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Abstract. Scene motion, multiple reflections, and sensor noise intro-
duce artifacts in the depth reconstruction performed by time-of-flight
cameras. We propose a two-stage, deep-learning approach to address all
of these sources of artifacts simultaneously. We also introduce FLAT, a
synthetic dataset of 2000 ToF measurements that capture all of these
nonidealities, and allows to simulate different camera hardware. Using
the Kinect 2 camera as a baseline, we show improved reconstruction
errors over state-of-the-art methods, on both simulated and real data.
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1 Introduction

Depth estimation is central to several computer vision applications. Among the
many existing strategies for extracting a scene’s 3D information, Time-of-Flight
(ToF) cameras are particularly popular due to their robustness and affordability.

ToF cameras leverage the relation between an object’s distance from the sen-
sor and the amount of time required for photons to travel to that object and
back. In particular, Amplitude-Modulated Continuous-Wave (AMCW) cameras
emit a periodic light signal and measure its phase delay upon return: the phase
delay offers an estimate of the time of flight and, in turn, of depth. Any imple-
mentation of this approach requires several careful considerations.

First and foremost, the phase delay wraps at distances that correspond to
multiples of the modulation period. A common approach is to combine infor-
mation from different modulation frequencies: longer modulation periods extend
the unambiguous range, while shorter periods allow resolving finer details. Using
multiple frequencies, however, is not without consequences. The dynamic parts
of the scene may be displaced between sequential measurements at different fre-
quencies, causing depth estimation errors! that are particularly strong along the
depth discontinuities. These artifacts can be identified and removed, at the cost
of missing depth information at the corresponding pixels.

Another consideration is multi-path light transport. In addition to the direct
emitter-object-sensor path, light may follow other paths and bounce multiple
times before being recorded by one pixel. This phenomenon, called multiple-path

1 Some cameras use spatial multiplexing instead, and synchronize neighboring pixels
with specific emission frequencies, thus sacrificing spatial resolution.
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Fig.1: The traditional ToF processing pipeline (green, libfreenect2 [1] as an
example) and the proposed framework (red). The lower left panel shows artifacts
generated by MPI and motion, that show up respectively as deformation close
to corners and spikes or missing data close to the boundaries of moving objects
in the traditional flowchart (green). These artifacts are greatly reduced by the
proposed framework (red), which is based on the introduction of the motion and
multi-reflection modules depicted in the right part.
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interference (MPI), causes biased estimates of depth. Several methods attempt
to attenuate the effects of MPI [2-6], some employing multiple modulation fre-
quencies [2, 3], which, as discussed above, can introduce motion artifacts. These
could be reduced in theory by increasing the capture speed, but shorter exposure
times may lead to a lower signal-to-noise ratio because of shot noise.

The delicate trade-offs between phase-unwrapping, motion, sensor noise, and
MPI, have been studied in a variety of ways, with several methods attempting
to attenuate the effects of the different sources of artifacts independently. To
the best of our knowledge, however, there have been no attempts to tackle them
jointly by learning, possibly because of the lack of large datasets.

We introduce a learning-based approach to tackle dynamic scenes, MPI, and
shot noise simultaneously. Our two-stage architecture (Fig. 1) operates directly
on the raw measurements of a multi-frequency ToF sensor, and produces im-
proved measurements that are compatible with standard equations for phase-
unwrapping and conversion to depth. The first stage is an encoder-decoder
architecture [7] that attenuates motion artifacts by spatially warping the raw
measurements onto a common 2D reference frame. This increases the number
of pixels whose depth can be reliably estimated, especially near the boundaries
of moving objects. The second stage is a kernel predicting network [8] that at-
tenuates MPI and shot noise. Because ground truth depth for real-world scenes
is difficult to capture, we introduce FLAT (Flexible, Large, Augmentable, ToF
dataset), a synthetic dataset for training and evaluation, which allows to accu-



Tackling 3D ToF Artifacts 3

rately simulate the raw measurements of different AMCW ToF cameras (includ-
ing the Kinect 2) in the presence of MPI artifacts and shot noise; FLAT data
can be augmented to approximate motion artifacts as well. Our contributions
are:

(i) FLAT, a large, synthetic dataset of ToF measurements that simulates
MPI, motion artifacts, shot noise, and different camera response functions.

(ii) A Deep Neural Network (DNN) architecture for attenuating motion,
MPI, and shot noise artifacts that can be trained both in the raw measurement
or depth domain.

(iii) A thorough validation, including an ablation study and a comparison
with state-of-the-art algorithms for reducing MPI and motion artifacts.

(iv) A complete characterization of the Kinect 2 camera, including its camera
response function and sensor noise characteristics.

Our DNN model, dataset and characterization of the Kinect 2 are available
at http://research.nvidia.com/publication/2018-09_Tackling-3D-ToF.

2 Related Work

Several works separately reduce artifacts due to MPI, motion, or shot noise in
AMCW ToF imaging. We group them into four categories.

Measurement noise reduction. Raw ToF measurements suffer from both
systematic and random noise [9]. Systematic errors are often associated with im-
perfect sinusoidal modulations and can be reduced through calibration [9-11].
Shot noise and other types of random noise are typically addressed through bilat-
eral filtering of the raw measurements, the depth map, or both sometimes using
other images for guidance [12]. The performance of these approaches is generally
satisfactory, and any system that intends to replace them, ours included, should
not perform noticeably worse.

Motion artifacts reduction. Motion artifacts occur when objects move
and ToF raw measurements are captured sequentially. Gottfried et al. [13] iden-
tify three ways to attenuate them: reduce the number of sequential measure-
ments; detect and correct the regions affected by motion, both in the raw mea-
surement domain and in the depth domain; or estimate the 2D motion fields
between raw 2D measurement maps and apply corrective spatial warping. One
way to detect affected pixels in raw measurements is by checking the Plus and
Minus rules [14,15] that derive from physical constraints on the light measured
in a static scene. After detection, pixels affected by motion blur can be corrected,
for example, by interpolation [14]. Object motion also affects the frequency of
reflected signals due to Doppler effect; however, to use the frequency shift to
measure object motion requires a higher number of measurements and extensive
processing [16].

Physics-based MPI reduction. Algorithms for recovering depth from
ToF correlations usually assume the pure measurement of direct, single-bounce
(emitter-surface-sensor) light paths. In practice, many photons bounce multi-
ple times, causing “erroneous” measurements [2,10]. If multiple modulation
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frequencies are used, the problem can be tackled by processing the temporal
change of each pixel of the raw measurements in the Fourier domain. For in-
stance, in the absence of noise, K interfering paths can be resolved by 2K + 1
frequency measurements [3]. Other techniques for the per-pixel temporal pro-
cessing of raw ToF measurements include Prony’s method, the matrix pencil
method, orthogonal matching pursuit, EPIRIT/MUSIC, and atomic norm regu-
larization [2]. Freedman et al. propose a real-time temporal processing technique
that uses per-pixel optimization based on a light transport model with sparse
and low-rank components [17]. Phasor Imaging exploits the fact that the effects
of MPI are diminished at much higher modulation frequencies, and shows that
simple temporal processing can succeed with as few as two such frequencies,
albeit with a reduced unambiguous working range [18].

Learning-based MPI reduction. The difficulty of modeling MPI analyti-
cally makes machine learning an enticing alternative for its reduction. However,
one obstacle is the lack of large, physically-accurate datasets for training, which
are difficult to capture [19] and prohibitively expensive to simulate, until recently.
Marco et al. use an encoder to learn a mapping from captured ToF measure-
ments to a representation of (MPI-corrupted) depth, and then combine this with
a limited number of simulated, direct-only ToF measurements to train a decoder
that produces MPI-corrected depth maps [4]. Mutny et al. focus on corners of
different materials and use a dataset of such corners to train a random forest
with hand-crafted features [5]. A different strategy is taken by Son et al., who
use a robotic arm and structured light system to capture ToF measurements
with registered ground-truth depth [6]. They then train two neural networks to
correct depth and refine edges through geodesic filtering.

We leverage the availability of computational power and advances in transient
rendering [20, 10] to synthesize a training dataset sufficiently large and diverse to
explore a much larger class of learned models. In addition to physically-accurate
MPI effects, the dataset provides realistic shot noise, supports augmentation
with approximate motion models, and allows for efficient generation of raw mea-
surements from AMCW ToF sensors with arbitrary modulation signals.

3 Time-of-Flight Camera Models

In this section we first review the theory of ToF reconstruction in the ideal
case. We show that equations for depth reconstruction are differentiable, which
allows for backpropagation. We then show the effect of MPI and motion on
depth reconstruction, which helps framing the learning problem and defining
the important factors for training. We leverage these elements to train a neural
network, working in the domain of the raw measurements and before unwrap-
ping, aimed at correcting these artifacts. The section is closed by an accurate
characterization of the Kinect 2, which is our hardware testbed; this serves to
produce accurate simulations for training and reduce the shift between synthetic
and real data. All the math details for the section are in the Supplementary.
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3.1 Ideal Camera Model

An AMCW ToF camera illuminates the scene with an amplitude-modulated,
sinusoidal signal g(t) = gicos(wt) + go, [16]. If camera and light source are co-
located, and the scene static, the signal coming back to a pixel is

t
s(t) = / a(7)cos(wt — 2wT)dr, (1)
— 00
where a(7) is the scene response function, i.e. the signal reaching the pixel at
time 7. In an ideal scenario, the light is reflected once and the scene response is
an impulse, a(7) = ad(7 — 79). The travel time 7y directly translates to depth.
A homodyne ToF camera modulates the incident signal with a phase-delayed
reference signal at the same frequency, bcos (wt — 1). The exposure time of the
camera is usually set to T >> 27 /w. Simple trigonometry allows writing the
raw correlation measurement i, ., as:

T/2
Iypw = / s(t)bcos (wt — ) dt = a(mo)bcos(¢ — 2wmy) = afy.u(0), (2)
—-T/2

where we denote fy ., (T) = bcos(ip—2wT) as the camera function. Using raw mea-

surements captured at a single frequency w and K > 2 phases ¥ = (¢1, ..., %K),
the depth d can be recovered at each pixel as:
d=c/(2w) arctan (SN - Gy ,)/(COSY - 1y )], (3)

where 4, ., is the K-vector of per-phase measurements.

However, d wraps for depths larger than m¢/w, and additional measurements
at L > 2 different frequencies w = (wy,...,wy) are required. Denoting the mea-
surements at frequency w; as i .,, an analytical expression for d was provided
by Goshov and Solodkin [21] based on the Chinese remainder theorem:

d= Z Aj(w) arctan [(sin e - 4y, ) /(COSY - g 0, )| + B(w), (4)

where {A;(w)};=1,...r and B(w) are constants. Based on Eq. 4, one can easily
obtain the derivative 0d/0% .,, which makes it possible to backpropagate the
error on d and to perform end-to-end training.

3.2 The Impact of Multiple Paths

In a realistic scenario, the signal that reaches the sensor is corrupted by multi-
ple light paths that undergo different reflection events and have different path
lengths. This means that the scene response a(7) is not an impulse anymore, as
it measures the arrival of the light reaching a pixel from all the possible light
paths that connect it to the emitter. In this case, Eq. 2 becomes:

i = /i/; < [ ; a(T)cos(wt — QW)TT) beos (wt — 1) dt 5

~ / " a(rbeos( — 2m)dr = / a(7) foo(7)dr.

— 00 — 00
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When sinusoidal reference signals with different frequencies w; and phases vy,
are measured sequentially, one obtains multiple channels of raw measurements.
The multi-channel measurements at any pixel 4, ., can be interpreted as a point
in a multi-dimensional space, and while difficult to model analytically, there is
structure in this space that can be exploited through learning.

In the ideal case of a single bounce, the set of all possible measurement vectors
1y, forms a “single-bounce measurement manifold” defined by Eq. 2. If only
one frequency is used, measurements affected by MPI lie on the same manifold,
and it is therefore impossible to identify and correct them. On the other hand,
in the case of multiple frequencies, the manifold becomes a non-linear subspace,
and MPI-affected vectors do not lie on it anymore. The MPI problem can then
be recast as one of mapping real measurements, possibly affected by MPI, to
the ideal one-bounce manifold, which is also the idea behind many existing
approaches for MPI correction.

3.3 The Impact of Motion

Real scenes are rarely static. Because of the lateral and axial motion of objects
with respect to the camera, sequential correlation measurements 2, ., are mis-
aligned. Moreover, the axial component of the motion also changes the scene
response function a(7): for example, even in the simple case of a single bounce,
the term 79 in Eq. 2 changes with the axial motion of the object, whereas the
measured intensity varies proportionally to the inverse-square of distance. In
our indoor experimental setting we found both these phenomena to contribute
significantly to the depth reconstruction error. Motion can even generate blur
and Doppler within each raw correlation measurement, but we found these last
effects negligible when compared to the previous ones.

3.4 Characterization of Kinect 2

The Kinect 2 is a well-documented, widely used ToF camera, with an open-
source SDK (libfreenect2 [1]) that exposes raw correlation measurements and
provides a baseline algorithm for benchmarking (indicated as LF2 in the fol-
lowing). We carefully characterize the camera functions, shot noise, vignetting,
and per-pixel delay, to produce accurate simulations and mitigate the data shift
between synthetic data from the FLAT dataset and real scenarios.

The Kinect 2 uses three modulation frequencies, each with three phases,
for a total of nine camera functions fq o (7). To calibrate the camera func-
tions, we carefully align the optical axis to be normal to a Lambertian calibra-
tion plane. We place a light absorption tube in front of Kinect’s light source
to narrow down the beam emission angle and limit MPI. We translate the
plane to known distances {d;};=1.n to obtain a series of raw measurements
{4y w(dj)}j=1..n that approximate (d;)~2fy w(2d;/c) up to a constant scale,
for every pixel. After removing the squared-distance intensity decay (dj)_Q, we
have a series of observations of the camera functions { f ., (2d;/c)}. Fig. 2 shows
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three camera functions fitted by this method, 2000
parameterized as bcos(v) — 2wr) (red and blue
curve in Fig. 2), and max(min(b; cos(¢p —
2wT), ba), —b2) (green curve in Fig. 2).

As for the shot noise, we assume each pixel to
be independent from the others. We acquire data
from 15 scenes; for each raw correlation measure- 2000
ment, we compute the per-pixel expected value D" imeLaser (e w0
as the average of 100 measurements. For any ex-
pected value, we collect the empirical distribu-
tion of the noisy samples in a lookup table, that
is used to generate noisy data in simulation.

For the complete explanation of the calibra-
tion procedure, including vignetting and per-
pixel time delay, we invite the reader to refer
to the Supplementary, which also includes more
experimental results.

1000 | |

Camera Functions
o

-1000

Fig.2: Calibrated camera
functions for Kinect 2; the
points represent experimental
data, the continuous line are
the fitted camera functions.

4 The FLAT Dataset

An ideal dataset for training and validating ToF algorithms is large; allows sim-
ulating different camera response functions (like those in Section 3.4); allows
including MPI, shot noise and motion; and exposes raw correlation measure-
ments. We created the FLAT dataset with these principles in mind.

FLAT contains 2000 scene response functions, {a’ (7, z,y)}j=1..2000, where we
make the dependence on pixel (x,y) explicit. Each of these is computed through
transient rendering [20], which simulates the irradiance received by the camera
sensor at every time frame, after sending an impulse of light to the environment.
The output of the renderer is a n, X n; x n, tensor, i.e. a discretized version
of a?(7,z,y). The scenes in the dataset are generated from 70 object setups;
each setup has 1 to 5 objects with lambertian surface and uniform albedo; their
3D models are from the Stanford 3D Scanning Repository [22] and the online
collection [23]. We render each setup from approximately 30 point of views and
orientations, at a spatial resolution of (n, = 424) x (n, = 512) pixels and
for n, = 1000 consecutive time intervals (each interval is 5e~!!sec long); the
horizontal field of view is 70 degrees (corresponding to the Kinect 2 camera).
Since bi-directional path tracing is used to sample and simulate each light ray,
a’ (7, z,y) does simulate MPI. From the discretized version of a’ (7, x,y), any raw
measurement ¢, ., can be obtained as in Eq. 5, for any user-provided camera
function fy ., (t) (like, for instance, the ones we estimated for Kinect 2).

The FLAT dataset offers the possibility to augment the raw measurement
with shot noise, textures, vignetting, and motion. Within FLAT, we provide the
code to apply any vignetting function and shot noise coherently with the simu-
lated camera, while MPI and camera functions are handled as described in the
previous paragraph. As a consequence, a physically correct simulation of differ-
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ent camera functions, MPI, vignetting, and shot noise is a computationally light
task within FLAT. On the other hand, texture and motion are more expensive
to render exactly. Since each scene in the FLAT dataset takes on the average
10 CPU hours to render, creating a large set of scenes with different textures
and motions would require tens to hundreds of times longer. We handle this by
providing tools to approximate texture and motion in real time (as specialized
forms of data augmentation), while still providing a small testing set within
FLAT with exact motion, texture, and rendering.

We approximate textures on the training data, by pixel-by-pixel multiplica-
tion of the rendered 2, ., with texture maps from the CURET texture dataset [24].
This is an approximation that ignores the recursive impact that real textures
have on MPI, but we have found that it is nonetheless useful as a form of data
augmentation.

The FLAT dataset offers two different methods to augment the simulated raw
measurements with approximate motion. To illustrate the first one, let us con-
sider the Kinect 2, where nine correlation measurements of a static scene, i o, =
(Tapy s - - -+ Topo wo ) are simulated. We generate a random 2D affine transform T
and apply it to create a smooth motion as i;pj w5 (7, y) = iy; w, (T775(z,y)), where
T™(z,y) is transforming (x,y) by T for n times, and T~ (T"(x,y)) = (x,y). No-
tice that the first and last measurement will achieve the largest movement. To
obtain a more complex movement, we simulate the motion of two or more objects
with different affine transforms and composite the scene based on their depths.
This approximate motion model is fast, but does not reproduce the MPI interac-
tion between the objects in the scene. The second motion approximation method
takes in input a rendered scene response function, a(7,z,y). We generate then
a random, 3D affine transformation and apply the corresponding displacement
(vz, vy, v2) toit, ie., d'(1,2,y) = a(T + v. /¢, x + vz, y + vy). Then we use Eq. 5
to compute one of the nine raw measurements. As in the previous method, the
transform is applied multiple times to create a smooth motion between the nine
measurements. This method is computationally more expensive compared to the
previous one, but physically more accurate.

5 Network Architecture

We propose a two-module DNN (Fig. 1), to deal with MPI, motion, and shot
noise in the domain of raw correlation measurements. We demonstrate the use
of the modules on data from the Kinect 2. The two modules can be integrated
into the LF2 [1] reconstruction pipeline, which is basically an implementation of
Eq. 4 on Kinect 2. We leverage the differentiability of Eq. 4 to exploit, among
other forms of training for the DNN, training using a loss function in the depth
domain.

The first module (MOtion Module, MOM) is an encoder-decoder inspired
by Flownet [7]. The aim of MOM is to output a velocity map to align the
nine raw channels measured by Kinect2. Differently from the original design
of Flownet, which computes the optical flow between two images in the same
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Name

MOM + LF2

MOM-MRM + LF27

MRM + LF2¥

Training Data

Motion, MPI

Motion, MPI

Static, MPI

Architecture

Encoder-Decoder

Encoder-Decoder-
KPN(3 x 3 x 1)

KPN(1x1x9)

Depth Reconstruction

LF2

LF2, no filter

LF2, no filter

Training Loss

L2, Velocity

L2, Raw Intensity

L2, Raw Intensity

Fine Tuning Loss

L2, Depth

L2, Depth

Table 1: Training specification.

(c) Shot noise

(a) True depth (b) Motion (d) MPI

Fig. 3: Effect of non-idealities on the LF2 depth reconstruction error, in cm.

domain, MOM aligns raw correlation measurements taken with different cam-
era functions, and therefore correlated, but visually different. Moreover, MOM
takes in input nine misaligned channels and outputs eight optical flows at the
same time, while Flownet deals with only one pair of images and one optical
flow. The second module (Multi-Reflection Module, MRM) is based on a kernel-
predicting network (KPN), that has been effectively used for burst denoising on
shot noise [25]. MRM outputs nine spatially varying kernels for every pixel; each
kernel is locally convolved with the input raw measurements, to produce a clean
raw measurement by jointly removing shot and MPI noise on every channel.

Table 1 shows the details of different variations of the basic DNN architec-
ture that we consider in our experiments. Notice that, when we use the MRM
module, we modify the LF2 pipeline to remove bilateral filtering from it, be-
cause denoising is already performed by MRM; we indicate this variation of the
LF?2 pipeline as LF2*. The MOM-MRM (followed by LF2*) network inherits the
encoder-decoder from MOM; training of MRM is performed with the output of
MOM as input, the weights of MOM being fixed. We start training using the
L2 error of the raw correlation measurements as loss. Then, we fine tune MRM
using the L2 depth loss propagated through LF2*. Motion in the training data
is generated using the first approximation method in the FLAT dataset. We
also tried fine tuning using the second approximation, which is physically more
accurate, obtaining similar results.

6 Experiments

To better illustrate the typical distribution of the artifacts introduced by mo-
tion, shot noise, and MPI, we show in Fig. 3 a scene from the FLAT dataset,
rendered with motion, shot noise, or MPI only, and then reconstructed by the
LF2 pipeline. Over/under shootings can be observed at the border of moving



10 Q. Guo, I. Frosio, O. Gallo, T. Zickler, and J. Kautz

objects, where raw measure- if
ments from the foreground — os
and the background mix due «os
to motion. Shot noise in %y, 04
creates random noise in the 02

depth map, especially in dark 0 . — A -
regions like background and

—LF2
MRM
—DToF

Absolute Error [cm] Error [cm)

. . th
image borders. MPI generates Median IQR Pretile (90™)
a low frequency noise in ar- (error) (absolute error)

foctod b Lioht rofl LF2 |2.92 (1.62%) 3.01 (2.34%) | 6.55 (5.36%)
cas allected by ught TEUEC™ | \IRM |-0.01 (0.00%) 2.63 (1.70%) | 4.19 (2.52%)
tion, like the wall corner in | ppop | 2,48 (1.80%) 12.36 (7.13%)| 19.56 (9.84%)

Fig. 3. 1.83 (1.16%)

Phasor|-0.29 (0.12%) 1.62 (0.71%)

Fig.4: The upper left panel shows the CDF
of the depth error for LF2, MRM, DToF, and
Phasor, for simulated data from FLAT, affected
by shot noise and MPI. The upper right panel
shows the histogram of the error. All pixels
whose real depth is in the [1.5m, 5m] range

6.1 MPI Correction

We first measure the effect of
the MRM module on static
scenes affected by MPI in
the FLAT dataset, and com-

pare it to LF2 [1], DToF [4],
and Phasor [18], that are
based respectively on multi-
frequency, deep learning, and
custom hardware. LF2
plements Eq. 4 on Kinect 2

im-

have been considered. Our MRM outperforms
LF2 and DToF, and it comes much closer to
the accuracy achieved using the MPI-dedicated,
higher-frequency modulations of Phasor. The ta-
ble shows corresponding median and Inter Quar-
tile Range (IQR) of the depth error, and 90"

and it constitutes our base-
line to evaluate the improve-
ment provided by our DNN
on the same platform. DToF
and Phasor require different
sensor platforms than Kinect
2, but thanks to the flexibility of the FLAT dataset, we can simulate raw mea-
surements using their specific modulation frequency and phase, and add the same
level of noise for testing. As DToF and Phasor do not mask unreliable output
pixels (like LF2 does), and Phasor’s working range is limited to [1.5m, 5m], we
compare the depth error for all those pixels in this range only. Furthermore, as
Phasor does not deal with shot noise, we apply a bilateral filter to remove noise
from its output depth.

Results reported in Fig. 4 show that DToF produces the less accurate depth
map. The median error of LF2 is biased because of the presence of MPI in the raw
data—in fact, the LF2 pipeline does not include any mechanism to correct such
non-ideality. This bias is effectively removed by MRM. Our method approaches
the Phasor’s accuracy, without requiring expensive hardware to create very high
modulation frequencies (1063.3MHz and 1034.1MHz): MRM works with Kinect
2, which uses frequencies below 50MHz. Fig. 5 shows the results of typical scenes
from the FLAT dataset, where Phasor and MRM outperform other methods in

percentile of the absolute error, in cm. The num-
bers in the brackets indicate the relative errors.
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(b) DToF (c) Phasor (d) LF2 (e) MRM

Fig.5: Depth error for scenes from the FLAT dataset, corrupted by shot noise
and MPI and reconstructed by DToF [10], Phasor Imaging [18], LF2 [1] and
MRM, in cm. Errors are computed only in the unanbiguous reconstruction range
of Phasor Imaging, [1.5m, 5m]; no mask is used to remove unreliable pixels. The
blue boxes in the first row show the receptive field for DToF and MRM.

removing MPI. It is worth noticing that high frequency modulation signals, like
those used in Phasor, are very susceptible to noise. In fact, we use a bilateral
filter to reduce the effect of shot noise on the output of Phasor. Although this
effectively reduces random noise, any misalignment on raw correlation measure-
ments (like the one occurring in case of motion) creates a systematic noise that
cannot be eliminated by bilateral filtering, which dramatically reduces the accu-
racy of Phasor (Fig. 7c). Our MRM appears much more reliable in this situation
(Fig. 7e).

The case of a real scene of a corner, acquired in static conditions with a
Kinect 2, is depicted in Fig. 8. The ground truth shape of the scene could be
estimated by checkerboard calibration applied to each of the three planes of
the corner. This figure shows that MRM can significantly reduce MPI artifacts
(compared to LF2) not only in simulation, but also in realistic conditions.

6.2 Motion Artifact Correction and Ablation Study

We perform an ablation study to quantify the benefits of MOM and MOM-
MRM, on a test set from the FLAT dataset corrupted by MPI, shot noise, and
random motion. For this experiment, the motion between the nine correlations
measurement is fully simulated by moving the objects in 3D space. This allows
testing the MOM and MOM-MRM on simulated raw correlation measurements
affected by a real motion field, even if the modules are trained on approxi-
mated motion data. We compare depth reconstruction through LF2, MOM, and
MOM-MRM, each using the same masking method provided by LF2 to elimi-
nate unreliable pixels, like those along misaligned object boundaries due to mo-
tion. The density (i.e., percentage of reconstructed pixels) reported in Fig. 6 is
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0.025 | [—LF2

—LF2
MOM
—MOM-MRM|

therefore representative of
how well objects bound- 08
aries are re-aligned by . os
MOM. The depth accu- 04
racy is slightly higher 02
for MOM compared to e

MOM
| |=—=MOM-MRM

107! 10"

LF2, but the main ad- Absolute Error [cm] Error [em]
Vantage for MOM is a Median IQR Prctile (90th) Density
. . (error) (absolute error) -
reduction of the unreli- LF2 2.57 (1.11%) 2.65 (1.14%)| 5.62 (2.561%) |93.56%
able pixels7 as density in- MOM 2.50 (1.08%) 2.55 (1.10%)| 5.48 (2.44%) |95.50%
MOM-MRM |1.02 (0.45%) 2.43 (1.06%)| 4.12 (1.82%) |97.67%

creases from 93.56% to

95.50%. Red boxes in Fig.6: The upper left panel shows the CDF of the
Fig. 9 demonstrate in sim- depth error for LF2, MOM and MOM-MRM, for
ulation how introducing  gjylated data from the FLAT dataset, affected by
the MOM module can re- g}, noise, MPI, and motion. The upper right panel
duce the presence of holes  ghows the histogram of the error. Only those pix-
in the reconstructed scene, ¢]g that have been reconstructed contribute to the
especially close to object  gtatistics. The table shows the corresponding recon-
boundaries. The introduc-  g¢1yction errors (median, 90t percentile, and Inter
tion of the MRM module  (yartile Range (IQR), in cm). The numbers in the

further increases the den- 5 ckets indicate the relative errors.
sity and reduces the bias

in the depth error caused

by MPI. Also this effect is

clearly visible in the green boxes in Fig. 9, where the introduction of the MRM
module leads to the reduction of the MPI artifact in the corner of the room.

6.3 Putting Everything Together

Fig. 7 shows a simulation from the FLAT dataset, where the scene has been
corrupted by shot noise, MPI, and a small motion (an average of 10 pixels
between the first and last raw correlation measurements). Phasor imaging cannot
produce a reliable depth map in this case: even a small motion changes the
measured phase significantly, because of the fast modulation frequency. MRM
still outperforms LF2, reducing the MPI, whereas the architecture trained to
correct both motion and MPI, MOM-MRM, performs best (lowest median and
IQR). The reconstruction of the depth scene using the MOM-MRM approach
takes approximately 90ms on a NVIDIA TitanV GPU.

Our DNN architecture, which operates on raw measurements, is the result
of a thorough investigation. We tested several architectures, including one that
directly outputs depth as suggested in the recent work by Su et al. [26], but the
reconstruction error was consistently larger than that of the proposed DNN. We
believe this is due to the fact a DNN that outputs the depth directly would be
forced to learn the non-linear mapping from raw measurements to depth, instead
of leveraging the fact that such relation is dictated by physics and known (see the
inverse-tangent of Eq. 4). An additional benefit of working in the raw domain is
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Fig. 7: Depth error for different reconstruction methods and a simulated scene
from FLAT, corrupted by shot noise, MPI, and small motion. Units in cm.
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Fig.8: A real scene of a corner captured by a Kinect 2 (a) with ground truth
depth (b) and depth errors for LF2 (c), and MRM (d). MPI artifacts show up
as lobes close to the corner in LF2, and are reduced by MRM. Units in cm.
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Fig.9: A simulated scene from FLAT, corrupted by shot noise, MPI, and motion.
The upper row shows the depth maps. The lower left panel is the intensity image,
other panels in the row are depth errors. MOM aligns object boundaries and
allows a more dense reconstruction (red boxes in b, ¢). MRM mostly corrects
MPT artifacts in the smooth areas (green boxes in ¢, d). Units in cm.

) LF2

Fig.10: Panel (a) shows the average of nine raw correlation measurements ac-
quired by Kinect 2, with a moving ball (blue box); panel (b) shows one of the
raw measurements. Our method (d) reduces the motion artifacts compared to
LF2 (c). The optical flow generated from MOM is shown in panel (e). The red
box highlights the reflective hand bar with specular reflections; if not masked
out, our method fails on these pixels. Units in cm.
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that, beyond depth, we can estimates uncertainty as in the LF2 pipeline, which
is useful, for instance, to mask out bad depth values.

Fig. 10 shows an example of a real scene with moving objects (ball in the blue
box), captured by Kinect 2. Notice that Fig. 10a is blurred as it averages nine
raw measurements, whereas each individual raw measurement is still sharp, as in
Fig. 10b. Coherently with simulations, the main effect of MOM is the reduction
of the holes close to the boundaries of the moving object.

6.4 Method Limitations

Our method has some limitations that could be overcome with further devel-
opment. The receptive field of MRM (blue box in Fig. 5) is 72x72 pixels, in
theory not large enough to capture global geometric information and correct
long-range MPT; furthermore, our loss function naturally emphasizes short-range
MPI correction because the signal is substantially stronger for shorter traveling
distances. Nonetheless, MRM does reduce many long-range MPI artifacts (see
the windshield of the car in Fig. 5). This can be explained with the a priori
information about object appearance learned by MRM, or assuming that MRM
learns to project measurements corrupted by long-range MPI onto the single-
bounce manifold (details in the Supplementary).

Another limitation is that FLAT only includes diffuse materials. Therefore
MRM cannot reconstruct surfaces with strong specular reflections, as the door
handle (red box) in Fig. 10.

Fig. 10 also highlights the limitations of MOM for large motions: while MOM
effectively warps pixels of the foreground moving object, it is not designed to
inpaint missing data of the partially occluded background. This results in only
partial elimination of the motion artifacts for large motion fields.

As our experiments with Kinect 2 and rapid motion showed it to be negligible
(Fig. 10b), we did not consider blur within a single raw measurement. In the case
motion blur becomes significant for other platforms, approximate blur can be
easily included when simulating measurements from FLAT.

Lastly, our method assumes constant ambient light (as in typical indoor
conditions) to model the camera noise. Characterizing the noise induced by
ambient light separately may lead to a more accurate noise model.

7 Conclusion

Motion, MPI and shot noise can significantly affect the accuracy of depth re-
construction in ToF imaging. We have shown that deep learning can be used to
reduce motion and MPT artifacts jointly, on an off-the-shelf ToF camera, in the
domain of raw correlation measurements. We demonstrated the effectiveness of
our MOM and MRM modules through an ablation study, and reported results
on both synthetic and real data. Alternative methods to tackle these artifacts
are still to be explored; we believe that our flexible FLAT dataset represents a
helpful instrument along this research line.
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