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1 Working Principles of ToF Cameras

An ideal ToF camera illuminates the scene with an amplitude-modulated, si-
nusoidal signal g(t) = g1cos(ωt) + g0 [1]. If the camera and light-source are
co-located, the scene static, and the light is reflected only once, the signal reach-
ing a camera pixel is:

s (t) =
r

c2τ20
[g1 cos(ωt− 2ωτ0) + g0] + e0, (1)

where r is the reflectivity of the surface (including color and angle of view), τ0
is time lapse of light traveling back to the pixel with one reflection at speed c,
and e0 is the environmental light. Coherently with [1], we can rewrite Equation
1 as:

a = rg1
c2τ2

0
, a0 = rg0

c2τ2
0

+ e0

s (t) = a cos(ωt− 2ωτ0) + a0
. (2)

The received signal s(t) is still sinusoidal, but the phase of the received signal
is changed, which allows estimating d from the 2ωτ0. Since ω is generally in
the order of MHz and the sampling rate of a traditional sensor is much lower,
homodyne ToF cameras modulate the incident signal with a high frequency,
periodic function b cos (ωt− ψ)1, whose phase ψ is programmable. After some
trigonometry simplifications, the measured, modulated signal is:

ĩψ,ω(t) = s(t)b cos(ωt− ψ)

=
ab cos(ψ − 2ωτ0)

2
+
ab cos(2ωt+ ψ + 2ωτ0)

2
+ a0b cos(ωt− ψ)

(3)

To collect a sufficiently large number of photons, the camera exposure time
T is generally much larger than πc/ω. Measuring ĩψ(t) for an exposure time T is
equivalent to integrating over a temporal range T ; consequently, all the periodic
terms in Equation 3 vanish and we have (apart from a scale factor):

iψ,ω =

∫ T/2

−T/2
ĩψ,ω(t)dt ≈ ab cos(ψ − 2ωτ0) = afψ,ω, (4)

1 In each pixel, electrons generated by incident photons are redirected into one of two
buckets by a rapidly changing electric field.
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where a is the scene response, encoding the irradiance reaching the pixel at
time τ0, after an impulse of light is sent out from the source, and we denote
fψ,ω = b cos(ψ − 2ωτ0) as the camera function. We call iψ,ω the raw correlation
measurement at phase ψ and frequency ω. Notice that the environmental light
term is cancelled in the raw correlation measurement.

Using multiple raw measurements captured at a single frequency ω andK ≥ 2
phases ψ = (ψ1, . . . , ψK), iψ,ω = (iψ1,ω, . . . , iψK ,ω), we can compute the object
distance d as:

d =
c

2ω
arctan

(
sinψ · iψ,ω
cosψ · iψ,ω

)
. (5)

However, if d > πc/ω, Equation 5 wraps. Therefore, additional measurements
at L ≥ 2 frequencies ω = (ω1, . . . , ωL) are needed. For each frequency, we take
K raw correlation measurements at ψ = (ψ1, . . . , ψK). For each frequency ωl in
ω, the object distance d and raw correlation measurements iψ,ωl

are related by:

d =
c

2ωl
arctan

(
sinψ · iψ,ωl

cosψ · iψ,ωl

)
+
πckl
ωl

, kl ∈ N. (6)

Combining Equation 6 for all frequencies, gives a linear mod system, that could
be solved in closed form, using Goshov and Solodkin’s algorithm [2]:

d =
∑
l

Al(ω) arctan

(
sinψ · iψ,ωl

cosψ · iψ,ωl

)
+B(ω). (7)

Notice {Al(ω)}l=1,...,L and B(ω) are constants once ω is fixed. From Equa-
tion 7 one can easily obtain ∂d/∂iψ,ωl

. Thus we directly adopt the differentiable
Equation 7 in the pipeline for depth reconstruction, which enables our network
to work only on the domain of raw correlation measurements. Derivatives with
respect to d can be propagated through Equation 7 to train the network.

When there is multi-path interference (MPI), for the same illumination signal
g(t) = g1 cos(ωt) + g0, the signal reaching a camera pixel becomes:

s (t) =

∫ t

−∞
(a(τ) cos(ωt− 2ωτ) + a0(τ)) dτ, (8)

where the scene response a(τ) is now a function of time travel τ , and the raw
correlation measurement is:

iψ,ω =

∫ T/2

−T/2

(∫ t

−∞
(a(τ)b cos(ωt− 2ωτ) + a0(τ)) dτ

)
cos (ωt− ψ) dt

≈
∫ t

−∞
a(τ)b cos(ψ − 2ωτ)dτ

=

∫ t

−∞
a(τ)fψ,ω(τ)dτ,

(9)
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where a(τ) is the scene response function, and fψ,ω(τ) is the camera function.
We denote iψ,ω(τ) = a(τ)fψ,ω(τ)dτ , notice iψ,ω(τ0) is the single reflection com-
ponent in each raw measurement. If multiple measurements with different phases
and frequencies are captured, iψ,ω(τ) = {iψ1,ω1(τ), . . . , iψK ,ωL

(τ)} forms a man-
ifold by varying τ and function a. We call this manifold, the “single-bounce-
measurement-manifold”.

If the raw measurements iψ,ω are captured at a single frequency ω, and K ≥ 2
phases ψ = (ψ1, . . . , ψK), we have:

iψ,ω(τ) = a(τ)

 fψ1,ω(τ)
...

fψK ,ω(τ)

 dτ = a(τ)

 b cos(ψ1 − 2ωτ)
...

b cos(ψK − 2ωτ)

 dτ

= a(τ)b cos(2ωτ)dτ

 cos(ψ1)
...

cos(ψK)

+ a(τ)b sin(2ωτ)dτ

 sin(ψ1)
...

sin(ψK)


= α1

 cos(ψ1)
...

cos(ψK)

+ α2

 sin(ψ1)
...

sin(ψK)

 ,

(10)

where α1 = a(τ)b cos(2ωτ)dτ and α2 = a(τ)b sin(2ωτ)dτ are variables. This in-
dicates the “single-bounce-measurement-manifold” is an hyper-plane spanned by

vectors
(

cos(ψ1) . . . cos(ψK)
)T

and
(

sin(ψ1) . . . sin(ψK)
)T

in RK . Therefore,
the raw correlation measurements with MPI iψ,ω, which is the sum of iψ,ω(τ),
always lies on the hyper-plane, and one cannot discriminate a raw measurement
with MPI from a raw measurements with only one single bounce.

However, if the camera uses L ≥ 2 frequencies, and for each frequency K ≥
2 raw measurements are captured, the “single-bounce-measurement-manifold”
becomes:

iψ,ω(τ) = a(τ)

 fψ1,ω(τ)
...

fψK ,ω(τ)

 dτ = a(τ)

 b cos(ψ1 − 2ω1τ)
...

b cos(ψK − 2ωLτ)

 dτ

= a(τ)b dτ

 cos(2ω1τ) cos(ψ1)
...

cos(2ωLτ) cos(ψK)

+ a(τ)b dτ

 sin(2ω1τ) sin(ψ1)
...

sin(2ωLτ) sin(ψK)

 ,∀a, τ

(11)
which is a non-linear subspace in RK×L. The raw measurements with MPI,
iψ,ω =

∑t
−∞ iψ,ω(τ) will not lie on the manifold anymore. Multiple-bounce

artifacts can then be eliminated by learning a projection from the raw measure-
ments with MPI to the single bounce manifold.
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2 Characterization of the Kinect 2 Device

We describe here our characterization procedure of the Kinect 2 device. Our
characterization takes into account several aspects:

– Camera Response Function: we verify the linearity of the Kinect 2 sensor.
– Camera Functions: The Kinect 2 emits signals with three frequencies; for

each frequency it captures raw measurements of three phases, which produces
nine raw correlation measurements. For convenience, we denote the nine
measurements as iψ,ω = (iψ1,ω1

, . . . , iψ9,ω9
). We describe here the procedure

to estimate each of the nine camera functions.
– Per-pixel Delay : Because of the hardware setup as well as camera / emitter

alignment, each pixel of a ToF camera measures the phase of the returning
signal with a different delay [3]. We show here how to estimate this delay.

– Vignetting : We show how to estimate the vignetting effect in the Kinect 2.
– Noise Distribution: We demonstrate our procedure to estimate the distribu-

tion of the noise .

2.1 Camera Response Function
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Fig. 1: A typical camera response function of
Kinect 2. Error bars indicate the standard
deviation of the noise.

We first verify whether the Kinect
2 can be treated as a linear cam-
era. By placing different neutral
density filters in front of the cam-
era observing a fixed scene, we
are able to draw the measured in-
tensity of each raw measurement
iψj ,ωj with respect to the trans-
mittance of the filters. A typi-
cal camera response function is
shown in Figure 1, which validates
the linear assumption of Kinect 2.

2.2 Camera Function

Inside coated with black-out material

Fig. 2: Experimental setup of camera function calibration.
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Fig. 3: Camera functions of Kinect 2. The red stars indicate experimental mea-
surements, whereas the blue lines indicate the fitted camera functions.

We assume the camera function to be identical in each pixel. Figure 2 shows
the setup used for camera function calibration. We place a light absorption
tube in front of the camera light source, to reduce the emission angle of Kinect
2, and limit MPI, so that we can obtain an almost single bounce reflection
from the calibration board. By placing the calibration board to a set of known
depths {dn}n=1,...,N , we could obtain a set of measurements {iψ,ω(dn)}n=1,...,N ,
in which iψ,ω(dn) = (dn)−2fψ,ω(2dn/c). By compensating for the inverse-square
term, we obtain a series of observations {fψ,ω(2dn/c)}n=1,...,N , representing the
camera functions. Figure 3 shows the observed points and the fitting of nine
camera functions of Kinect 2. Interestingly, camera functions in the second row
with the lowest frequency is not sinusoidal, whereas the first and third are clearly
sinusoidal. We fit the first and third frequency using b cos(ψ − 2ωτ), and the
second using max(min(b1 cos(ψ − 2ωτ), b2),−b2).

2.3 Per-pixel Delay

We found that there is a different time delay ∇τ(x, y) in the camera function
for each pixel (x, y), which means a more accurate representation of the camera
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Fig. 4: Relationship between the measured distance d(x, y), which is affected by
a time delay ∇τ(x, y), and the true distance d∗(x, y).

function is fψ,ω(τ + ∇τ(x, y)). To estimate this delay, we acquired raw data
with the Kinect 2 looking at a large, flat lambertian plane (a wall), so to have a
planar ground truth shape and raw correlation measurements containing only a
single reflection.

For each measurement, we put the Kinect 2 in a fixed location looking at the
wall. We first place checkerboards on the wall, and use the Camera Calibration
Toolbox2 to estimate the extrinsic parameters and locate the plane in the camera
reference system. Then, we took off the checkerboards and take raw measure-
ments of the plane. We average 100 shots of the raw measurements to reduce
the shot noise. Since the camera functions of the first and the third frequency
are sinusoidal, we use both of them to estimate distance using Equation 7. The-
oretically, the time delay ∇τ(x, y), the true distance d∗(x, y) and the measured
distance d(x, y) satisfy the following relationship:

∇τ(x, y) = 2 (d(x, y)− d∗(x, y)) /c. (12)

Figure 4 shows a typical relationship between d∗(x, y) and d(x, y). By fitting the
linear model d(x, y) = d∗(x, y) + c∇τ(x, y)/2, we could obtain the time delay for
any pixel (x, y).

2.4 Vignetting

After the complete calibration of the camera function fψ,ω(τ + ∇τ(x, y)), we
estimate the vignetting effect of the Kinect 2. We assume the vignetting effect
is the same across raw correlation measurements of different ψ, ω. Similar to the
calibration of per-pixel delay, we take raw correlation measurements (averaging
100 shots to reduce noise) of a large, lambertian, plane iψ,ω(x, y) to limit the
MPI. The ground truth value of iψ,ω(x, y), indicated as i∗ψ,ω(x, y), can then be
computed as in Equation 4, which takes into account the sinusoidal nature of
the emitted signal as well as the varying depth for pixels that are far from the

2 http://www.vision.caltech.edu/bouguetj/calib_doc/
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camera optical axis. Once i∗ψ,ω(x, y) is computed, we estimate the vignetting
ratio r(x, y) as:

r(x, y) =

(∑
j(iψj ,ωj

(x, y))2
)1/2

(∑
j(i
∗
ψj ,ωj

(x, y))2
)1/2 . (13)

To reduce the effects of noise, we repeat the process on 4 different scenes, tak-
ing 100 measurements per scene and averaging r(x, y) over all the scenes and
measurements.

2.5 Noise Distribution

We use an non-parametric model to record the noise distribution. We assume
each pixel to be independent from the others and having an identical noise dis-
tribution. For a pixel (x, y), we take 100 raw measurements of a fixed scene
{ijψ,ω = (ijψ1,ω1

, . . . , ijψ9,ω9
)}j=1,...,100, and computed the average for each chan-

nel i∗ψk,ωk
=
∑
j i
j
ψk,ωk

. We estimate then the empirical distribution, indicated
by p(iψk,ωk

|i∗ψk,ωk
), by accumulating samples from different pixels with the same

discretized average value. We repeat the process for 15 different scenes to make
sure that the samples are sufficient for each discretized average value within the
perception range of the camera. We record a look-up table of p(iψk,ωk

|i∗ψk,ωk
)

for every i∗ψk,ωk
. Experimental data acquired in this way show that the noise

distribution for different ψk and ωk are indeed identical, as initially assumed.
Noise can therefore be represented by a single look-up table for any phase and
frequency. A visualization of a part of the look-up table is in Figure 5.
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Fig. 5: Left: Distribution of noisy measurements as a function of the sample
average. This distribution has been generated from different raw correlation
measurements of 15 scenes; the sample average has been obtained from 100
measurements of the same scene. Right: a slice from the noise distribution (red
line in the left panel).
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3 The FLAT dataset

Figure 6 shows several sample 3D models used to generate the FLAT dataset,
and Figure 7 demonstrates nine raw correlation measurements of a sample scene.
Table 1 provides the detailed statistics of training and testing conducted in the
main paper using FLAT dataset. The FLAT dataset contains 2087 scenes in
total; 1141 scenes are used for training the networks in the main paper, whereas
117 are dedicated to testing. MPI is accurately simulated in each of these scenes
thanks to the use of transient rendering simulation [4]. Motion in the training and
testing scene can be generated with the approximated motion model provided
within the FLAT dataset; in this case, MPI is approximated too. 26 of the testing
scenes contains full motion data, i.e. for these scenes we simulate and render the
moving objects in different positions and orientations, thus MPI and motion are
correctly simulated for this subset of testing data.

Sample Training objects

Sample Testing objects

Fig. 6: Sample 3D objects used in FLAT datset for training and testing

Training Testing Static, MPI Testing Motion, MPI

Number of scenes 1141 91 26

Motion Simulation Approximated Approximated Correct

MPI Simulation Correct in static Correct in static Correct

Table 1: Details of training and testing sets in the FLAT dataset.
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Fig. 7: Sample raw measurements of a scene in the FLAT dataset.

4 More Analysis

4.1 Shot noise versus Monte Carlo rendering noise

We compared the calibrated readout/Poisson noise of the Kinect 2 camera with
the noise from the Monte Carlo (MC) transient rendering. To evaluate the MC
noise, we render the transient propagation of a scene setting multiple times, use
each to create the raw correlation measurements, and compute the variance of
each pixel in the raw measurements. We assume the MC rendering is un-biased,
so the MC noise is reflected by the variance of pixel values. In this test, the
average variance of each pixel caused by the Monte Carlo rendering is 0.7LSB,
while the calibrated shot noise of the Kinect 2 is greater than 20LSB. Thus the
rendering noise of the FLAT dataset is negligible.

4.2 Reduction of shot noise by our method

As for the capability of MRM to reduce the effect of readout/Poisson noise, we
simulated raw measurements of a scene with a cube (2x2x2m) only. The convex
shape of the cube guarantees that there is no MPI. We render raw measurements
of the cube with different albedos (and thus different signal-to-noise ratios), thus
pixel values of the raw measurements cover almost the entire dynamic range of
a real Kinect 2. The mean depth error on this dataset is 3.8cm if we use MRM-
LF2∗, and 4.4cm for the LF2∗ module only (no shot noise reduction algorithm).
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