Introduction
	2 Algorithm
	2.1 Geometric Representation
	2.2 Merging a Fragment
	2.3 Rendering With This Representation

	3 Results
	4 Discussion
	References

