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Statistical Nearest Neighbors for Image Denoising

Turi Frosio

Abstract—Non-local-means image denoising is based on
processing a set of neighbors for a given reference patch. few
nearest neighbors (NN) can be used to limit the computational
burden of the algorithm. Resorting to a toy problem, we show
analytically that sampling neighbors with the NN approach
introduces a bias in the denoised patch. We propose a different
neighbors’ collection criterion to alleviate this issue, which we
name statistical NN (SNN). Our approach outperforms the
traditional one in case of both white and colored noise: fewer
SNNs can be used to generate images of superior quality, at a
lower computational cost. A detailed investigation of our toy
problem explains the differences between NN and SNN from
a grounded point of view. The intuition behind SNN is quite
general, and it leads to image quality improvement also in the
case of bilateral filtering. The MATLAB code to replicate the
results presented in the paper is freely available.

Index Terms— Denoising, non-local-means, nearest neighbors.

I. INTRODUCTION
ELF-SIMILARITY driven algorithms are based on the
S assumption that, for any patch in a natural image, replicas
of the same patch exist within the image and can be employed,
among other applications, for effective denoising [1]-[4].
Since processing uses non-local (NL) information, these algo-
rithms are commonly referred to as NL algorithms.
Non-Local-Means (NLM), one of the most well-known
denoising algorithms, has been widely investigated by
researchers. It is conceptually simple: denoising of a given
patch is obtained as a weighted average of the surrounding
patches, with weights proportional to the patch similarity.
Duval et al. [5] analyzed the complex relation between the
filtering parameters and the quality of the output images,
whereas others concentrated their attention on reducing the
computational burden of the filter to make it useful in prac-
tical applications [6]. A widely used practice is to reduce
the number of neighbors collected for each reference patch:
noticeably, the 3D Block-Matching (BM3D) denoising filter
achieves state-of-the-art results in this way [2]. The neighbors’
set is collected through a Nearest-Neighbors (NN) approach,
which can be efficiently (although in an approximate manner)
implemented [6]. Reducing the number of neighbors leads
to images with sharp edges [5], but it also introduces low-
frequency artifacts, clearly visible for instance in Fig. 1.
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Resorting to a toy problem, we show that this artifact occurs
because the estimate of the noise-free patch from the set of
NNss is biased towards the noisy reference patch. To the best of
our knowledge, this is the first time that the neighbor collection
strategy is explicitly investigated in detail as a potential source
of bias, although other authors identified and tried reducing it
through different weighting schemes [7], analyzed it in relation
to the size of the local search window [8], or in the context
of internal external denoising [9]; other types of bias were
also analyzed in the past [3], [5], [10]. Here we propose an
alternative strategy to collect neighbors, named Statistical NN
(SNN), which reduces the prediction error of the estimate of
the noise-free patch. When filtering real images, SNN tends to
blur low-contrast image details with a low signal-to-noise ratio
more than NN; we explain this drawback of SNN resorting to
our toy problem to analyze the differences between NN and
SNN from a statistically grounded point of view, and show that
a compromise between the NN and SNN strategies is easily
found in practice. Our analysis and experimental results, show
that, using fewer neighbors, SNN leads to an improvement in
the perceived image quality, as measured by several image
quality metrics on a standard image dataset, both in case of
white and colored Gaussian noise. In the latter case, visual
inspection reveals that NLM with SNN achieves an image
quality comparable to the state-of-the-art, at a much lower
computational cost. We finally show that the intuition behind
SNN is indeed quite general, and it can be applied to bilateral
filtering, also leading to an image quality improvement.

II. RELATED WORK

NLM denoising [1], [4] averages similar patches and aggre-
gates the averages in the final image. Given the vector-
ial representation of an § x § x C noisy reference patch,
Ly = [,u(r) ul.... ﬂfzc_l], and a noisy neighbor patch yy,
we first define the squared distance of p, and yj as:

1 R N2
d (ury) =7 > (=) M
i=
where P = S2C. Following [4], we define an exponential
kernel to weight the patch y in the average:

B max(0,d2 (;Lr,yk)—Zaz)
Wpp,p = € 2 , 2

where £ is referred to as the filtering parameter and it depends
on 2, which is the variance of the zero-mean, white Gaussian
noise affecting the image [1], [4]. Apart from the aggregation
step, the estimate of the noise-free patch, ft(u,), is:

mpr) = Z Wy Vi / Zw“"yk' 3
k k
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NLMS

NLM1 Ground truth

Noisy, 100 x 100 patches from the Kodak dataset, corrupted by zero-mean Gaussian noise, 0 = 20. Traditional NLM (NLM(3)601) uses 361, 3 x 3

patches in a 21 x 21 search window; it removes noise effectively in the flat areas (the skin, the wall), but it blurs the small details (see the texture of the
textile, fresco details). Using 16 NNs for each patch (NLM(I)'(’O) improves the contrast of small details, but introduces colored noise in the flat areas. The
proposed SNN technique (NLM}?O) uses 16 neighbors and mimics the results of traditional NLM in flat areas (high PSNR), while keeping the visibility of
small details (high FSIM¢). Best results are achieved when patches are collected through SNN, with 0o = 0.8 (NLM(])§8). Better seen at 400% zoom. Full

images are shown in the Supplementary Material.

Several authors proposed improvements of the original
NLM idea. Lou et al. [11] consider scale-invariant descriptors
for patch matching, extending the concept of patch similarity
beyond simple translation. Enlarging the search space for
similar patches has the potential of improving image quality,
but it also increases the computational cost of NLM, making
it impractical. Lotan and Irani [12] adopts a multi-resolution
approach to better identify matching patches in case of high
noise level, but do not correct for the bias introduced by the
NN selection strategy. Duval et al. [5] interpret NLM denois-
ing as a bias / variance dilemma. Given a noisy reference
patch, the prediction error of the estimator ft(u,) can be
decomposed into the sum of a bias term, associated to the
offset of jt(u,) with respect to the ground truth g, and a sec-
ond term, associated to the variance of the estimator [5], [13].
Because of the infinite support of the weight function in
Eq. (2), NLM is biased, even in absence of noise [5]: false
matchings patches yj (dissimilar from u) are given a non-
zero weight in Eq. (3), and consequently blur small details in
the estimate of the noise-free patch, jt(u,). Decreasing the
number of neighbors increases the variance term but reduces
the bias, by discharging false matching patches with very small
weights in Eq. (3). In practice, NLM improves by reducing
the size of the search window around the reference patch
and collecting few NNs through an exact or approximate
search [6], [8]. This leads to a better preservation of the
small details (see the texture of the textile, the sun rays and

the details of the fresco in Fig. 1), but it also introduces
colored noise in the flat areas of the image (see the skin
and the wall in Fig. 1). We refer to this drawback as the
noise-to-noise matching problem: since neighbors are col-
lected around a noisy patch u,, their weighted average is
also biased towards u,, which eventually leads to a partial
cancellation of the noise [7]. This effect is even more evident
when the size of the search window for similar patches
increases [8], up to the limit case of patches taken from
an external dataset [9]. Through a statistical analysis of the
NLM weights, Wu er al. [10] identify another source of bias
in the estimate fi(p,): since the best matching neighbor for
is not associated with the highest weight, they propose a more
effective weighting scheme; their approach is mainly based on
the analysis of the correlation between overlapping neighbor
patches and it does not explicitly consider the bias introduced
by the noise in the reference patch.

The use of a small set of neighbors suggested in [5] is
common in the state-of-the art algorithms like BM3D [2],
BM3D-SAPCA [14], and NL-Bayes [3]. These effective
NL algorithms first compute a sparse representation of the
neighbors in the proper domain (e.g., through a DCT or PCA
transform) and filter out small coefficients associated with
noise, which is assumed to be uncorrelated among different
pixels and patches. Image quality is generally superior when
compared to NLM, but these methods continue to suffer
from visible artifacts on sharp edges (because of the limited
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capability of representing any signal with the chosen basis)
and in smooth image regions [15].

More recently, machine learning has also been employed
to learn how to optimally combine a set of patches for
denoising (alternatively to the fixed processing flow operated
by BM3D) [16], but without considering the potential bias
introduced by the selection of the set of NN patches.

III. NEIGHBOR SELECTION FOR PATCH DENOISING

NLM denoising is a three step procedure: i) for each patch,
the neighbors are identified; ii) neighbors are averaged as
in Eq. (3); iii) denoised patches are aggregated (patches are
partially overlapping so that multiple estimates are averaged
for each pixel). None of the existing methods focus their
attention on the fact that the neighbors’ selection criterion
affects the prediction error of fi(p,) in step ii).

Here, we first simplify the problem of estimating the noise-
free patch to a toy problem with a single-pixel patch and
uniform weights, and show that the NN search strategy does
introduce a bias in fi(p,), because of the presence of noise
in u,. Based on the expected distance between noisy patches
(section III-A), we propose SNN to overcome this problem
(section III-D) and demonstrate analytically the reduction
of the prediction error on the toy problem (section III-E).
In section IV we study our toy problem to compare the NN
and SNN approaches in various cases of practical importance.
Results on real data are presented in section V.

A. Statistics of Patch Distance

We consider the case of an image corrupted by white, zero-
mean, Gaussian noise with variance o 2. The search for similar
patches is performed by computing the distance between u,
and patches of the same size, but in different positions in
the image, as in Eq. (1). If the reference patch p, and its
neighbor y; are two noisy replica of the same patch, we get:

P—1
&> (wr, i) = 26°/P) - D G(0,1)%, “
i=0

where G(u,0?) indicates a Gaussian random variable with
mean u and variance ¢2. The sum of P squared normal
variables has a ){% distribution with P degrees of freedom,
therefore d> (w,, yx) ~ (2062/P)- X%, and:

E[d* (r, yi)] = 20°. 5)

Thus, for two noisy replicas of the same patch, the expected
squared distance is not zero. This has already been noticed
and effectively employed since the original NLM paper [1] to
compute the weights of the patches as in Eq. (2), giving less
importance to patches at a distance larger than 242, or to build
a better weighting scheme, as in [10]. Nonetheless, to the best
of our knowledge, it has never been employed as a driver for
the selection of the neighbor patches, as we do here.

B. A Toy Problem: Denoising Single-Pixel Patches

To introduce the SNN approach while dealing with a
mathematically tractable problem, and support intuition with
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analytical evidence, we describe here a simplified toy problem
where a 1 x 1 reference patch with noise-free value u is
corrupted by zero-mean Gaussian noise with variance 2, i.e.
ur ~ G(u,c?). Its cumulative (cdf) and probability density
function (pdf) are:

P(uy <x) = ®, 2(x) = 1/2-[1 + erf(x\/_i'u
o

1
(«/Ea)

We assume that N noisy neighbors {yi}x=1.n are available;
a fraction of these, p, - N, are noisy replicas of u, thus they
are distributed as G (u, 0%). The remaining p - N neighbors
represent false matches, and follow a G(uy, o?) distribution.
Thus the cdf and pdf of {yi}r=1.n are respectively:

P(yr <x) = Qpix(x) = Prq),,,,ﬂ(x) + Pfq),,_/,ﬂ(x), (8)
Gmix (¥) = Ppix (x)/ = pr¢ﬂ,g2(x) + Pf¢,,_,,g2(x)~ )
We also define a simplified estimator i (u,) as:

. 1
iur) = 5~ > e

" k=1..N,

)], (6)

_ _ 2
o2 () = @), 2(¥) = e703 [=miol )

(10)

where we neglect the weights w,, ,, in Eq. (3). Beyond
rendering the problem more manageable, this simplification
allows us isolating the effect of the neighbors’ sampling strat-
egy from the effect of weighting, that has been analyzed by
other researchers [5], [8], [10]. The validity of this assumption
is further discussed in Section VI.

For any reference patch u,, the prediction error of z(u,)
is decomposed into its bias and variance terms as:

) = [ (0= 1) PR = Gy ) + By 1)
i

i 0) = [ (B2 = 0)? p()df = (Bl )~ )
i
(1)
Gt = [ (3= ELR) p(@)df = VarllaGeol. - (12
I

where we omit the dependency of i (u,) from u, within the
integrals for notation clarity, and p(a) is the pdf of i. The
total error of the estimator is finally computed by considering
the distribution of u,, as:

82 = el%ias + ggar’ (13)

el%ias =/ el%ias(lur)qs,u,az(:ur)d,ura (14)
Hr

Epar = / €rar (1) o2 (1r)d iy (15)
Hr

C. Prediction Error of NN

When neighbors are collected with the NN approach, the set
{yk}k=1.n, contains the N, samples closest to z,, and f(u,)
is its sample average. Fig. 2a shows an example of collecting
N, =16 NNs, for u =0, 0 = 0.2 and py = 0, i.e. when
false matches are not present.

To compute the estimation error (Eq. (13)), we need to study
the statistical distribution of f(u,) and compute E[z(u,)]
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Fig. 2.

Panels (a) and (b) show respectively the NN and SNN strategy to collect N, = 16 neighbors {yj}r=1..n, of 1 = 0.3456, for a 1 x 1 patch with

noise-free value 4 = 0, corrupted by zero-mean Gaussian noise, o = 0.2, from a set of N = 100 samples. No false matching (py = 0) are considered in
this simulation. The 16 NNs of x;, are in its immediate vicinity (red, in a); their sample mean is highly biased towards u,. The 16 SNNs (blue, in b) are
on average closer to the actual g, leading to a better estimate /i (u,). Panel (c) shows the expected value of the neighbor search interval, E[J]|x,]. Panel (d)
shows the expected value of the estimate, E[/(z,)], and its standard deviation, /Var[ (g ,)], as a function of u,; in this panel, zi(u,) are specific estimates
of u obtained from the black samples in panels (a) and (b). SNN yields values closer to the actual # = 0, even when the noisy reference patch u, is far off

the ground truth value x.

and Var[it(u,)] (Egs. (11-12)). To this aim, let’s define J =
|yn, (ur) — ur| as the distance of the N,-th nearest neighbor
from u,. Since each y; is independent from the others,
and apart from a normalization factor &, the probability of
measuring N, neighbors in the [x, — J, i, + 0] interval is
given by the product of three terms, representing respectively:
the probability that N,, — 1 samples lie in the [u, —J, u,+9]
range, independently from their ordering; the probability that
the N,-th neighbor lies at distance J from u,; and the
probability that N — N,, samples lie outside of the interval
[sr — 0, uy + 0], independently from their ordering. Thus,
the pdf p(9), describing the probability of finding N, samples
within distance ¢ from u,, is:

Pin(0) = Opix (#r +0) — Dpix (,ur —0)
Poou(d) = Pmix (#r — 0) + Pmix (,ur +9)
p©) =& - pin(®™ ™ prou(@I1 = pin (VM. (16)
The normalization factor ¢ is found by forcing f0+°° p(0)do =
1, and resorting to numerical integration. From p(d) in
Eq. (16), we compute the expected value of the search interval,
E[d|u,] for each value of u,, as shown in Fig. 2c. The
expected value E[fi(u,)] is then computed marginalizing i

over 0 and resorting to numerical integration for the last
passage. We have:

—+00
ELR ()] = / ap(@)da
_—T—Ooo —+00
- / p /O (p(216) p(0)dd)dp

—+00 “+o00
_ / ( / Ap(10)p(G)dji)ds
0 —00

+00 +00
- /O ( / Ap(R10)d i) p(d)ds
+o0
=31 apodz p@aa)
5 —00

= Z[E[m&] - p(O)Ad], (17)
J

where Ao is a finite, small interval used for numerical inte-
gration. By the definition of i(u,) in Eq. (10), we have
then:

Ao
Bla(ul =72 2> Eluldl - po). (18)

0 k=1.N,

After marginalizing over J, each of the N, neighbors yx
lies in the [u, — &, u, + 0] interval. Each of the first N, — 1
neighbors is a mixture of a truncated Gaussian G’ (u, o2, i, —
0, w1y ~+0) with probability p, and a second truncated Gaussian
G'(uy, o2, 1y — 0, u, + 0) with probability Dy, representing
false matches. Egs. (27-28) in the Appendix allow computing
the expected value and variance of each of the two truncated
Gaussians; E[yg|d] is then the expected value of their mixture,
and can be computed as in Eq. (29). The expected value and
variance of yy, require a different computing procedure, as it
lies exactly at distance J from u,; yn, can assume only two
values, u, + 0, with probability ¢pix(t, £ 0)/[Pmix (1r —
0) + ¢mix(ur + 0)]. Its expected value and variance are
computed treating it as a Binomial random variable or,
with the same result, as a mixture (see Egs. (29-30) in the
Appendix). The expected value of i (u,) is then computed as
in Eq. (18).
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To compute the variance of the estimator, Var[i(u,)],
we marginalize again over J and get:

Varl(1,)]
+o00
- / (7t — B2 p(i)d

—00

+00 +oo
_ / (i — B[] /0 (P(216) p(0)dd)d i

—00

+00 +o00 5
= [ G-EaRpGoaipeas (9)
—00
By adding and subtracting E[ jt|d], resorting again to numer-
ical integration, and after some simplifications, we get:

Vi 0
Valji(u) = A0 Y (~de]

0 k=1..N, n
+ (E[yk|d] — E[2D*} - p(9). (20)

The expected value and variance of the first N, — 1
and of the N,-th neighbors can be computed following the
same reasoning line adopted to compute their expected value
in the previous paragraph. From E[/(u,)] and Var[a(u,)],
&2 is finally computed as in Eq. (13).

Fig. 2d shows E[ 1 (u,)]+3+/Var[ it (u,)] for the case u = 0,
o = 0.2, when N, = 16 neighbors are to be collected from
a total of N = 100 samples and no false matchings are
present (py = 0). The NN neighbors {yx}k=1.n, lie close
to the noisy reference patch, u,; consequently, each estimate
[ (uy) is biased towards u,. The bias grows almost linearly
with u — u, and it saturates at approximately 5o of distance
from u, as the set of neighbors becomes stable (since N
is finite, the same 16 samples are found in the tail of the
distribution). The bias and variance error (Eqgs. 11-12) are
equal to 0.0283 + 0.0002 = 0.0285 for the case in Fig. 2d.
In practice, when NN neighbors are collected, samples with
correlated noise are likely to be chosen. This is the noise-to-
noise matching problem: averaging NNs patches may amplify
small correlations between the noise, without canceling it [7],
[8]. In the context of image denoising, the noise-to-noise
matching problems shows up as residual, colored noise in the
filtered image (see NLM(l)% in Fig. 1).

D. SNN

As an alternative to NN, inspired by Eq. (5), we propose
collecting neighbors whose squared distance from the refer-
ence patch is instead close to its expectation. Thus SNNs are
the patches {y;}k=1.n, that minimize:

|d* (mr, yy) — 0 207,

where we have introduced an additional offset parameter o,
that allows to continuously move from the traditional NN
approach (o = 0) to the SNN approach (0 = 1). We assume
o =1 for now.

21

E. Prediction Error of SNN

To compare the prediction error of NN and SNN in our
toy problem, we need to compute E[zt(x,)] and Var[u(u,)],
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when SNN neighbors of x, are collected. In our toy problem,

we apply Fischer’s approximation (,/2 ){% = GW2P—-1,1)
to Eq. (4) for a single-pixel patch (P = 1), and get:

d(pr,y) =0 V2P -1+ G(0,0%) =0 +G(0,0%), (22)

showing that the expected distance between two 1 x 1 noisy
patches is approximately ¢. SNN neighbors are then collected
close to 4, £0-o. It can be noticed that, in our toy problem,
we collect the samples based on their expected distance from
the noisy reference u,, computed through Eq. (22), while
in NLM filtering we use the squared distance (Eq. (21)).
This simplification makes the toy problem mathematically
manageable, without changing the intuition behind SNN.

Fig. 2b illustrates the sampling of SNN neighbors. Sampling
potentially occurs on both sides of u,, with a different prob-
ability on each side. To compute E[z(u,)] and Var[zu(u,)],
we have to generalize Eq. (16) to the SNN case. To this aim,
we define now % as the distance of the N,-th SNN from
UrEo-o (therefore 20 is both in the case of NN and SNN the
total size of the neighbors’ search interval) and its pdf, p(d),
is (23), as shown at the bottom of the next page.

Computing the expected value and the variance of z(u,)
for the SNN case turns out to be a generalization of the
procedure described for the NN case. As a matter of fact,
each of the first N, — 1 SNNs comes either from the left
interval [u, —o0 -0 — ‘—2;,,ur —0-0 + g], with probability
Dix(ttr —o0-0 + g) — @iy —0-0 — g), or from the
right one, with probability ®i(u, + 0 - ¢ + g)—
DOpix(ur +0 -0 — g). Within each interval, the value of
yx is distributed accordingly to a mixture of two truncated
Gaussian variables, as in the NN case. The N,-th neighbor
can instead assume one among four values, y, =00 %9,
with probabilities proportional to ¢,y (1 £o-0 £45). Similarly
to the NN case, the mean and variance of zi(u,) are estimated
as in Eq. (18) and (20), applying repeatedly Egs. (27-30).
From these, the bias and variance error of the estimator are
obtained as in Eqgs. (11-12). When 6 > 20-0, the two intervals
merge into a single interval and the SNN set boils down to the
NN set with the same value of J; equations for the NN case
are then applied to compute the error of the estimator. The
Matlab code to replicate our toy problem is freely available at
https://github.com/NVIabs/SNN.

Fig. 2d shows E[fi(u,)] 43/ Var[ii(u,)] for the SNN case.

The bias and variance errors for SNN are respectively €2, ==

0.063 and efar = 0.0015, for a total error &2 = 01.7(1)‘879.
Compared to NN, SNN slightly increases the variance of
(ur), but it drastically decreases the bias of the estimate.
In practice, the SNN criterion looks for similar patches on
both sides of u, but not close to it; compared to NNs, SNNs
are more likely to be collected close to u (as for the case of the
left interval in Fig. 2b), reducing the bias of zt(x,), at the price
of a slightly higher variance. This minimizes the noise-to-noise
matching issue and leads to a more effective noise cancellation.
The Matlab code to replicate the analytical results on our toy
problem is freely available at https://github.com/NVlabs/SNN.
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Fig. 3. Denoising with NLM and NN or SNN in 2D space. The proposed
SNN strategy (b) works better than traditional NN (a) when neighbors are
collected from a single cluster. When the signal-to-noise ratio is low, SNN can
start collecting neighbors from different clusters (d) before traditional NN
does (c). (a) NN, ¢ = 0.1. (b) SNN, ¢ = 0.1. (c) NN, ¢ = 0.25. (d) SNN,
o =0.25.

IV. NEIGHBOR SELECTION ANALYSIS

In this section, we analyze and compare the prediction
errors (Eq. (13)) of NN and SNN in different situations. Such
analysis constitutes a proxy for the interpretation of the results
on real data. We start with a graphical example showing the
collection of NN and SNN neighbors in presence of noise
and false matches: Fig. 3 shows the denoising of a patch with
NLM in 2D space. In presence of a small amount of noise
(e = 0.1), three well-separated clusters can be identified,
associated to three different kinds of patch in the search area.
The average of the SNNs is generally closer to the center of
the cluster (Fig. 3b), compared to NNs (Fig. 3a). This situation
is representative of a flat area (all the patches belonging to the
same cluster) or a very sharp edge (more clusters are present,
but well separated). When the signal-to-noise ratio decreases
(¢ = 0.25), SNN has a higher chance to collect data from
a different cluster (Fig. 3d), leading to a biased estimate of
the cluster center. Thus, when the noise and signal power are
comparable, SNN may fail to produce a reliable result.

For a more quantitative analysis, we perform NLM denois-
ing of a 3 x 3 patch lying in an homogeneous area, close to
an edge, or containing a line, texture, or an isolated detail
(see Fig. 4). These can be seen as typical cases occurring
during denoising of real images. Denoising is performed for
the reference patch only (thus not considering the aggregation
step in NLM), for different noise levels, o, and numbers of
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neighbors, N, using NN or SNN to collect neighbors. Fig. 4
shows the ratio of the &> of NN and SNN, averaged over
1000 simulations. SNN often achieves better denoising when
few neighbors are employed and the noise level is low, but
there are evident exceptions to this rule. In the next paragraphs,
we explain these experimental results in detail resorting to our
toy problem for their interpretation.

A. Homogeneous Areas

In the case of a patch in an homogeneous area (Fig. 4a),
all the N neighbor patches come from the same population,
thus p, = 1 and the probability of collecting false matches
is null (py = 0). In this situation, collecting neighbors with
the SNN strategy always leads to a smaller error compared
to the NN strategy, although &> is comparable when very
few (N, — 1) or all (N, — N) the neighbors are used.
Fig. 5 explains this behavior through our toy problem. When
few (N, = 2) neighbors are used, the SNN approach has an
higher variance (compared to NN) for u, >~ u, because SNN
neighbors are collected at some distance from u (see the peak
of €% for SNN around ur = u = 0 in Fig. 5a, N, = 2).
Increasing N, (N, = 16, Fig. 5b) reduces the variance of
[ (uy) thanks to the larger number of samples, making SNN
preferable over NN. Further increasing N,, (N,, = 64, Fig. 5c)
reduces the differences between the SNN and NN approaches,
as the two sets of neighbors tend to coincide; in fact, NN and
SNN generate the same result when N, = N.

B. Bimodal and Texture Areas

For both the cases of a bimodal distribution or a texture
area represented in Figs. 4b-4c, the percentage of potential
false matches in the local search area is py = 0.5. This is
obtained counting the patches different from the reference one
in the image. In this case the SNN approach outperforms NN
when the number of neighbors N, is small, whereas NN works
slightly better for large N, and middle-high levels of noise.
Fig. 6 explains this behavior through our toy problem. When
the noise level is low (¢ = 0.07, Fig. 6a), the reference patch
and false matches are well separated, the chance of collecting
false matches is small, and SNN outperforms NN as in the case
of an homogeneous area. For high level of noise (¢ = 0.27,
Fig. 6¢), SNN starts collecting false matches before NN,
because the search interval is far from the reference value
L r; this is prevented when few neighbors are used (¢ = 0.27,
N, = 8 Fig. 6b), which reduces the size of the interval o
and therefore the chance to collect neighbors from the false
matching population.

C. Edge and Line Areas

In the case of a reference patch containing an edge
(Fig. 4d) or a line (Fig. 4e), the percentage of false matches

0 0 0 o
pin(é) = (Dmix(,ur —0-0+ 5) - (Dmix(,ur —0-0 — §)+q)mix(ﬂr +o-0+ 5) - (Dmix(,ur"f‘o'a - 5)

0 0 0 0
Prou(0) = Pmix(ttr —0-0 — §)+¢mix(,ur —o0-0+ §)+¢mix(,ur +o-0— §)+¢mix(ﬂr +o-0+ 5)

p@) =¢- pin(5)N”71pb0u(5)[1 _ Pin(é)]NfN”.

(23)
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Fig. 4. Each panel shows the ratio between the NN and SNN estimation errors (Eq. 13), averaged over 1000 simulations, when denoising a 3 x 3 reference
patch g, (red rectangle in each panel) from a set of N = 100 local patches, as a function of the number of neighbors, N, and the noise standard deviation, o.
The bright and dark values in each image are equal to 0.75 and 0.25 respectively. The probability of finding a real (p,) or false (py) matching patch within

the given set is also indicated.

NN, £2=0.0094, £2,, . =0.0094, £2,,=0.0000

var

NN, €2=0.0071, €2, .=0.0071, 2
SN, 200020, 5,

var

=0.0000
=0.0016, £2,,=0.0004

var

var

NN, £2=0.0019, £,,,=0.0018, £2,,=0.0001
0

var
§IIIN, £2=0.0009, £7,,,=0.0008, £2,,=0.0001

SNN, £2=0.0048, &7,,,=0.0018, £2,,=0.0030
0.4

—E[i(u)] [NN]
Elfu(py)] £ 3y/Var[i(p,)] [NN]
—E[f(n,)] [SNN]
= Elj(pr)] # 3/Var[i(p,)] [SNN]
0.03 0.03 0.01 .
B0 (hir) - €§ins [NN]
ARA A  Puor (Hr) - €ar [NN]
0.02 0.02 / \\ ,/\ (b:ur-' (kr) - € [NN]
0.01 / 0.01 e / \ | \ Oy () G [SNN]
e . \ \/ i) G NN
J / \/ — Puor () - €
[ — / 0 VAS -YAN o :
0.5 0 0.5 1 0.5 0 05 1 0.5 0 0.5 1
0.1 . 0.1 . 0.1 .
0.05 { 0.05 0.05 { ‘_"5"“"(“)
0 0 | 0 | — Pz ()
0.5 0 0.5 1 0.5 0 0.5 1 0.5 0 0.5 1
Vies Hr Vies Vies B
(a) Np =2 (b) Ny, = 16 () Nn = 64

Fig. 5. For NN and SNN, the upper row shows E[z(z,)] 4 3/ Var[zi(x,)], the middle row show the error and bias terms as a function of sx,, and the lower
row the pdf of the neighbors y, for 4 =0, 0 = 0.1, py =0 and N, = {2, 16, 64}. This case is representative of the homogeneous patch in Fig. 4. The total
estimation error &2 with its bias and variance components (Egs. (13-15)) is reported in the top part of each panel.

in the local search area is py = 0.9: both the SNN and NN
approach generate biased results for N, > 10, because of the
substantial presence of false matches in the neighbor’s set.
For N, < 10, SNN outperforms NN for low or high noise
levels, whereas NN works better for middle levels of noise and
large N,,.

Fig. 7 explains this behavior through our toy problem.
When the noise is small and few neighbors are used
(¢ = 0.03, N, = 6, Fig. 7a), NN and SNN capture similar
sets of neighbors belonging to the reference distribution; SNN
provides a slightly better estimate because of the smaller bias.
As the noise level increases (o = 0.14, N, = 12, Fig. 7b) the
chance to collect false matchings in the SNN set also increases,

whereas false matches are less likely sampled by NN, whose
search interval is closer to the reference value u,. As a
consequence, the SNN estimate is more biased towards the
false matching patches. When the noise level further increases
(o = 044, N, = 6, Fig. 7c), also the NN strategy start
collecting false matches in the neighbor set, and SNN provides
again a better estimate because of the smaller bias.

D. Isolated Detail Areas

The last case analyzed here is referred to a patch containing
an isolated detail, with no matching patches but the reference
patch in the local area (Fig. 4f, p s = 0.99). Denoising through
NLM is ill conditioned in this rare but realistic case, as the
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panel.

basic assumption of self-similarity is broken. Nonetheless,
the output of denoising for NN and SNN is different even
in this case, with NN providing a better result for low noise
levels, and SNN outperforming NN in the case of high noise.

Fig. 8 explains this behavior through our toy problem. When
few neighbors are considered and noise is low (¢ = 0.03,
N, =4, in Fig. 8a), SNN tends to collect samples from the
false matching distribution, far from u, and providing a biased
estimate. The situation does not change significantly while
increasing the number of neighbors (N, = 32, ¢ = 0.14,
Fig. 8b), although SNN and NN tends to converge towards the
same estimate /t(z,) in this case. On the other hand, in case

of high noise, the bias term prevails for NN and SNN provides
a better estimate (N, = 6, 0 = 0.44, Fig. 8c).

V. RESULT

A. White Gaussian Noise

We test the effectiveness of the SNN schema on the Kodak
image dataset [17]. We first consider denoising in case of
white, zero-mean, Gaussian noise with standard deviation
o = {5, 10, 20, 30, 40}, and evaluate the effect of the offset
parameter o and number of neighbors N,. With NLM,I,V” we
indicate NLM with N, neighbors and an offset 0. Each image
is processed with NLM})6 and for o ranging from o = 0
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(i.e., the traditional NN strategy) to o = 1; NLM361 and
NLM9OO indicate the original NLM, using all the patches in
the search window, respectively for ¢ < 30 and ¢ > 30.
The patch size, the number of neighbors N,, and the filter-
ing parameter i in Eq. (2) are the optimal ones suggested
in [1].

We resort to a large set of image quality metrics to eval-
vate the filtered images: PSNR, SSIM [18], MSSSIM [19],
GMSD [20], FSIM and FSIM¢ [21]. PSNR changes monoton-
ically with the average squared error; SSIM and MSSSIM
take inspiration from the human visual system, giving less
importance to the residual noise close to edges. GMSD is a
perceptually-inspired metric that compares the gradients of the
filtered and reference images. FSIM is the one that correlates
better with the human judgment of the image quality, and takes
into consideration the structural features of the images; FSIM¢
also takes into account the color component.

Table I shows the average image quality metrics measured
on the Kodak dataset, whereas visual inspection of Fig. 1
reveals the correlation between these metrics and the artifacts
introduced in the filtered images. The PSNR decreases when
reducing the number of NN neighbors (see the first two rows
for each noise level in Table 1), mostly because of the residual,
colored noise left by NLMllo6 in the flat areas (like the skin of
the girl and the wall with the fresco in Fig. 1); the presence
of this colored noise is explained by the bias towards the
noisy reference patch (noise-to-noise matching) observed for
NN when few neighbors are used (see also Fig. 4a)); SSIM
and MSSSIM show a similar trend, while GMSD, FSIM,
and FSIM¢ improve when the number of NN neighbors is
reduced to 16. The improvement of these three perceptually-
based image quality metrics is associated with the reduction
of the NLM bias (towards false matching patches) in the case
of a small set of neighbors, clearly explained in [5]. At visual

with its bias and variance components (Eqs. (13-15)) is reported in the top part of each

inspection, edges and structures are in fact better preserved,
(see the textile pattern and the sun rays in Fig. 1).

Table I shows the PSNR consistently increasing with the
offset o, coherently with the decrease of the prediction error
measured in our toy problem from o = 0.0 (NN) to 0o = 1.0
(SNN). As expected, SNN removes more noise in the flat
areas (e.g., the girl’s skin, the wall surface in Fig. 1). For
o = 1.0 the PSNR approaches that achieved by traditional
NLM, which however requires more neighbor patches (and
therefore a higher computational time), and achieves lower
perceptual metric scores. The fact that SSIM, MSSIM, GMSD,
FSIM and FSIM¢ are maximized in the o = [0.65,0.9]
range suggests that, even if none of these metrics is capable
of perfectly measuring the quality perceived by a human
observer, filtering with the SNN approach generates images of
superior, perceptual quality compared to the traditional NLM
filtering. The optimal image quality is measured for o < 1
because SNN can blur textures or low-contrast edges more
than NN, as observed in Figs. 4b-4e. This can be visually
appreciated in the texture of the textile and on the sun rays
and the small details in the fresco in Fig. 1, for o = 1.
SNN with an offset 0 = 0.8 (NLM361) achieves the best
compromise between preserving low-contrasted details in the
image and effectively smoothing the flat areas. The proposed
SNN strategy always outperforms NN (when using the same
number of patches) in the image quality metrics, with the
exception of very low noise (¢ = 5), where GMSD, FSIM
and FSIM¢ are constant for .0 < 0 < 0.65. Quite reasonably,
the advantage of SNN over NN is larger for a large o in fact,
for ¢ — 0, NN and SNN converge to the same algorithm.

The first row of Fig. 9 shows the average PSNR and FSIM¢
achieved by NLM using NN (0 = 0) and SNN (0 = 0.8) on the
Kodak dataset, as a function of the number of neighbors N,.
Compared to NN, the SNN approach achieves an higher PSNR
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TABLE I

AVERAGE IMAGE QUALITY METRICS FOR DENOISING THE KODAK IMAGE
DATASET, CORRUPTED BY ZERO-MEAN GAUSSIAN NOISE, DIFFERENT
STANDARD DEVIATION ¢ AND DIFFERENT VALUES OF THE OFFSET
PARAMETER 0. BOLD NUMBERS INDICATE THE BEST RESULTS

PSNR | SSIM | MSSSIM | GMSD | FSIM | FSIM¢ | o
noisy 3415 | 9625 | 9797 0211 | 9937 | 9931
NLM36L | 3834 | 9851 9921 0130 | 9941 | .9939
NLM!® | 38.08 | .9847 | .9919 0113 | 9949 | .9947
NLMI® | 3808 | 9847 [ .9919 0113 | 9949 | .9947
NLMIS | 38.08 | 9847 | .9919 0113 | 9949 | .9947
NLMY% | 38.14 | 9850 | .9920 0113 | 9949 | 9947 | 5
NLMI¢ | 3823 | 9854 | .9922 0115 | 9948 | .9946
NLML | 3828 | 9854 | .9923 0118 | .9946 | .9945
NLM16 | 3829 | 9852 | .9921 0124 | 9944 | 9942
noisy 28.13 | 8744 | 9332 0667 | 9763 | .9743
NLM361 | 34.84 | 9634 9804 0338 | 9814 | 9811
NLMI$ | 33.96 | .9580 9773 0269 | 9861 | .9856
NLMI® | 3396 | 9580 | .9773 0269 | 9861 | .9856
NLMIS | 3396 | 9580 | .9773 0269 | 9861 | .9856
NLMY% | 3419 | 9610 | .9789 0266 | 9861 | .9857 | 10
NLMI¢ | 3451 | 9639 | .9805 0274 | 9856 | .9852
NLMS | 34.66 | 9645 | .9809 0291 | 9845 | 9841
NLMIS | 3471 | 9635 | .9803 0319 | 9828 | .9824
noisy 22.11 | 6810 | 8236 1549 | 9250 | 9174
NLM361 [ 31.18 | 9109 19505 0749 | 9475 | 9468
NLMI$ | 29.21 | .8802 9343 0607 | 9646 | .9633
NLM!S | 2921 | .8802 9343 0607 | 9646 | 9633
NLMIS | 2921 | 8802 | .9343 0607 | 9646 | .9633
NLMY% | 2975 | 8948 | .9420 0572 | 9653 | 9641 | 20
NLMIS | 3045 | .9086 9493 0583 | 9631 | .9621
NLMI$ | 3081 | 9119 | 9511 0635 | 9585 | .9576
NLMIG | 3093 | 9084 | .9490 0719 | 9510 | .9503
noisy 18.59 | .5331 7243 2138 | .8687 | .8536
NLM%O | 29.11 | .8631 9197 1071 | 9154 | 9144
NLM® | 2740 | 8273 | 9035 0827 | .9438 | .9419
NLMS | 2740 | 8273 | 9035 0827 | .9438 | .9419
NLMIS | 2740 | 8273 | .9035 0827 | 9438 | .9419
NLMIS | 2748 | 8311 9055 0817 | 9441 | 9422 | 30
NLMI¢ | 28.15 | 8543 | 9175 0793 | 9439 | 9422
NLMIS | 28.69 | .8665 | .9233 0850 | 9382 | .9368
NLM{6 | 2891 | .8640 | .9201 0988 | .9247 | 9235
noisy 16.09 | 4280 | .6414 2501 | .8157 | .7937
NLMJ%) | 27.71 | 8184 | 8893 1303 | .8856 | .8844
NLM3S | 2538 | .7522 | .8591 1061 | .9237 | 9206
NLMES | 2538 | .7522 | .8591 1061 | .9237 | .9206
NLM3S, | 2538 | .7522 | .8591 1061 | 9237 | 9206
NLM3S. | 2538 | .7522 | .8591 1061 | 9237 | .9206 | 40
NLMJS | 2538 | .7522 | .8591 1061 | 9237 | 9206
NLM3S; | 2549 | 7580 | .8624 1043 | 9243 | 9213
NLMJS | 2638 | 7942 | .8813 0977 | 9248 | 9223
NLM{% | 27.11 | 8153 | .8910 1037 | 9168 | .9148
NLM1S) | 2742 | 8147 8870 1214 | 8971 | .8954

for any value of N,; SNN also achieves a better FSIM¢ for
small values of N,, coherently with our toy problem and
simulations (Fig. 4), showing a better preservation of fine
details for SNN in this case. The state-of-the-art denoising
filter BM3D [2] produces images of superior quality, but at a
much higher computational cost. We also compared the image
quality achieved by our approach with the Sliding Discrete
Cosine Transform filter (SDCT [22]), a denoising algorithm
of comparable computational complexity based on signal
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sparsification and not using a NL approach, and achieving a
comparable PSNR, but lower FSIM¢.

The Matlab code to filter an image with NLM, SNN,
and different offset values is available at https://github.
com/NVlIabs/SNN.

B. Colored Noise

Although the case of white Gaussian noise is widely studied,
it represents an ideal situation which rarely occurs in prac-
tice. Having in mind the practical application of denoising,
we study the more general case of colored noise. Images are in
fact generally acquired using a Bayer sensor and demosaicing
introduces correlations between nearby pixels in the RGB
domain. A direct consequence is that the NN approach is even
more likely to collect false matches, amplifying low-frequency
noise as well as demosaicing artifacts.

To study this case, we mosaic the images of the Kodak
dataset, add noise in the Bayer domain, and subsequently
demosaic them through the widely used Malvar algorithm [24].
Denoising is then performed through N LMII(\)," , N LM%”1 (for
N, = {4,8,16,32}), BM3D [2], and SDCT [22]. All these
filters require an estimate of the noise standard deviation in
the RGB domain, obtained here using Eq. (32) and considering
that RGB data come from a linear combination (see [24]) of
independent noisy samples in the Bayer domain. To compare
with the state-of-the-art, we also filter the images with BM3D-
CFA [23], a modified version of BM3D specifically tailored
to denoise data in the Bayer domain.

The bottom row of Fig. 9 shows the average PSNR and
FSIM¢ on the Kodak dataset. The SNN approach is always
more effective than NN in removing colored noise, both in
terms of PSNR and FSIMc¢. This is related to the higher
occurrence of noise-to-noise matching for NN in the case
of colored noise, which is also evident at visual inspection
(Fig. 10). NLM with SNN also generally outperforms SDCT
and BM3D in terms of PSNR and FSIM¢. Since BM3D adopts
a NN selection strategy, it also suffers from the noise-to-noise
matching problem in this case. Remarkably, for ¢ < 20, NLM
coupled with SNN is better, in terms of PSNR, than the state-
of-the-art (and computationally more intensive) BM3D-CFA,
and only slightly inferior for higher noise levels. Visually,
the result produced by NLM with SNN is comparable with
that of BM3D-CFA: our approach generates a slightly more
noisy image, but with better preserved fine details (e.g., see
the eyelids in Fig. 10) and without introducing grid artifacts.
Further results can be observed in the Supplementary Material.

C. The Case of a “Real” Image

We finally analyze the peculiarities of NLM denoising
with SNN for “real” images. We test different filters (SDCT,
NLML, NLM!, and BM3D-CFA) on a high resolution
(2592 x 1944) image, captured at ISO 1200 with an NVIDIA
Shield tablet. Notice that image resolution is much higher
in this case, compared to the Kodak dataset. Futhermore,
the noise distribution in the Bayer domain is far from the
ideal, Gaussian distribution with constant variance. Therefore,
we compute the sensor noise model and the corresponding
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Fig. 9. Average PSNR and FSIM¢ measured on the Kodak dataset, as a function of the number of neighbors N, for NLM using the NN (N LM_I(\)/”) and

SNN (N LM_%/”) approaches, compared to SDCT [22], BM3D [2], and BM3D-CFA [23] in the case of additive white Gaussian noise (first row) and colored
noise (bottom row). Notice that the number of patches used by BM3D and BM3D-CFA is constant and coherent with the optimal implementations described

in [2] and [23].

BM3D-CFA [23]

3 X ]f;

Ground truth

NLM3 (NN)

| ]

NLM?%

(SNN)
‘ =

Fig. 10. Comparison of different algorithms for colored noise denoising, o = 20. The state-of-the-art BM3D-CFA [23] achieves the highest image quality
metrics (Fig. 9); a grid artifact is however visible in the white part of the eye. The traditional NLM algorithm, using N, = 32 NNs (N LM_302), does not
eliminate the colored noise introduced by demosaicing. Instead, when SNNs neighbors are used (N LM%), the colored noise is efficiently removed and quality
at visual inspection is comparable to that of BM3D-CFA. Our result appears less “splotchy” and sharper. Better seen at 400% zoom.

Variance Stabilizing Transform (VST) as in [25] and apply
the VST in the Bayer domain such that the noise distribution
approximately resembles the ideal one. We filter the image
through the SDCT, NLM_16, and NLM_lg6 denoising algorithms
in the RGB domain, after applying the VST and Malvar
demosaicing, which introduces correlations among pixels. The
inverse VST is then applied to the data in the RGB domain.
Differently from the other algorithms, BM3D-CFA is applied
directly to raw data, after the VST and before the inverse VST
and demosaicing. This represents an advantage of BM3D-CFA
over the other approaches, that have been designed to deal
with white noise, but are applied in this case to colored noise.
Finally, after the denoising step, we apply color correction,
white balancing, gamma correction, unsharp masking, coher-
ently with the typical workflow of an Image Signal Processor;

these steps can easily increase the visibility of artifacts and
residual noise. A stack of 650 frames is averaged to build a
ground truth image of the same scene.

The results are shown in Fig. 11. Visual inspection confirms
the superiority of NLM.lg6 over SDCT and NLM.lo6 even for
the case of a real image. The NLM.IO6 filter preserves high
frequency details in the image, but it also generates high
frequency colored noise in the flat areas, because of the
noise-to-noise matching problem. The SDCT filter produces
a more blurry image with middle frequency colored noise
in the flat areas. Our approach provides again an image
quality comparable to BM3D-CFA; the NLM.lg6 filter is slightly
more noisy than BM3D-CFA, as measured by the image
quality metrics in Table II, but filtering is computationally less
intensive.
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Comparison of several patches from the image on the top, acquired with an NVIDIA Shield Tablet at ISO 1200, demosaiced and then denoised

with different algorithms. Color correction, white balancing, gamma correction and unsharp masking are applied after denoising. The ground truth image is

obtained by averaging 650 frames. Better seen at 400% zoom.

D. Other Applications of SNN

The proposed neighbors’ selection principle is indeed quite
general and it can be easily extended to other applications
beyond NL algorithms. For instance, once properly reformu-
lated, it can be beneficial also for the case of the bilateral
filter [26], which is described by:

n

2

0i,0j=—n

ﬁi,j — §OB9J r[ﬂlr’l, yi+5i,j+5j] -y i+0i, j+0j (24)

where the filter size is (2n 4+ 1) x (2n + 1), "/ is the (i, j)
pixel of the filtered image, y iJ is a pixel in the noisy image,
wuy! = yhi, 995 is a spatial weight, and the range weight is
(apart from a normalization constant):

— " /0, 1%).

Thus, the range weight for the pixel y/* is proportional
to its distance from u,”’. Assuming the image is corrupted
2 our approach

by zero-mean Gaussian noise with variance o

rluy’, y"*] = exp{~0.5 - [(uy/ (25)
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TABLE II

IMAGE QUALITY METRICS FOR THE “REAL” IMAGE IN FIG. 11, ACQUIRED WITH AN NVIDIA SHIELD
TABLET AT ISO 1200 AND DENOISED WITH DIFFERENT ALGORITHMS

Noisy SDCT [ NLM'0 (NN) | NLMS (SNN) [ BM3D-CFA

PSNR || 21.2689 | 23.3715 24.0972 24.5500 25.2580

SSIM || 0.8741 0.8889 0.9135 0.9261 0.9607

MSSSIM || 0.7133 | 0.7773 0.8124 0.8450 0.8943
GMSD || 0.1921 0.1499 0.1356 0.1145 0.0921

FSIM || 0.9920 | 0.9927 0.9933 0.9940 0.9952

FSIMc || 0.9800 | 0.9899 0.9911 0.9921 0.9941

instead is to give a larger weight to those pixels that differ in TABLE III

l)
value o0 - ¢ from u;’, as:

i . hk uy! —y" -0 2
rluy”, y™"] =exp[(-0.5 - )1 (26)

Oy

The Matlab code of the modified bilateral filter is available
at https://github.com/NVIabs/SNN. We applied this filter to
the Kodak dataset (gray scale), corrupted by Gaussian noise
(6 = {5,10))! and setting o, = o. The average image
quality metrics (Table IIT) show also in this case a significant
improvement, compared to the traditional formulation of the
bilateral filter. Fig. 12 shows that, also for the case of bilateral
filtering and similarly to the case of NLM, our approach leads
to a better smoothing of the flat areas, while edges are similarly
well preserved.

Potentially, the SNN approach can be applied to any other
NL denoising algorithm, like BM3D [2]. We did an attempt
in this direction, but measured only a slight, statistically non-
significant improvement in image quality. Our interpretation
for this is the following. BM3D is a two steps procedure:
filtering is performed a first time on the raw, noisy image;
the quality of the oracle image generated in this way actually
improves with the application of SNN, but in the second phase,
the search for neighbors is repeated on the oracle image,
whose noise level is low. In these conditions, the advantage
of SNN over NN is questionable: the reference patch p, is
often close to the ground truth g and in this case the SNN
reconstruction error can be higher (compared to NN) because
of the higher variance. This is coherent with the prediction of
our toy problem, for instance in Fig. 4a where the error curve
of SNN is higher than the error curve of NN for u, >~ u.

VI. DISCUSSION

The NLM algorithm can be analyzed as a bias / variance
dilemma. Duval ef al. [5] found that decreasing the number
of neighbors reduces the bias towards false matches in ft,,
which affects NLM even in absence of noise. Their analysis,
as well as that of other researchers ([8], [10]), is mostly
centered around the role of the weights in Eq. (2). Instead,
we concentrate our attention on the selection of the neighbors:
since the NNs of any noisy reference patch p, lie close to
it, their average is biased towards p,, independently from
the weights (noise-to-noise matching). The final effect is the

1Although we registered an improvement in the image quality metrics for
o > 10, we did not report these results here because of the inadequacy of the
bilateral filter for such large noise levels.

IMAGE QUALITY METRICS FOR DENOISING THE GRAYLEVEL KODAK
DATASET, CORRUPTED BY ZERO-MEAN GAUSSIANNOISE, o = {5; 10},
USING A BILATERAL FILTER AND DIFFERENT OFFSETS 0 FOR THE
RANGE WEIGHTS. THE CASE 0 = 0 CORRESPONDS TO
THE TRADITIONAL BILATERAL FILTER

o=25

PSNR SSIM MSSSIM | GMSD FSIM
Noisy 34.15 0.8487 0.9775 0.0222 0.9447
0=0 36.22 0.9142 0.9866 0.0142 0.9660
0=0.1 36.34 0.9174 0.9870 0.0141 0.9667
0=0.35 36.63 0.9252 0.9878 0.0139 | 0.9681
o0 =0.65 36.93 0.9334 0.9885 0.0143 0.9683
0=0.8 37.03 0.9366 0.9886 0.0149 0.9676
0=09 37.08 0.9381 0.9886 0.0154 0.9666
o=1.0 37.09 0.9392 0.9885 0.0161 0.9652

o =10

PSNR SSIM MSSSIM | GMSD FSIM
Noisy 28.13 0.6267 0.9263 0.0702 0.8497
0=0 31.13 0.7735 0.9581 0.0418 09114
o=0.1 31.32 0.7827 0.9596 0.0407 0.9142
0=0.35 31.80 0.8067 0.9631 0.0385 0.9207
o =0.65 32.37 0.8351 0.9666 0.0372 0.9259
0=0.8 32.62 0.8477 0.9678 0.0373 0.9267
0=09 32.75 0.8550 0.9684 0.0378 0.9262
o=1.0 32.86 0.8610 0.9687 0.0387 0.9248

creation of splotchy, colored artifacts in the filtered images,
that can be mitigated resorting to the SNN sampling strategy.

We propose using a toy problem to interpret and provide
insights on the differences between NN and SNN. Compared
to the original implementation of NLM, the math in our toy
is slightly simplified, as we neglect the weights assigned to
the neighbors (Eq. (10)). This simplification allows studying
the effect of the neighbors’ sampling procedure independently
from the weights, but it also has potential limitations. It is
in fact well representative of an homogeneous area corrupted
by a limited amount of noise, where all neighbors belong to
the same cluster and their distance from the reference patch
is close to the expected one (Eq. (5)). When more complex
structures are present in the search window, or for high noise
levels, neighbors at a squared distance significantly larger than
202 can be collected. In this case the weights in Eq. (2) cannot
be neglected, and the interpretation of the results obtained
with our toy problem has to be made with a grain of salt.
Even with this in mind, our results show that the empirical
advantage of NN over SNN can be explained in a principled
way through our toy problem. In fact, analytical results in
our toy problem (Fig. 2d) and experimental results on the
Kodak dataset (Table I) are in agreement, suggesting that the
proposed SNN approach mitigates the noise-to-noise matching
problem, reduces the bias towards u,, and produces images
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o =0 [26] 0=0.8

Filtering of an image of the Kodak dataset, corrupted by zero-mean, Gaussian noise, ¢ = 10, with the traditional bilateral filter (0 = 0) [26] and

with the proposed strategy (0 = 0.8 and o = 1.0). Flat areas are denoised better with the proposed approach, while edges are preserved well.

of quality similar to the original NLM in the flat areas (high
PSNR in Table I), while keeping at the same time the visibility
of the small details (low GMSD, high FSIM in Table I).

The advantage of SNN is more evident in the case of
colored noise, when noise-to-noise matching is more likely
to occur. Visual inspection reveals that in this case NLM
with SNN achieves an image quality comparable to the state-
of-the-art BM3D-CFA [23], but at a lower computational
cost (see Fig. 10 and other examples in the Supplementary
Material). Our experiments (Fig. 11 and Table II) suggest that
NLM with SNN is close to BM3D-CFA also in the case of
“real” images, where white balance, color correction, gamma
correction and edge enhancement are applied after denoising,
and can significantly enhance the visibility of artifacts and
residual noise.

The role played by the reference patch u, deserves a
mention here. If neighbors are collected through the NN
strategy, u, always belongs to set of neighbors, but this is not
the case for SNN. Our experiments, as well as the theoretical
analysis derived for our toy problem, have been performed
without assigning any special role to u,. An alternative to this
is to add pu, by default to the set of neighbors, increasing the
bias eiias of the estimator (due to the noise-to-noise matching
problem), while decreasing at the same time the variance &2,
This may be beneficial or not, depending on the noise level,
the patch size, and other parameters of NLM. The problem
in this case becomes that of assigning the proper weight (see
Eq.(2)) to u,; this remains an open research question, that
can be investigated on the basis of the NLM model introduced
here.

It is worth mentioning that both the NN and SNN
approaches to NLM denoising require the knowledge of the
noise power, o2 for NN-based NLM denoising, o2 is used to
properly set the filtering parameter 4 in Eq. (2) only, whereas it
also guides the selection of the neighbors in the case of SNN.
In the case of “real” images, several effective noise estimation
methods have been proposed [3], but the noise distribution is
far more complicated than zero-mean Gaussian [25]. Even if
a comprehensive analysis of the application of SNN to NLM
denoising for real images goes beyond the scope of this paper,
we show that our approach can be effectively applied to “real”
images through the VST approach [25].

A final observation is that our toy problem can also be used
to confirm and better analyze results already presented in the
literature, and to predict differences between NN and SNN
in those cases. An interesting example is represented by the

1.2

0 200 400 600

N

800 1000

Fig. 13. The prediction error &2 (Eq. (13)) for NN and SNN, with its bias and
variance components, as predicted for our toy problem and 4 =0, ¢ = 0.1,
pr = 1, using a set of N, = 8 neighbors extracted from a population of N
patches. The result for NN is coherent with those reported in Postec et al. [8],
showing the capability of our toy problem to replicate theoretical results from
literature.

work by Postec et al. [8], that suggests that the bias towards
the noisy reference patch decreases with the size of the search
window up to some point, then it increases. This is equivalent
to increasing N in our toy problem. Fig. 13 demonstrates
that our toy problem actually reproduces this behavior (even
without considering the effect of the weights in Eq. (2)), which
is explained considering that the variance and bias of the
estimator first decrease collecting a set of different neighbors;
on the other hand, when N is too large, NN is more likely
to collect samples clustered around u, and therefore biased
on the average. The SNN approach suffers from a higher
variance when N is only slightly larger than N,, but does not
suffer from the same drawback when increasing N: in fact,
as samples are collected at distance o - ¢ from u,, the bias
towards u, is largely reduced. This result finally establishes
a connection between the role of sampling and that of the
weights in NLM, as sampling can be interpreted as a weighting
scheme assigning a unitary weight to the selected neighbors,
and a null weight to the other ones.

VII. CONCLUSION

Collecting neighbors through a traditional NN approach can
bias the estimate of the noise-free patches in NLM denoising,
leading to the introduction of colored noise in the filtered
images. The proposed SNN approach for collecting neighbors
mitigates this drawback, leading to image quality that is
visually comparable to state-of-the-art results in the case of
colored noise, but at a lower computational cost. Compared
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to the traditional NN approach, SNN is particularly effective
in the homogeneous areas of an image, whereas in presence
of texture and small details the superiority of NN or SNN
is determined by various factors including, among others,
the noise level and the number of available patches. To further
improve the image quality, an optimal strategy to adpatively
modify the offset parameter and consequently switch between
NN and SNN could be learned from examples [27], but this
goes beyond the scope of the paper. The intuition behind
SNN is general and can be effectively applied in other
domains like bilateral filtering. The application of SNN to
other algorithms and problems, like studying its effect on
enlarged search windows in NLM [8], on internal and external
denoising [9], or even beyond image processing, remains
nonetheless an open research question to be investigated in
future.

APPENDIX
A. The Truncated Gaussian Distribution

Let’s consider a set of random values generated by a
Gaussian distribution with mean x and variance o2, and let y
be a random variable obtained collecting values in the [a, b]
interval only; y follows a truncated Gaussian distribution,
y ~ G'(u,0%, a,b), whose expected value and variance
are:

a:a_ ﬁ— —H
B ¢(ﬁ)—¢(a)
Elyl=u—o- @)~ 0p) 27
2y BoB)—a $(a)
Varly] = o7 1 = S T
d(B) — ¢(a)
_— - 28
[(D(ﬂ)—(D( )]} (28)

where ¢(x) = —=

—05 x2
T=e and ®(x) =1/2- l+erf(f)]

B. Mixture of Independent Random Variables

Given a set of independent random variables, {y;}i=1.n,
each with pdf p;(y;), let’s consider the linear mixture y with
pdf p(y) =2, P;- pi(y), where P; represents the probability
to select the component i in the mixture. The expected value
and variance of y are then given by:

Elyl =) PEll, (29)

Var[y] = D P{Varlyi] + B[y} — Q| PEDiD*. (30)

C. Linear Combination of Independent Random Variables

Given a set of independent random variables, {y;}i=1. n,

let’s consider the linear combination y > imiyi. The
expected value and variance of y are given by:

EM—Z%-% 31

Var[y ] = Zmi - Var[y;]. (32)
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