
Phantom Ray-Hair Intersector

Alexander Reshetov, David Luebke
NVIDIA

a. straight hair, 400000 b. curly hair, 1112954 c. furry bunny, 1508665 d. furball, 1600000 e. hair sphere, 1000000 f. hair ball, 1000000

45.04 fps; 145M 36.02 fps; 105M 43.64 fps; 115M 30.94 fps; 83M 26.95 fps; 86M 54.41 fps; 169M

10-8 10-7 10-6 2 10-5 3 10-4 4 10-3 6 10-2 7 10-1 8 1 9

6× 10−7 2.28 7× 10−6 2.53 4× 10−6 2.40 1× 10−5 2.66 3× 10−5 3.57 7× 10−5 2.82

Figure 1. Different models rendered with our technique and number of curves in the model. Second line: the achieved frame
rate on a Titan Xp and the total number of rays traced per second, including one primary ray for each pixel at 1000×1000

screen resolution and four ambient occlusion rays for each hit point. For each model, the bottom row gives the average error in
curve parameter t (left) and the number of iterations (right). The corresponding inserts show these values for each primary ray
according to the heatmap strip in the middle.

ABSTRACT

We present a new approach to ray tracing swept volumes
along trajectories defined by cubic Bézier curves. It performs
at two-thirds of the speed of ray-triangle intersection, allowing
essentially even treatment of such primitives in ray tracing
applications that require hair, fur, or yarn rendering.

At each iteration, we approximate a radially symmetric
swept volume with a tangential cone. A distance from the ray-
cone intersection to the cone’s base is then used to compute
the next curve parameter t. When this distance is zero, the
ray intersects the swept volume and the cone at the same
point and we stop the iterations. To enforce continuity of the
iterative root finding, we introduce “phantom” intersection,
padding the cone until it touches the ray if the ray-cone
intersection does not exist.
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1 INTRODUCTION AND PRIOR ART

Rasterization renderers send a list of 3D primitives into a
graphics pipeline in which each primitive is projected onto
a screen and sampled at the screen resolution cadence. Ray
tracing applications reverse this process: primary rays are
defined by screen pixels and traced through the scene, poten-
tially generating secondary rays. The ray tracing approach
corresponds more closely to the asset production and uti-
lization logic in film [Christensen and Jarosz 2016; Fascione
et al. 2017], while rasterization has historically been used in
games.

When primitives are triangles, the cost of finding the ray-
triangle intersection is tantamount to solving a linear system;
resolving a triangle’s pixel coverage during rasterization is
also a linear problem. For such primitives, performance char-
acteristics of these two techniques stem from other issues
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Figure 2. The closest point of approach (CPA) failure cases.
The minimum distance between the green ray and the curve
is achieved at t = 0.83, whereas the ray intersects the swept
volume at t = 0.43. The minimum distance between the yellow
ray and the curve at t = 0.2 is 40% bigger than the volume’s
radius at this position. Therefore, it is rejected. Yet, the ray
intersects the volume at t = 0.92.

(number of pixels vs. number of triangles, occlusion, retained
vs. immediate processing modes, etc).

The situation is different for higher order primitives. For
rasterization, sampling in a parametric domain has a mod-
erate and predictable cost. Finding a ray-primitive inter-
section though involves solving non-linear equations, which
is typically carried out through iterations [Benthin et al.
2006; Kajiya 1982]. The traditional way of sidestepping these
problems—by using off-line tessellation—necessitates main-
taining assets in the two different formats. It also goes against
the general trend of relying on run-time computations instead
of using pre-processed data.

In hair and fur rendering [Ward et al. 2006], off-line tessel-
lation might be prohibitively expensive. For this reason, the
prevalent approach is to tessellate at run-time by dynamically
splitting a curve’s parametric domain until a curve fragment
can be safely approximated with a straight line [Barringer
et al. 2012; Chiang et al. 2015; Nakamaru and Ohno 2002;
Qin et al. 2014; Woop et al. 2014]. Recently, Reshetov [2017]
proposed to eliminate the linearization step altogether by ex-
ploiting the advanced algebraic properties of the underlying
polynomials.

In all these methods, the point on the curve closest to the
ray is found first. The distance d from this point to the ray is
then compared with the curve’s maximum half-width at this
point r(t). If d < r(t), the ‘intersection’ is asserted and the
shading normal is constructed. Such methods—called “the
closest point of approach” or CPA—were first developed in
nautical science [Morrel 1961] to reduce ship collisions.

The CPA ‘intersection’ might be quite different from the
actual one. For variable r(t), it is also possible to miss one as
well, as explained in Figure 2. The CPA method is acceptable
when r(t) is small and is not changing quickly. Even in this
case, it introduces artificial high-order frequencies in the
rendered image that are manifested when a ray and a curve
directions are close. Since such frequencies are caused by the
systematic errors, they cannot be removed with either pixel
oversampling or additional curve splitting.

CPA is commonly used in practice since it is computa-
tionally simpler than computing ray-surface intersections.
For cubic curves, finding the closest distance is algebraically
equivalent to finding roots of a 5th degree polynomial. For
bona fide ray-swept sphere intersection, van Wijk [1985]

shows that the degree of the polynomial is 10, provided the
degree of r(t) is less or equal to 3. Note also that sometimes
it might be advantageous to pad a very thin hair viewed from
a distance to facilitate antialiasing. The Arnold system [2018]
allows to make extremely thin hair strands thicker in screen
space while at the same time making them transparent.

The credit for thoroughly exploring the mathematical ap-
paratus in ray-swept volume intersections goes to van Wijk
[1985] and Bronsvoort and Klok [1985]. They also suggested
subdivision as the preferred way of finding such intersections.

We build on these contributions and propose a solution that
is well-suited for GPU. We consider only radially symmetric
swept volumes defined by a parametric radius r(t). At the
core of our algorithm is a ray-cone intersector in a ray-centric
coordinate system. Ordinarily, for a thin hair, a probability of
a ray-cone intersection is low. We reformulate the intersector
so it always returns the intersection. If there is no geometric
intersection as such, we pad the cone until the ray just touches
it. Such “phantom” intersections help guide the iterative
process toward the actual closest intersection (if it exists).
We also update ray and curve parameters in unison and come
up with an iterative scheme that has a simple geometric
interpretation and requires only two or three iterations in
most cases.

We describe the basic ideas behind our approach in sec-
tion 2, followed by CPU and GPU implementation details
in section 3. Our CPU version, while finding the exact in-
tersections, still improves performance by about 25%, in
comparison with the fastest CPA implementation [Reshetov
2017]. To take advantage of a throughput-oriented GPU
architecture, we simplified and streamlined our algorithm,
achieving two-thirds of the performance of the optimized
ray-triangle intersector in the OptiX system [Parker et al.
2010]. This result was quite unexpected, given the non-linear
nature of a swept volume primitive. In section 4, we provide
the relevant statistical data in order to quantify the execution
aspects of our algorithm.

We consider only issues related to a geometric ray-primitive
intersection. Modeling of such a complex phenomenon as
light-hair interaction is extensively discussed in work of other
researchers [Andersen et al. 2016; Chiang et al. 2015; Wu
and Yuksel 2017; Yan et al. 2015].

2 BASIC IDEAS

The swept volume is constructed by dragging a circle with a
variable radius r(t) along the trajectory defined by a given
curve c(t).

A ray-swept volume intersection point is defined by the
parameter s along the ray o + s d; we also need the corre-
sponding parameter t on the curve to compute the surface
normal. When the curve is a straight line and the radius r(t)

is linear, the swept volume is a cone. In such a case, s is the
smallest root of the quadratic equation for the ray-cone inter-
section (i.e. one that is closest to the ray origin). Parameter
t can be subsequently computed by finding a distance from
the intersection point to the cone’s base plane.
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Figure 3. In the CPA method, the length of vector vr(t) from a point on the curve c(t) to ray o + s d is minimized. For the
green ray, this minimum is at tmin. To find ray-swept volume intersections, we consider the plane passing through c(t) that is
orthogonal to the curve’s tangent vector c ′(t). The ray intersects this plane at p(t) = o + sp(t) d, where sp(t) is given by (2).
Once the length of the vector vc(t) from p(t) to c(t) is equal to the radius of the swept volume r(t), the ray intersects the swept
volume (at point px for the green ray). However, the equation |vc(t)| = r(t) is difficult to solve numerically. Instead, we search
for the roots of ∆t(t) function, which is described in Figures 4 and 5. Two charts show the functions that can be used to find
the intersections (left chart for the green ray, and right—for the yellow).

Figure 4. Three iterations of the phantom algorithm. At initial
t1, the ray does not intersect the corresponding tangent cone,
but it touches the padded cone. We project the intersection
point to the cone’s base to find the next t2 = t1 +∆t(t1) and
repeat the process until ∆t ≈ 0.

In a general case, we could iteratively apply the similar
technique. We start at t1 and consider the cone with the
base defined by the swept volume circle at t1. In the case
shown in Figure 4, the ray will not intersect such a cone, but
it will touch the padded cone. It allows us to find the next
t2 = t1 + ∆t(t1). The function ∆t(t) is a distance between
the ray-cone intersection and the cone base, multiplied by the
length of the curve’s tangent vector c ′(t1)—which is also the
cone axis—as shown in Figure 5. Two additional iterations
converge to the intersection point at t3. Note that the ray
will intersect the swept volume and the cone defined by t3 at

the same point and t3 is a root of the equation ∆t(t) = 0. If
the subsequent ∆t values have the opposite signs, they can
be furnished into the secant method to find the zero-crossing
of the abscissa axis for better accuracy. We will now describe
the details of this algorithm.

2.1 Notation

A cubic Bézier curve can be represented as either Bernstein
or a univariate polynomial by

c(t) = (1− t)3w0 + 3(1− t)2tw1 + 3(1− t)t2w2 + t3w3

c(t) = u0 + u1t+ u2t
2 + u3t

3 (1)

where wi and ui are 3D vectors and t ∈ [0, 1] is a scalar
parameter. Endpoints of the curve (corresponding to t = 0

and t = 1) are w0 and w3 (Figure 3).
A length of the shortest vector vr(t) from a point on the

curve c(t) to ray o + s d with origin o and unit direction d

can be found by using properties of right triangles. It is equal
to the length of the cross product vector (c(t) − o)× d (this
is shown as blue plot in Figure 3). Vector vr(t) is orthogonal
to the ray and it could intersect the ray at a negative or a
positive value of the ray’s parameter s.

Let’s now consider the plane passing through c(t) that
is orthogonal to the curve’s tangent vector c ′(t). The ray
intersects this plane when s is equal to

sp(t) =
(c(t) − o) · c ′(t)

d · c ′(t)
(2)
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Figure 5. For a given t1, we find ray-cone intersection p1
and its projection q1 on the cone’s base plane that passes
through c(t1) and has normal c ′(t1). It allows to set t2 =

t1 + ∆t(t1) = t1 + (p1 − q1) · c ′(t1).

Vector vc(t) connects c(t) with the ray-plane intersection
point p(t) = o + sp(t) d. By design, it is orthogonal to
c ′(t). We use subscript r for vectors orthogonal to the ray,
and subscript c for vectors orthogonal to the curve. When
|vc(t)| = r(t), the ray intersects the swept volume. Such
intersections come in pairs: one for the ray entering the
volume and another for exiting (these two points coincide
in a tangential hit). Among all such t-values in all possible
pairs, we are interested in one that yields the intersection
closest to the ray origin.

It is easy to compute |vc(t)| as a length of the vector from
the point on the curve to the ray-plane intersection. Never-
theless, solving |vc(t)| = r(t) is not very accommodating if
we are interested in ray-swept volume intersections. First, we
have to differentiate between entry and exit positions. Addi-
tional computations are required to find the ray’s parameter
s for the found roots (generally, we need the smallest positive
s). There could be numerical issues when the denominator in
(2) is close to 0. The biggest problem though is that in such
situations (d · c ′(t) ≈ 0), i.e. when a ray is almost orthogo-
nal to a curve, function |vc(t)| is very steep and finding its
intersections with r(t) can be challenging (the yellow ray in
Figure 3).

2.2 Phantom Intersector

The basic step of our algorithm is a ray-cone intersection
(Figures 4 and 5). Starting at t = t1, we set t2 = t1 +∆t(t1)

using the intersection of the ray with the cone that has axis
c ′(t1) and base centered at c(t1). The base radius is r(t1)

and the cone’s slant is r ′(t1), both of which are defined by
the hair model.

To compute function ∆t(t1), we consider a point a =

c(t1) + c ′(t1)∆t on the cone axis. Let p1 = o + s1d be the
intersection of the ray with the plane that passes through
a and has normal c ′(t1), When |p1 − a| = r(t1) + r ′(t1)∆t,
the ray intersects the cone. Using the (p1 − a) · c ′(t1) = 0

identity, we can eliminate ∆t and get a quadratic equation

for the ray’s parameter s. We only need the smallest root, i.e.
one that yields an intersection that is closer to the ray origin.
Once the root s1 is found, we set ∆t = (p1 − q1) · c ′(t1),
where q1 is the projection of p1 to the cone’s base plane.

If the determinant of the equation for s is negative, we set
the determinant to 0. Such a “phantom” solution (shown in
Figure 4, left) still allows us to move closer to the actual ray-
swept volume intersection, and using it produces branch-free
code for one iteration of our algorithm.

At this point, we could either continue this process to get
t3, or—which is numerically more accurate—find the zero
crossing of the line passing though two 2D points [(t1, ∆t(t1)]
and [t2, ∆t(t2)]. We use this regula falsi (“false position”)
method, credited to ancient Babylonian mathematicians, if
∆t(t1) ∆t(t2) < 0, otherwise we set t3 = t2 + ∆t(t2).

This process yields a sequence of the alternating t and s

values {t1, s1, t2, s2, t3, s3, . . .}. Weaving computations of
these two parameters results in a rapid rate of convergence, re-
ducing the error by over 100X at each iteration (to obtain this
estimation, we compute the ratio of log10(error_reduct ion)

to number_of_iterat ions using data in Figure 1). Even
though in a general case regula falsi converges linearly, we
take advantage of the fact that in a typical hair model, curve’s
curvature is not changing rapidly. As an added benefit, once
accuracy requirements are satisfied (section 3) and we have a
real intersection—not a phantom one—we get both s and t at
once. This enables us to immediately compute the hit point
and the surface normal. All such computations are especially
simple in a ray-centric coordinate system (RCC) in which
one of the axes is ray direction d. We provide our C++/Cuda
implementation in Appendix A as a reference and also to
facilitate the discussion of the performance bottlenecks in
section 4.

2.3 Roots of ∆t Function

∆t function is designed to “predict” its roots. When a curve
is a straight line, it is a linear function. In a general case, we
search for its roots, eliminate phantom ones (for which the ray
only touches the padded cone), and choose the intersection
closest to the ray origin. To design a cost-efficient strategy,
let’s consider a few examples.

The ray enters the swept volume of the top curve in Fig-
ure 6 at two points. Yet, ∆t function has three roots. The
middle root corresponds to the phantom value. If we start
iterations at t = 0, we will converge to root t1, if we start
at 1—to t3. We generally need root t1 since it is closer to
the ray origin. This is a typical situation when a curve is
arc-shaped and a ray enters its swept volume at two points.

The left part of the middle curve is similarly shaped and
∆t function has three roots on [0, 0.5] interval. Yet the whole
curve is zigzag-shaped and there are two additional (phantom)
roots. Starting at t = 0, we will converge to t1, at 1—to t5.
Yet, the correct solution is t3. If this curve were split, we
would not have any problems.

Characteristically, starting at the bottom curve’s end-
points, we find the correct intersection since it is not occluded
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Figure 6. Three examples of ∆t function. Starting at curve’s
endpoints, we find the correct ray-swept volume intersection
for the top curve (t1), but not for the middle one (t3). Split-
ting the middle curve allows to find the correct root. The ray
enters the bottom curve at three separate places. We find the
right root (t1) since it is closest to t = 0.

by the phantom roots. For other rays though we might miss
an intersection. Splitting such zigzag curves will take care
of this problem. It makes sense to split such curves at mini-
mums of the curvature κ = |c ′ × c ′′|/|c ′|3 (indicated by green
circles in Figure 6). Such positions—called curve’s vertices—
represent the salient points on the curve [Fuster and Sedykh
1995; Yan et al. 2017b]. We could also find the roots of the
cubic polynomial c ′ × c ′′′ · c ′ × c ′′, which is obtained by
differentiating the numerator of κ2. It is computationally
simpler and yields positions at which κ ′

≈ 0. We numerically
validated this conjecture for arbitrary curves (it requires no

more than 2 splits since a function maximum separates its
minimums). For the real models, it is even simpler to perform
the additional uniform splits (we use 8 segments for hair mod-
els in this paper). It yields a good acceleration structure and
allows finding all intersections with a very simple strategy:
starting iterations only at segment’s endpoints.

There is another possible optimization for curves for which
c ′(t) · (w3 − w0) > 0 for any t ∈ [0, 1], i.e. when the curve’s
tangent goes in the same direction as the base of the curve.
This is true for any curve in all real models we have exper-
imented with, let alone the split segments. We then could
start iterations at the curve’s endpoint closest to the ray
origin. For the top curve in Figure 6, it will be t = 0. If
we find the real intersection, we then return it immediately,
without processing the other endpoint (t = 1). It improves
performance by less than 1% but has no detrimental impact
on the quality. Strictly speaking, this tweak is not correct for
the self-overlapping volumes with r(t) commensurable with
the curvature radius as in Figure 15. We assume that for real
models this will not happen.

Note that the intersection defined by t1 for the top curve
is a superficial one and ∆t function has phantom values near
it. Yet, it is continuous and finding t1 is easy. The situation
with root t2 is different. ∆t function changes from −∞ to
+∞ at t2. Geometrically, this corresponds to the ray parallel
to the cone’s line segment. Ordinarily, this would not result
in the swept volume intersection and can be safely ignored.
The only situation when this is not true is when the ray
just touches the swept volume at a single point and it is
parallel to the curve’s tangent. During iterations, we cap the
absolute ∆t values by 0.5 and our iterative scheme (section
3.3) degenerates to bisection in such a case. This increases
the total number of iterations, especially when there are no
intersections but the ray comes near the curve (Figure 11).

2.4 Non-linear r(t)

All available hair and fur models, which we have tested
(Figure 1a–d), have linearly varying r(t). For a mostly linear
function, we could predict its behavior just by looking at its
values on a small interval. This is why an initial guess in the
∆t root finding algorithm is not very important.

To understand the possible limitations of our technique
in a more general case, we modulated curve’s width as
r(t) = 0.05 (0.25 + sin6 π t). Figure 7 shows a model
with 1000 of such randomized curves. It turns out that our
technique is still applicable with one minor modification: even
though r ′(t) can be analytically computed, we must use the
discrete derivatives

(

r(t2) − r(t1)
)

/(t2 − t1), etc. The cones
slanted by these values better capture the overall shape of the
swept volume around the curve. Without such modification,
it is possible to miss an intersection when starting at the
curve’s position at which r(t) is still mostly constant and
the ray is collinear with the curve direction. Models with
wildly varying r(t) would require more splits of the original
curve, but such splits are dictated by the logic of the optimal
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Figure 7. 1000 primitives with a non-linear r(t).

acceleration structure anyway. It also would be more appro-
priate to enforce the monotonic behavior of r(t) on the split
intervals, though we did not do so and still see artifact-free
rendering.

This model runs at 96 fps on an NVIDIA Titan Xp (4 ns
per ray). If we render one million similarly-shaped primitives,
the performance drops only by 50% since the majority of
the primitives become occluded, while the number of the
traversal steps increases only logarithmically.

When finding a ray-cone intersection, it is possible to
drop the terms proportional to r ′(t)2. Such modification is
implemented in Appendix A by undefining the KEEP_DR2

preprocessor macro. Both versions (with and without r ′(t)2

terms) work for all the tested models. For slowly changing r ′,
version without these terms is slightly faster. For the complex
model in Figure 7, the opposite is true: using all the terms
improves the performance by 0.2% by slightly reducing the
total number of iterations.

2.5 Buttend Hits

There is a non-zero probability of a ray hitting the swept
volume around the curve at its buttend (the base of the
corresponding cone), as happens for the yellow ray in Figure 8.
In such a case, ∆t will not be 0 and we have to handle it
separately from a general situation.

∆t is a non-linear function that could also have infinite
values (when a ray is parallel to cone’s surface). Fortunately,
in the practical cases when a ray does intersect the surface
at some angle, the function is almost linear. If we had used
vc(t)—ray-plane intersection—we would have got an opposite
behavior: easy cases with collinear directions and difficult

0.2 0.4 0.6 0.8
t

-0.4

-0.2

0.0

0.2

0.4

Δt(t)Δt(t)

Figure 8. Yellow ray hits the curve’s volume at t = 1 buttend
and root t = 0.43 has to be ignored. Red ray intersects the
volume near t = 0.2.

minimization problems in the practical situations. As a side
effect of computing ∆t values, we also find |vc(t)|. This allows
us to use both these functions jointly to our advantage.

In the inner loop of our technique, we iteratively look for
∆t roots. If the algorithm tells us to go beyond [0, 1] interval
and |vc| < r, we hit a buttend (there is ∆t root for the yellow
ray in Figure 8 at t = 1.04). A ray enters a buttend from the
outside if d · c ′(0) > 0 or d · c ′(1) < 0 for the two possible
buttends. In RCC, it is equivalent to using only z-component
of c ′ and can be expressed succinctly as t == cd.z < 0. If
this happens, we use the ray’s parameter for the ray-plane
intersection (variable sp in Appendix A).

In all examples in this paper we use a flat shading defined
by c ′ normal for buttend hits. In principle, this behavior
could be application-specific.

For connected curves, buttends will be occluded by the
adjacent swept volumes. We do not have to handle such cases
differently, as the ray-tracing logic will take care of it.

3 IMPLEMENTATION DETAILS

Generally, a ray-primitive intersector has to test for the
existence of the intersection and then find the hit point and
the surface normal. We carry it out through the following
steps:

3.1. Check the ray against the curve’s enclosing cylinder.
Exit if no such intersection exists.

3.2. Transform the curve into the ray-centric coordinate
system.

3.3. Iterate on t ∈ [0, 1] interval as
• If ∆t(0) < 0 and ∆t(1) > 0, ignore the interval.

(3)

• Start iterations at t = 0 if (w3 − w0) · d > 0, or
at t = 1 otherwise (start at the “closer end”).

• Test for convergence. If the intersection is found,
report it, otherwise start at the other endpoint.

We implemented this algorithm on CPU in PBRT system
[Pharr et al. 2016] and on GPU (OptiX [Parker et al. 2010])
using axis-aligned bounding volume hierarchy (BVH) acceler-
ation structure. Now we will describe algorithm (3) in more
detail.
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Figure 9. ∆t function for three rays roughly collinear with the
curve. We have to find its roots before eliminating them. We
could avoid testing the red ray since it does not intersect the
curve’s enclosing cylinder.

3.1 Early Exit Check

It is possible to precompute the enclosing cylinder for the
swept volume. It is easier though to find such a cylinder for
the curve itself and then pad it by rmax = maxt∈[0,1] r(t)

expressly as:

4.1. Set the enclosing cylinder’s axis de to w3 − w0, i.e.
the difference c(1) − c(0) in (1). Compute a point
on the axis oe =

(

(w3 + w0)/2+ c(0.5)
)

/2.

4.2. Find a conservative maximum distance de from the
points on the curve to this axis.

(4)

This is a heuristic algorithm that works well in practice.
We choose the cylinder to go in the same direction as the
curve’s base w3 − w0. We then average the middle point of
the base and the point on the curve at t = 0.5 and stipulate
that the cylinder’s axis goes through this point. At the last
step, we split the curve a predefined number of times and
compute the maximum distance from the resulting control
points to the axis.

We rule out the intersection if the distance between the
ray and the enclosing cylinder axis is greater than rmax+de.
The square of such distance can be computed as

n = d × de

d2re =
((o − oe) · n)2

n · n

(5)

Note that we perform these computations before transform-
ing the curve to RCC and that dre is the distance between
lines (ignoring the finite cylinder height). Consequently, this
check might not resolve the cases when a ray is at a significant
distance from the enclosure but comes close to its axis well
outside the curve’s bounding box. For example, this happens
for the green ray in Figure 9, but not the red ray.

More elaborate approaches, which we tested, do resolve
such cases but decrease the overall performance.

Figure 10 shows a few curves and enclosures computed
with algorithm (4). Its impact on performance is stated in
Table 1.

Figure 10. Enclosing cylinders help with early eliminations.

3.2 Ray-Centric Coordinate System

For rays that intersect both a leaf’s bounding box and its
enclosing cylinder, further computations are simplified by
transforming the curve’s coefficients ui (1) to a ray-centric
coordinate system in which o = {0, 0, 0} and d = {0, 0, 1}.
There is still one degree of freedom left in finding such a

transformation—rotation angle around axis
−→
od.

We tested three such transformations:

1. One suggested by Reshetov [2017] to eliminate cubic
term in one of the transformed curve coordinates.

2. class opt ix: :Onb in OptiX [2010] system.

3. The branchless version of Duff et al [2017].

The first transformation depends on curve’s coefficients
and it could additionally eliminate some tests by analyzing
the properties of the resulting polynomials. It helps with the
performance of the CPU version (section 3.4), which does not
use ray packets. For GPU, it has net negative effect. Instead,
we use Duff’s code that is about 10% faster by itself than the
customary version 2 and, yet, has similar accuracy.

3.3 Root Finding Technique

We designed ∆t(t) to directly predict the next t2 = t1 +

∆t(t1). Mostly, it is a well-behaved function, especially when
there is an intersection or a near-miss. In other cases, when a
ray is far away from a curve and collinear with the prevalent
curve’s direction, the absolute value of ∆t(t) could signifi-
cantly exceed 1. Yet, the function might still have a zero-
crossing on the t ∈ [0, 1] interval (Figure 9) and we have to
find it before discarding it.

The derivative-free regula falsi method calculates t values
iteratively as tn+1 = (∆tntn−1−∆tn−1tn)/(∆tn−∆tn−1)

and adjusts [tn, tn+1] bounds to keep the root bracketed.
To handle all cases uniformly, we clamp the magnitude of ∆t
by 0.5. For the green ray in Figure 9, the regula falsi with
the clamped values yields tn+1 = (tn−1 + tn)/2, i.e. the
bisection value. Once we come closer to the root and the
clamping is voided, the convergence becomes super-linear.

The regula falsi method generally converges to the root
faster than the bisection, though sometimes it gets stuck
on the one side of the root. There are many ways to han-
dle this [Wikipedia 2016], we use the simplest possible ap-
proach by switching to the bisection every 4th iteration:
i f (( iterat ion & 3) == 0) tnext = 0.5f * (tpos + tneg).
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Figure 11. The maximum number of iterations (36) in the
curly hair model (the ray does not intersect the volume).

The minimum number of iterations in our algorithm is 2.
It is achieved when we start at the endpoint closest to the ray
origin, compute t2 = t1 + ∆t(t1) and then ∆t(t2). If ∆t(t2)
is sufficiently small and the corresponding determinant is
positive, we declare the intersection. There is no need to
check the other endpoint due to the considerations discussed
at the end of section 2.2. In all examples in this paper we
stop iterations when ∆t < 5× 10−5. Once it happens and
the found root is a real one, we still could improve t with
the regula falsi, without calculating the next ∆t. This yields
another order of magnitude reduction in average error for
all real models in Figure 1. This setting requires less than 3
iterations on average.

Average error is a more stable benchmark than maximum
error while comparing hair intersection methods, since the
outcome is threshold-based (hit or no hit). For this reason, the
maximum error is very sensitive to the viewpoint, especially
for the tangential hits.

Typically, misses need more iterations than hits. For the
curly hair model, the maximum number is 36. We start at
t = 1 and progress slowly due to the small negative values of
∆t (Figure 11). Surprisingly, such outliers do not hinder the
performance, even on GPU, so we did not try improving the
convergence in such cases.

3.4 CPU version

We tested the phantom intersector in PBRT system [Pharr
et al. 2016], which is designed to trace single rays. Accordingly,
it benefits even from a low percentage test elimination if it
can be resolved quickly.

While converting a curve to a ray-centric coordinate sys-
tem, we set one of the RCC axes to normalized u3 × d. In
such a transformation, the corresponding cubic term vanishes
[Reshetov 2017], allowing to use the properties of quadratic
polynomials to eliminate some tests.

Indeed, the distance |vc(t)| from the ray-swept volume in-
tersection to c(t) is greater than the distance |vr(t)|. It follows
from the analysis of right triangles (in which a hypotenuse is
the longest side), as shown in Figure 3. Furthermore, since the
ray direction is {0, 0, 1} in RCC, |vr(t)| is greater than the qua-
dratic coordinate of the transformed curve c2(t). We can find
extrema of |c2(t)| for t ∈ [0, 1] and if min|c2(t)| > max r(t)

then |vc(t)| > max r(t), i.e. there is no intersection possible.
This helps eliminating about 5% tests for the curly hair

in Figure 1 and 3%—for the straight hair model. It results
in the corresponding performance improvement on the CPU,
taking advantage of its branch prediction logic.

3.5 GPU version

GPU needs thread coherency to approach its potential peak
performance. It is less efficient for the code with multiple
branches. For this reason, we attempt quickly discarding the
intersection only once, while checking the ray separation from
the curve’s enclosing cylinder (section 3.1).

We use the OptiX system [Parker et al. 2010] with BVH8 ac-
celeration structure: context->createAccelerat ion("Bvh8").
It outperforms other types of bounding volume hierarchies
by 30% or more. OptiX does not support customized ray pay-
loads at this time, so we have to recompute RCC axes in all
ray-curve tests, despite the fact that the chosen transforma-
tion depends only on ray data. It causes a small performance
impediment in our implementation.

The phantom ray-cone intersector (Appendix A) is the
main part of the inner loop of our algorithm. Even though
it is more complex than a typical ray-triangle intersector, it
runs significantly faster. The examination of the compiled
kernel reveals that

• the compiler was able to convert a significant amount
of this code to use fused-multiply-add operations and

• some computations were deferred till the end of the
iterations.

In particular, inside the loop we only need the ray’s pa-
rameter s relative to the z-component of the transformed
c(t) vector. Accordingly, the compiler computes cz(t) only
when we actually have an intersection.

4 PERFORMANCE RESULTS

To broaden the scope of the investigation, we created two
artificial parameterized models by placing randomized hair
strands near the unit sphere. The hair ball model, in which
the seeded hair direction is parallel to the sphere surface
(before randomization), significantly outperforms the hair
sphere model with the mostly radial direction. This is despite
the fact that the average hair width is the same in these
models (linearly changing from 0.01 to 0 for the hair sphere
and constant 0.005 for the hair ball). This is, of course, due
to the efficient occlusion handling in ray tracing applications.
We set the ambient occlusion distance to ∞ and let such rays
terminate at “any hit” for all the models in the paper.

We compared performance of the phantom intersector with
the fastest CPA implementation [Reshetov 2017] on Intel i7-
3930K at 3.2GHz. For the first 4 models in Figure 1, the
performance improvement is 25, 17, 23, and 53%.

The phantom intersector was specifically designed to take
advantage of the throughput-oriented GPU architecture. To
put things in a familiar context, we compare its performance
with OptiX ray-triangle intersector. We do so by measuring
the overall execution time and counting the total number of
tests (summing up per-pixel counts on CPU to avoid GPU
thread synchronization). OptiX 5.0 can report the percent of
the execution time inside the intersector (≈ 30% on average),
allowing to calculate the kernel timing. We gather this data
for the two polygonal models with the vastly different number
of triangles (Stanford Bunny model and Happy Buddha) and
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Figure 12. A Titan Xp performance for the different yarn models [Wu and Yuksel 2017; Yuksel et al. 2012] for one primary and
four ambient occlusion rays at 1000×1000 screen resolution (the total number of the traced rays per second).

compare it with the first four models in Figure 1. The found
ratio is 0.65, i.e. the phantom intersector runs at about two-
thirds the speed of the ray-triangle intersector.

To reduce the overlap of the leaf nodes in the constructed
BVH, we pre-split each curve in hair models into 8 segments.
Such splits for different curves are not coordinated with each
other, resulting in a less efficient BVH. For yarn models
(Figure 12), splits are unnecessary since the original curves
are already rather small to represent the intricate knitting
patterns (and there are no zigzag-shaped curves as well).
Due to the spatial regularity of such patterns, the achieved
performance is significantly higher—around half billion rays
per second. We assume that the performance of hair models
may also be improved by tuning the building algorithm.

4.1 Memory Utilization

To avoid chained de-indexing, we copy the split curve data
into the segment structure. This is not a memory-efficient
approach. To study alternative memory layouts, we created
three additional versions of our algorithm by storing the
following data inside the segment primitive (which is a part
of the curve between two t values):

1. Segment’s t values and curve’s index.

2. Segment’s coefficients, t values, and curve’s index.

3. The enclosing cylinder, t values, and curve’s index.

Table 1 lists the achieved performance for such layouts and
the main version of our algorithm. The enclosing cylinder data
include its axis, point on the axis, and the radius. The first
two entries can be derived from the curve data at run-time
as well, as described in section 3.1.

For the models in this paper, storing parent’s curve in-
dex, rather than segment’s coefficients, results in 10-20%
performance penalty (the third configuration). For the bigger
models though, it might be the option of choice as it avoids
bloating the memory footprint.

4.2 Accuracy

The phantom intersector accuracy can be increased by exe-
cuting more iterations. This process is illustrated in Figure 13.

Table 1. Performance (in nanoseconds per ray on a Titan Xp)
for different memory layouts. One primary and four ambient
occlusion rays (for hit points) are traced for each pixel at
1000×1000 screen resolution.

model: a. straight b. curly c. bunny d. furball

memory

layout:

1. t,i 10.84 13.78 12.37 18.88
2. t,i,u0123 9.31 11.79 9.63 14.13
3. t,i,enclosure 8.38 10.6 9.6 13.57
4. all 6.9 9.52 8.7 12.05
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Figure 13. We create different models by choosing equidistant
control points wi on straight lines with |w3 − w0| = 1. Each
control point is then randomly modulated with a scale defined
by a given σ. Left: a model consisting of all straight curves.
Right: a model modulated by σ = 3. Pixel colors show number
of iterations as defined by the heatmap in Figure 1. Average
error (top) and number of iterations (bottom) are computed

for the two different sought accuracy values: 5× 10−5 (blue)

and 5× 10−7 (brown).

We create a plurality of different models by randomly per-
turbing control points with values chosen from a Gaussian
distribution with a given variance.
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We use two accuracy settings that define the ∆t value
when iterations are concluded. As expected, for the com-
pletely straight curves, the number of iterations is 2 (we
find the hit point at the first iteration and then have to
validate it at the second iteration). For such models, the
achieved accuracy corresponds to the single float precision.
More wavering models require more iterations and the aver-
age error increases. Interestingly, for σ > 0.5, the error starts
decreasing, driven by the increased number of iterations.

These measurements show that the phantom intersector
can handle curves with a high curvature. Still, it does have
some restrictions, which are described in the next section.

5 LIMITATIONS

The accuracy of our approach depends on the root-finding
technique used. For performance reasons, we implemented
a very simple version of the regula falsi method, starting
iterations at two segments’ endpoints. This approach might
cause incorrect results when the radius of the swept volume is
large (in comparison with the curve’s curvature) and changing
quickly. It is especially troublesome near sharp features (‘γ’
tip). One such case is shown in Figure 14.

We cancel the processing of the second endpoint if the
first one leads to the intersection (see discussion at the end
of section 2.2). Figure 15 shows the situation when this
cancellation fails. We start iterations at the cyan end of
the curve as it is closer to the ray origin. Consequently, we
find the intersection and report it immediately. Yet, there is
another intersection that is closer to the ray origin (near the
blue curve’s endpoint).

Another limitation—which can be easily fixed—deals with
how roots for curve’s parameter s are chosen. Such roots
are a solution of a quadratic equation. We take one that
corresponds to the situation when ray’s origin is outside the
curve’s volume (see line 27 in Appendix A). If, au contraire,
the ray origin is inside the volume, this would give the nega-
tive value of s. Consequently, it will be rejected. The phantom
intersector could be modified to handle such situations as
well, which might be necessary to model sub-surface scatter-
ing. Characteristically, the chosen approach (rejecting origins
inside a hair) permits automatic handling of transparency.
In such a case, the hit segment will not be intersected again,
allowing to find the intersections further away along the ray.

Our lazy root-finding approach fails if the real root is
bracketed by the phantom ones, as shown in Figure 16 (left).
The situations depicted in Figures 14–16 can be avoided if

1. c ′(t1) · c
′(t2) > 0, i.e. curve’s tangent lines go in the same

direction,
2. there are no curvature extrema inside the interval, and
3. the radius of curve’s curvature is greater than max r(t).

We surmise that under such conditions the phantom inter-
sector always finds the correct root, which is corroborated by
the numerical experiments using linearly varying r(t). The
conditions 1–2 can be enforced by splitting the original curve.
If, instead of searching for extrema of the true curvature

Figure 14. Artifacts caused by rapidly varying r(t) in the
vicinity of high curve’s curvature.

Figure 15. Self-overlapping curves might cause problems: there
are 2 ray-volume intersections near the segment’s endpoints.
If we abort the processing after the first one is found (near
the cyan end), we will miss the second one, which is closer
to the ray origin.

t1 t2 t3 t4

t

t12 t3 t4

t

Figure 16. Left: the real root t3 is between the phantom roots
and cannot be found. Right: there is a curvature minimum
inside the interval (at green circle), causing the closest real
root t3 to be occluded by the phantom ones.

κ = |c ′ × c ′′|/|c ′|3 we solve c ′ × c ′′′ · c ′ × c ′′ = 0 (see dis-
cussion in section 2.3), the real root may be occluded by the
phantom ones, as shown in Figure 16 (right). Such contrived
cases are unlikely to happen in the real models.

6 COMPARISON WITH ALTERNATIVE

IMPLEMENTATIONS

We propose the first-of-a-kind adaptive solution for GPU ray
tracing swept volumes around hair strands.

Adaptivity is a well-established method for ray tracing
hair on CPU using the closest point of approach. On GPU
platforms, less-accurate 2D and volumetric texture approxi-
mations have typically been used in practice [Andersen et al.
2016; Hadap et al. 2007; Kajiya and Kay 1989; Lengyel et al.
2001; Petrovic et al. 2005; Ren et al. 2010; Sintorn and As-
sarsson 2009].

Vendor-specific solutions, such as AMD TressFX [2014] or
NVidia HairWorks [2017], use billboards. These systems aim
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Figure 17. Comparing phantom (left-bottom) and cylinder
primitives (top-right) in the curly hair model. Alternating
colors are used to show different segments.

at the efficient hair/fur authoring, simulation, and rendering
in games, using rasterization.

GPU ray-tracing systems, in which hair strands split
into the predefined number of cylinders, were proposed by
Sedaghat [2010] and Martins [2016].

To compare such techniques with the phantom intersector
and eliminate platform and model-specific factors, we had
implemented two additional methods in our system, treat-
ing each curve’s segment as either a billboard or a cylinder
with the maximum swept volume’s radius. In all our imple-
mentations, the original hair strands are split into the same
number of segments and we use the same BVH defined by
the bounding boxes of the swept shapes.

We did not try optimizing billboard primitives, treating
each one as 2 triangles. Ray-cylinder intersections though
were implemented with just 5 dot products, similar to the
ray-cone intersection (Appendix A), but in the world coor-
dinates. Curiously, there is no much performance difference
between these two implementations and the phantom one:
billboards are about 3% slower and cylinders are 4% faster.
Rendering distant viewpoints with the cylindrical primitives
looks similar to one with the phantom primitives, but at
close-ups (Figure 17) the discontinuous nature of the fixed
cylindrical approximation becomes apparent.

Intersections of rays with (rational) polynomial surfaces
are widely used in CAD/CAM/CAE rendering. Polynomial
solvers were used in the classic papers of van Wijk [1985]
and Bronsvoort and Klok [1985]. Some of their ideas are
very promising for the future research. We assume that the

generic solvers are slower than our geometric approach, which
typically converges in 2 or 3 iterations. The phantom method
may be used for the arbitrary curves and radius r(t). We use
cubic curves because it is a format of the available models and
the cubic curves allow the exact bounding box computations.

7 CONCLUSION AND FUTURE WORK

At the core of our approach is the ability to find the inter-
sections of a ray and a quadratic surface. It is formulated
as a solution of the corresponding quadratic equation and
classified into phantom or real roots depending on the sign
of the equation determinant.

We used only symmetric swept volumes since all avail-
able models have this property, allowing a rather efficient
implementation in a ray-centric coordinate system (Appen-
dix A). It might be possible to extend this approach to elliptic
cones, though its performance characteristics cannot be easily
ascertained for all the possible swept volume profiles.

The situation with grass-like models is less clear. Conceiv-
ably, each grass blade might be approximated by a part of a
quadratic ruled surface, but this is an open problem.

Another interesting research direction is the study of effi-
cient memory layouts, perhaps using quantization relative to
the curve’s leaf node. To maintain the compatibility between
CPU and GPU versions of our codebase, we use a univariate
polynomial representation of Bézier curves (1). For GPU,
this is not necessary. We surmise that only the Bernstein
forms can be reliably quantified.

Our phantom ray-hair intersector achieves two-thirds of the
speed of a ray-triangle intersector. We hope that it will remove
the performance considerations in choosing primitive types in
ray tracing applications, allowing developers to concentrate
instead on top-level system design issues [Lee et al. 2017;
Pérard-Gayot et al. 2017] or more evolved reflectance models
[Yan et al. 2017a]. Modern content creation tools can directly
design higher-order surfaces and curves. Embracing the “as-
is” principle in rendering applications should simplify asset
management and production development.
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A PHANTOM RAY-CONE INTERSECTION

1 s t r u c t RayConeIntersection { // ray.o = {0,0,0}; ray.d = {0,0,1};

2 i n l i n e b o o l i n t e r s e c t ( f l o a t r , f l o a t dr ) {

3 // cone i s d e f i n e d by base c e n t e r c0 , r a d i u s r ,

4 // a x i s cd , and s l a n t dr

5 f l o a t r2 = r ∗ r ; // dr could be e i t h e r p o s i t i v e

6 f l o a t dr r = r ∗ dr ; // or n e g a t i v e (0 f o r c y l i n d e r )

7

8 f l o a t ddd = cd . x∗ cd . x + cd . y∗ cd . y ; // a l l p o s s i b l e

9 dp = c0 . x∗ c0 . x + c0 . y∗ c0 . y ; // combinations

10 f l o a t cdd = c0 . x∗ cd . x + c0 . y∗ cd . y ; // o f x∗y terms

11 f l o a t cxd = c0 . x∗ cd . y − c0 . y∗ cd . x ; // (c0× cd)z
12

13 f l o a t c = ddd ; // compute a , b , c i n

14 f l o a t b = cd . z ∗ ( dr r − cdd ) ; // a − 2 b s + c s2

15 f l o a t cdz2 = cd . z ∗ cd . z ; // ( s f o r ray ∩ cone )

16 ddd += cdz2 ; // now i t i s cd·cd

17 f l o a t a = 2∗ dr r ∗cdd + cxd ∗ cxd − ddd∗ r2 + dp∗ cdz2 ;

18 # i f d e f i n e d (KEEP_DR2) // dr2 adjustments

19 f l o a t qs = ( dr ∗ dr )/ ddd ; // ( i t does not help

20 a −= qs ∗ cdd∗cdd ; // much with n e i t h e r

21 b −= qs ∗ cd . z ∗cdd ; // performance nor

22 c −= qs ∗ cdz2 ; // accuracy )

23 #e n d i f

24

25 // We w i l l add c0 . z to s and sp l a t t e r i f needed

26 f l o a t det = b∗b − a∗ c ; // f o r a − 2 b s + c s2

27 s = ( b − ( det > 0? s q r t ( det ) : 0 ) ) / c ; // c > 0

28 dt = ( s ∗ cd . z − cdd )/ ddd ; // wrt t

29 dc = s ∗ s + dp ; // | ( ray ∩ cone ) − c0 |2

30 sp = cdd/ cd . z ; // w i l l add c0 . z l a t t e r

31 dp += sp ∗ sp ; // | ( ray ∩ plane ) − c0 |2

32

33 r e t u r n det > 0 ; // true (real) or false (phantom)

34 }

35

36 f l o a t 3 c0 ; // curve ( t ) i n RCC ( base c e n t e r )

37 f l o a t 3 cd ; // tangent ( t ) i n RCC ( cone ' s a x i s )

38 f l o a t s ; // ray . s − c0 . z f o r ray ∩ cone ( t )

39 f l o a t dt ; // dt to the ( ray ∩ cone ) from t

40 f l o a t dp ; // | ( ray ∩ plane ( t ) ) − curve ( t ) | 2

41 f l o a t dc ; // | ( ray ∩ cone ( t ) ) − curve ( t ) | 2

42 f l o a t sp ; // ray . s − c0 . z f o r ray ∩ plane ( t )

43 } ;

https://developer.nvidia.com/hairworks
https://developer.nvidia.com/hairworks
https://en.wikipedia.org/wiki/Category:Root-finding_algorithms
https://en.wikipedia.org/wiki/Category:Root-finding_algorithms
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