
Exploiting Idle Resources in a High-Radix Switch
for Supplemental Storage

Matthias A. Blumrich
NVIDIA Corporation

Westford, MA
mblumrich@nvidia.com

Nan Jiang
NVIDIA Corporation

Santa Clara, CA
tedj@nvidia.com

Larry R. Dennison
NVIDIA Corporation

Westford, MA
ldennison@nvidia.com

Abstract—A general-purpose switch for a high-performance
network is usually designed with symmetric ports providing
credit-based flow control and error recovery via link-level re-
transmission. Because port buffers must be sized for the longest
links and modern asymmetric network topologies have a wide
range of link lengths, we observe that there can be a significant
amount of unused buffer memory, particularly in edge switches.
We also observe that the tiled architecture used in many high-
radix switches contains an abundance of internal bandwidth. We
combine these observations to create a new switch architecture
that allows ports to stash packets in unused buffers on other
ports, accessible via excess internal bandwidth in the tiled switch.
We explore this architecture through two use cases: end-to-end
resilience and congestion mitigation. We find that stashing is
highly effective and does not degrade network performance.

Index Terms—High performance computing, Multiprocessor
interconnection networks, Packet switching, High-radix switches,
Buffer storage

I. INTRODUCTION

In recent years, high-performance network systems have
been dominated by low-diameter network topologies [1]–[3]
constructed from high-radix switches [4]–[6]. A prominent
characteristic of these topologies, compared to traditional,
multi-dimensional tori [7]–[9], is their highly asymmetric link
lengths. For example, in the popular dragonfly topology each
switch has three types of connections: network endpoints,
other switches in a group, and long optical links between
groups. Even in a massive dragonfly, each group consists of a
few hundred endpoints at most, and can be packaged in several
adjacent cabinets. Therefore, links within groups do not need
to be more than 5 meters in length, and links to endpoints
can be much shorter. However, between groups—with system
footprints up to 600 square meters [10] and growing [11]—the
maximum link length (corner-to-corner) is 60 to 100 meters.

Asymmetric network links lead to asymmetric resource
requirements for switch ports. In particular, the amount of
buffering required by each port to implement link-level retrans-
mission and credit-based flow control is directly proportional
to the length of the connected link. While resources in a switch
can be implemented asymmetrically to match the requirements
of a specific topology [12], the ability to use the switch in other
configurations is then reduced.

On the other hand, a more general-purpose network switch
with symmetric ports can be utilized for a variety of topologies

TABLE I
ASYMMETRY OF LINKS IN A CANONICAL DRAGONFLY NETWORK SWITCH.

Link Type Length % of Ports Port Buffers Underutilized
Endpoint < 1m 25 99%
Intra-group < 5m 50 95%
Inter-group < 100m 25 0%

and system sizes. To do so, it must be designed with sufficient
resources to satisfy the demands of various configurations.
A good example is Intel’s Omni-Path switch [4], which has
48 ports supporting links up to 100 meters [13] at 100
Gbps. Table I summarizes the connectivity of ports and the
corresponding buffer requirements when such a switch is used
to implement a large-scale dragonfly network. Weighting the
last column by the third column reveals that approximately
72% of all the port buffering on each switch is not required
for normal link-level retransmission and flow control due to
the mismatch between the physical lengths of links and the
buffering available in the symmetric ports. Similar analyses
can be conducted for other low-diameter topologies such as
the leaf switches in a multi-level fat-tree.

Observing the large amount of buffer resource underutiliza-
tion when deploying general-purpose switches with symmetric
ports in asymmetric networks, we have developed a novel
switch architecture that allows the unused buffers from all
ports to be utilized collectively as a common storage resource,
accessible from any port on the switch. Our architecture is
evolved from a typical, state-of-the-art tiled architecture used
in modern high-radix switches. We observe that a tiled switch
has an overprovisioning of internal bandwidth that can be used
to access the unused buffers without impacting performance.
We call our new method of accessing idle buffers using
otherwise idle internal bandwidth “stashing”.

In addition to developing the new switch architecture, we
show that the additional storage provided by stashing can
be used to implement a variety of network features and
enhancements. One of the principle uses we identified is end-
to-end retransmission for error recovery, a common feature of
most protocols for traditional, large-scale networks including
Transmission Control Protocol (TCP) [14] and InfiniBand’s
reliable connections [15]. However, evolving network systems
with directly-attached accelerators may not devote endpoint



Input 4

Input 1

Input 2

Input 3

Input 6

Input 5

Input 10

Input 7

Input 8

Input 9

Input 12

Input 11

O
u

tp
u

t 1

O
u

tp
u

t 2

O
u

tp
u

t 3

O
u

tp
u

t 4

O
u

tp
u

t 5

O
u

tp
u

t 6

O
u

tp
u

t 7

O
u

tp
u

t 8

O
u

tp
u

t 9

O
utp

ut 10

O
utp

ut 11

O
utp

ut 12

Fig. 1. A tiled switch with configuration P=12 R=2 C=3 I=6 O=4.

resources to providing such capabilities because of the eco-
nomics driving the component markets. A good example is
NVIDIA’s recently announced NVSwitch fabric [16] which
interconnects commodity GPUs designed for multiple markets.
We show how end-to-end retransmission can be implemented
in the network switches instead, using stashing storage.

To further demonstrate the diverse applicability of our
architecture, we also studied the use of stashing to enhance the
performance of explicit congestion notification protocol (ECN)
for congestion management. We show that the additional
storage can be used to temporarily prevent head-of-line (HoL)
blocking effects in the network while the congestion protocol
activates. Through these two use cases, we demonstrate that
the new architecture can fully utilize the otherwise idle buffers
in the ports of a general-purpose switch to provide new
services without affecting normal network performance.

II. BASELINE TILED SWITCH

Tiling has proven to be a scalable method for building high-
radix, high-performance network switches [5], [17], [18]. We
describe a typical tiled switch in this section and use it as the
baseline in our simulations as well as the basis for our stashing
switch architecture, described in Section III.

Figure 1 shows the basic architecture of a tiled switch with
radix P . It consists of a two-dimensional array of identical
tiles, with R rows and C columns, forming a large crossbar.
Each tile (represented by a grey box) has I inputs and O
outputs, and contains a smaller I × O tile crossbar that
functions as a portion of the switch crossbar. In general, a
valid tile arrangement must satisfy:

P = R× I (1a)
P = C ×O (1b)

Each row of tiles is fed by I switch input ports, and each
switch input is connected to all C tiles in a row via a multi-
drop bus. For example, there are 12 row buses in Figure 1
and each connects to three tiles. The outputs from the R tiles
in each column are point-to-point channels, so they must be
merged with an R-to-1 multiplexer feeding each switch output.

Input Buffers
(3 VCs)

Row Bus

...

Row
Buffers

Output Buffers

...

...

Column Channel

Tile
Xbar

In 1

Out 4

Column
Buffers

In 2

Fig. 2. Example datapath of a tiled switch with three virtual channels, from
an input port to an output port.

In Figure 1, each switch output is fed by two tile outputs—one
from each row—requiring a 2-to-1 multiplexer.

It should be apparent from Figure 1 that various tile sizes
are possible depending on engineering trade-offs such as clock
frequency, switch radix, the availability of wiring tracks, and
tile complexity. Previously published designs include 8×8 tiles
for a 64-port switch [18] and 3×4 tiles for 36 ports [6]. A key
characteristic general to all tiled switches is an overprovision-
ing of internal bandwidth.

Across the entire switch, the total number of column
channels from the tile crossbars to the output multiplexers
is R × C × O. Substituting equation (1b), we see that the
internal column bandwidth of the tiled switch is R times
higher than the switch radix, P . It is this excess internal
bandwidth (together with the multi-drop behavior of each row
bus) that allows us to stash packets without impacting switch
performance.

Figure 2 is a simplified diagram of the datapath from one
switch input to one switch output, assuming a multi-drop row
bus. The internal buffering is critically important because it
allows the internal routing of packets to be performed in two
independent steps: input to tile, and tile to output.

Packets received by the switch are stored in the input
buffers, and the Virtual Channels (VCs) compete for access
to the row bus (represented by a horizontal line in Figure 1).
The winner advances to its corresponding VC row buffer at a
tile crossbar input. All the row buffers compete for access to
the tile crossbar and the column channels (represented by the
vertical lines in Figure 1). The winner of each tile crossbar
output advances to its corresponding VC column buffer at an
output port, and all the column buffers compete for the switch
output buffers. Finally, the VCs in the output buffer compete
for the link.

The large input and output buffers in Figure 2 are used
to provide flow control and reliable transmission between
switches. On the input side, sufficient buffering is required to
implement lossless, credit-based flow control. On the output
side, packets are stored until a positive link-level acknowledg-
ment is returned from the receiving switch indicating that the
transmission was successful. Both buffers must be sized for
roughly one link round-trip time’s (RTT) worth of data; that



S

Input Buffers

Output Buffers

In 1

Out 1

Row Bus

C
o

lu
m

n
 

C
h

a
n

ne
l

Stashing
Partition

Stashing
Partition

R
S

S

R

Tile
Xbar

Fig. 3. Datapath of a tiled switch enhanced for stashing.

is, the product of the round-trip latency and the bandwidth. It
is these large buffers we target for stashing, as described next.

III. STASHING SWITCH

The stashing switch introduces some modifications to the
baseline tiled switch, as described in this section. The principle
design challenges we address are accessing, isolating, and
managing the idle storage.

A. Storage Access

The first design challenge we address is access to the stash-
ing storage. We enhance the baseline datapath with the shaded
components shown in Figure 3 (which can be compared to
Figure 2). Here we show a single port, consisting of the
input and output datapaths, to illustrate how the available port
memory is combined for stashing. Each input and output port
buffer is virtually partitioned into a small portion for normal
use and a large stashing partition. The two stashing partitions
(not shaded because they consist of existing memory) are then
managed as a single stashing storage pool for the port.

We add multiplexers to access the separate read and write
ports of the stashing partitions, and we add two extra VCs to
the switch datapath: one for storage (S) and one for retrieval
(R). These VCs are internal to the switch and not externally
visible.

Packets to be stashed are written from a switch input buffer
to the VC labeled “S”, which arbitrates for the crossbar with
the same priority as the other VCs. The additional path arrow
pointing to the S buffer is meant to indicate that packets
written to the storage VC can also be the duplicates of packets
written to the regular VCs; the multi-drop nature of the row
bus allows an input to broadcast a packet so that it can be
received by multiple tiles in a row and/or multiple VCs at a
tile simultaneously. At the output port, packets in the storage
VC from all rows in a column arbitrate through a separate
multiplexer and get written into one of the two stashing buffer
partitions.

Packets retrieved from the stashing buffers arbitrate for the
row bus alongside packets from the normal input buffer, but
use the VC labeled “R”. This VC has equal priority with the
other VCs in the crossbar. Since the retrieved packets and
normal packets from the same port share the row bus into the
crossbar, some bandwidth contention may occur. There are
several ways of addressing the additional bandwidth demand

Even
Bank

Odd
Bank

X
B
A
R

Read Normal

Read Stash

Write Normal

Write Stash

X
B
A
R

Fig. 4. A buffer supporting four ports, organized as two interleaved banks.

on the row bus, such as adding a duplicate row bus per input
dedicated to retrieved packets. In our simulations we chose
to use a modest 30% internal speedup of the tiled switch to
overcome the additional row bus bandwidth demand, noting
that core overclocking is a common technique for enhancing
switch performance at the cost of some additional power
consumption and engineering effort. On the output multiplexer,
the retrieved packets are stored in their own “R” VC buffer
alongside the existing VC buffers headed to the switch output.
After the output multiplexer, retrieved packets are returned to
their original output VC.

Various algorithms can be used to decide which port to
send a stashed packet. However, unlike normal packets which
have definitive output ports, stashing packets can go to any
port with stashing buffer space. Therefore, we use a simple
join-shortest-queue method to adaptively select a path that
will likely send packets to a port with the least used stashing
buffer. When a packet to be stashed is at the head of the
input port, we send it to the tile column with the most storage
VC credits available. Similarly, when the stashed packet is at
the head of the tile crossbar input, we send the packet to the
column channel with the most storage VC credits available.
Ports with no stashing buffers available (e.g., the global ports
of a dragonfly) are known a priori, so the stashing paths to
those ports are statically omitted from the selection process.

Flow control for the stashing VCs is implemented via
credits, similar to all other VCs. Depletion of credits on
the stashing VCs results in back-pressure that can affect the
performance of the switch. For example, when stashing for
end-to-end retransmission, a packet cannot be sent unless there
are stashing buffers available. Therefore, transfer from the
normal input buffer to a tile depends on the availability of
the normal VC and the availability of the storage (S) VC. If
the stashing paths are back-pressured, then the switch input
stalls, even if the normal path is available.

B. Storage Isolation

The second design challenge, storage isolation, involves
partitioning buffer memory so that is can be used for both the
normal functionality and for stashing. A dual-ported memory
with one read and one write port is sufficient for normal use,
but stashing adds a second set of read and write ports, along
with the potential for all four ports to be active simultaneously.
Obvious design options are 4-ported memory or dual-ported
memory operating at twice the normal speed.

A better solution is illustrated in Figure 4, where the
memory is divided into two banks shared by the read and
write ports. Each bank stores flits, one per cycle, with all even-
numbered offsets in one bank and odd in the other. Therefore, a



multi-flit packet write or read operation is interleaved between
the two banks. The multiple interleaved bank method allows
the memory to be divided into two virtual partitions of any
size at a two-flit granularity.

There are several ways to deal with bank collisions between
the two ports [19]. Write sequences can simply avoid one
another and remember which bank they started on (1 bit per
packet), or they can be presented two flits at a time and written
in the order of availability. Read sequences are just started in
a non-conflicting order.

C. Storage Management

The last design challenge is managing the storage. One
important aspect is the overall mechanism for distributing data
around the switch and keeping track of it. Because this is
heavily dependent on the use cases for stashing, we defer the
discussion to Section IV. Here we focus on the management of
each individual stashing buffer, which requires three primary
operations: storing, retrieving, and deleting.

Port buffers should be designed to provide management
functionality that partitions along with the buffer space. A
general-purpose switch faces the challenge of providing many
VCs for deadlock avoidance and multiple traffic classes. An
elegant solution is the Dynamically Allocated Multi-Queue
(DAMQ) [20], which allocates buffer pages to VCs as needed
and manages them as a heap. Each buffer is divided into small,
fixed-size pages which can be dynamically allocated to packets
and tracked for later retrieval and/or deletion. As stashing
has the same requirement, the heap management functionality
could simply be partitioned into a DAMQ heap and a stashing
heap.

Alternatively, the heap management functionality could be
provided separately for the stashing partition. We sized such
a scheme, making some reasonable assumptions about the flit
size, page size and maximum packet count, and determined
that storage overhead for the linked lists that manage the heap
could be less than 10% of the buffer size.

IV. USE CASES

Although we envision a wide variety of network features
that could exploit the additional storage resources provided by
the stashing architecture, we limit this study to two distinct use
cases in order to demonstrate how stashing can be integrated
into network designs and the effect it has on performance.

A. Use Case: End-to-end Reliability

A practical use case for additional storage is end-to-end re-
transmission, which is a feature of the most common network
protocols including Transmission Control Protocol (TCP) [14]
and InfiniBand’s reliable connections [15]. While most high-
performance switches offer link-level retransmission to handle
high error rates between adjacent devices [4], [12], compre-
hensive coverage for errors in the switch logic and buffering
is more difficult to achieve and often lacking. End-to-end
retransmission offers a straightforward mechanism to recover

from transient failures of all kinds and drives up network
reliability dramatically [21].

End-to-end retransmission for error recovery is tradition-
ally implemented in endpoint software or by a NIC. How-
ever, in newer accelerator-centric systems consisting of high-
performance, commodity endpoints directly connected to one
another, there may be no economically feasible way to do so.
Using the stashing buffers, we propose a proof of concept
design of end-to-end reliability for such systems, where the
functionality of end-to-end retransmission is moved into the
first-hop switch. This allows new systems built with a variety
of endpoint devices to enjoy a major fraction of the reliability
benefit.

As discussed previously, our design assumes a dragonfly
network topology, though similar designs are feasible for
other high-radix, asymmetric topologies such as multi-level
fat-trees. Each switch in a dragonfly consists of two types of
ports: end ports connecting to endpoints, and network ports
connecting to other switches1. All injected packets arriving
at end ports must be stored for retransmission. We use the
stashing buffers in our switch to hold a copy of these packets
until an acknowledgment (ACK) is received. Packets arriving
at network ports do not require retransmission and are treated
in the same manner as in the baseline tiled switch.

When a packet reaches the head of an end port input buffer,
it will arbitrate for both its normal path through the crossbar
as well as a path to a stashing buffer on the storage VC.
Selecting a path to a stashing buffer uses the join-the-shortest-
queue mechanism described in Section III-A. A packet can
only make forward progress if both paths are unblocked. If
the storage VC is blocked due to stashing buffers around
the chip being exhausted, packets are stalled at the input
until additional stashing buffers are freed by returning ACKs.
Because stashing for end-to-end retransmission is done on the
first-hop switch, there is no correctness or deadlock concern;
the network simply slows down its packet injection rate.

When the normal path and the stashing path are available,
the input port sends the packet to the row bus. Due to the
multi-drop nature of the row bus, the packet can be sent to the
normal VC buffer and the stashing VC buffer simultaneously,
regardless of which columns each path happens to be in.
Therefore, we create a copy of the packet for stashing without
consuming additional input port or row bus bandwidth.

The packet copy at a tile crossbar selects a switch output
port based on the join-the-shortest-queue method and com-
petes with normal traffic for the column channel. Once it
reaches the stashing buffer, a location message containing the
buffer index is sent back to the end port where the copy
originated. The location message is stored in the originating
end port’s existing packet management data structure along
with all the other relevant metadata used to track the original
outstanding packet.

1Network ports can be further characterized as local or global, but this
distinction is not important here.



When the original packet reaches the destination endpoint,
an ACK is returned. We assume these ACKs are hardware
generated and return immediately, independent of any higher-
level network protocols. As a result, they do not introduce
additional protocol deadlock conditions or delays.

When the originating end port receives the ACK, it retrieves
the stashed copy location from the management data structure.
If the ACK is positive, it sends a delete message to the
copy location, freeing up the stashing buffer. If the ACK is
negative, indicating an error, it sends a retransmit message to
the copy location, causing a retrieval and retransmission. We
did not simulate the retrieval or retransmission because this
study is primarily concerned with the impact of stashing on
performance and we expect retransmissions to be rare.

An ACK could return to the originating end port before
the location message from the stashing port. In that case, the
normal packet tracking data structure must remain in place
until the location message arrives. If the ACK is positive,
then the normal packet completion process can proceed, and
the eventual arrival of the location message will be followed
immediately by a deletion command. If the ACK is negative,
then all retransmit processing simply waits until the location
message arrives.

As described, this design requires side-band communication
between the end ports and the stashing buffers around the
switch to exchange the various bookkeeping messages. These
messages are small, only containing metadata including the
packet tracking index, port numbers, and the stashing buffer
index. For our proof-of-concept study, we modeled a simple
dedicated network to handle these side-band communications.

B. Use Case: Improving Congestion Control

Another potential application of the stashing buffer archi-
tecture is improving existing congestion control protocols by
temporarily reducing HoL blocking in the network. Conges-
tion control mechanisms deployed in HPC networks today,
such as ECN, have been shown to work well for long-
duration congestion [22]. In general, ECN-type protocols work
by detecting signs of congestion, and then throttling traffic
sources contributing to the congestion via feedback messages.
However, due to the long network latency in a large-scale
network (on the order of microseconds), congestion feedback
can incur a sizable delay. While the feedback is in-flight,
a large amount of congestion-forming traffic can be sent
before the traffic sources react. Furthermore, it takes time for
the source throttling mechanism to converge to an optimal
solution, resulting in further delays in the congestion response.
As a result, this type of reactive congestion control exhibits
transient performance degradation and tree saturation during
the onset of congestion.

Using stashing buffers, we can improve these ECN-type
protocols by temporarily absorbing the congestion-forming
packets while the protocol is in the process of responding. This
temporary absorption shields other traffic in the network from
transient effects and provides extra time for the ECN feedback
and source throttling mechanism to fully respond. As a result,

the stashing architecture can offer significant improvement in
the latency performance of a network during congestion.

Using stashing buffers with ECN congestion control does
not depend on the exact algorithm and can be adapted across
variants found in production [22] and in the literature [23],
[24]. The baseline ECN protocol we selected for this study
is most similar to the one found in TCP/IP networks [25],
which use transmission windows to control the injection rate
of traffic sources. Unlike TCP/IP, the network we simulate is
lossless and only relies on congestion notifications to resize
transmission windows.

In our baseline ECN algorithm, each endpoint in the net-
work maintains a separate transmission window for every other
endpoint and can only transmit to an endpoint if space is
available in its dedicated transmission window. When a source
injects a packet into the network, the packet’s size (in flits)
is added to the destination’s transmission window. When the
source later receives a positive ACK, the packet’s size is
deducted. The size of each transmission window is initially
set to a maximum value of 4096 flits, allowing an endpoint to
stream traffic to any destination at full bandwidth.

Congestion detection is done by monitoring the occupancy
of switch input buffers. When a buffer’s occupancy exceeds
50% of its capacity, the input port enters a congested state
and begins to set the ECN bit of any packet passing through
it towards a destination. At a destination, the ECN bit is copied
from the packet to the ACK and returned to the source. Every
ACK received with the ECN bit set causes the source to reduce
the size of the transmission window for the destination to 80%
of the current size.

To recover from congestion, each transmission window has
a timer which causes it to increase its size by one flit every
30 cycles until reaching the initial window size of 4096 flits.
ECN parameters described here were carefully adjusted to fit
our particular network configuration, described in more detail
in Section V.

When applying the stashing buffers to the ECN protocol, the
basic congestion detection and source throttling mechanisms
are left unchanged. When an input port is in the congested
state, it opportunistically sends packets destined for end ports
to stashing buffers in addition to the normal packet marking
behavior. Stashing only occurs when four conditions are
satisfied: 1) the packet is at the head-of-line of a congested
input, 2) the packet is destined to an end port, 3) the packet
cannot advance on its normal VC through the crossbar (i.e.,
blocked due to congestion and lack of credits), and 4) the
packet can advance on the stashing storage VC. Selecting a
path to a stashing buffer uses the join-shortest-queue method
described in Section III-A.

When a congested packet reaches a stashing buffer, it is
stored and accessed from the buffer in FIFO order. Packets
in the stashing buffer are immediately allowed to contend for
their intended outputs through the crossbar using the stashing
retrieval VC. Since packets traveling to and from the stashing
buffers use separate storage/retrieval VCs, any congestion
created by them does not result in HoL blocking on normal



packets in the crossbar. Additionally, the number of congested
packets stored in a port’s stashing buffer is not included in the
normal ECN congestion calculation for that port.

By stashing blocked packets from a congested input port,
we are alleviating HoL blocking effects on that port. Any
uncongested traffic that shares an input with a congested traffic
flow is now able to make more forward progress compared
to the baseline. Since there are only a limited number of
stashing buffers on a single switch, congested input ports will
eventually be unable to stash away packets and HoL blocking
will resume. However, stashing congested packets is meant to
be a temporary measure that provides more time for the ECN
mechanisms to throttle the congestion at its source. Once ECN
responds, the affected input ports will leave the congested state
and packet stashing stops.

C. Other Use Cases

Speculative Reservation Protocol [26] and the related Last-
Hop Reservation Protocol [27] are mechanisms for detecting
congestion and throttling problematic senders. The common
feature of these protocols is that messages causing congestion
are dropped and then scheduled for retransmission at a reduced
pace. Stashing allows the throttling and retransmission mech-
anisms to be implemented in the first-hop switches, including
storage of the speculative packets.

Support for packet order enforcement is important for
inherently unordered networks such as the dragonfly because
programming models sometimes require strict order. For ex-
ample, completion of a large buffer transfer, such as a halo
exchange, is usually indicated by a flag which must strictly
follow all of the data. In lieu of one-at-a-time sends, hardware
can dramatically accelerate ordered transfers by providing
reordering buffers at the destinations. However, such buffers
are a limited resource and may result in dropped packets
when they are exhausted. End-to-end retransmission provides
recovery, dramatically simplifying the implementation and
allowing for eager solutions.

V. METHODS

We evaluated the new switch architecture using a modified
version of the network simulator Booksim [28], [29] and the
two use cases described in the previous section. The simulator
is cycle-accurate and models operations at a flit granularity.
We fully implemented the internal pipeline of the baseline
tiled switch, described in Section II, and the new stashing
architecture described in Section III.

The switch models are symmetric and parameterized for
different numbers of ports and internal tiles. For the 20-port
switches used in the experiments, the tiling configuration is
P = 20, R = C = 4, and I = O = 5. Following the
description in Section II, the row bus from each input port
is connected to four tile crossbar inputs in the same row. Each
of the tile crossbar outputs in the same column is connected
through a 4-to-1 multiplexer to a switch output port.

Each 5x5 tile crossbar uses a virtual-output-queued (VOQ)
architecture, with four packets worth of storage per VC. Tile

crossbar arbitration uses a separable output-first allocator [30]
where all VCs have equal priority, including the additional
storage (S) and retrieval (R) VCs introduced by the stash-
ing architecture (Figure 3). Each tile output multiplexer has
four packets worth of storage per VC and uses robin-robin
arbitration. In the experiments, we operate the switch with a
1.3× higher clock speed compared to the network channels.
We assume the network channels are operating at 1 GHz with
a flit size of 10 bytes (10 GB/s bandwidth). The maximum
packet size is 24 flits, and all data packets are acknowledged
by the destination using single-flit ACKs.

The network used for both case studies is a 3080-node
canonical dragonfly topology with full bisection bandwidth.
Of the 20 switch ports, five are connected to endpoints, ten
to local switches in the same group, and five to switches
in other groups. Since the ports are symmetric, they are
simply assigned randomly. Each dragonfly group consists of
11 switches in a fully-connected topology, and the whole
network contains a total of 56 groups. The one-way latency
of the endpoint, local, and global channels is set at 5, 40, and
500 ns, respectively. The global channel latency is designed
to simulate long, optical links in a large-scale dragonfly
that spans multiple cabinets. For the routing algorithm, we
implemented PAR6/2 progressive adaptive routing using six
VCs to prevent routing deadlock [31].

With the channel bandwidth of 10 GB/s and the maximum
round-trip latency of 1µs on the global channels, each port’s
input and output buffers contain 10 KB of storage, for a total
of 20 KB per port, or 400 KB for the entire 20-port switch.
The input and output storage is shared among the six network
VCs using a DAMQ structure.

In the stashing switch, a portion of the input and output
storage is partitioned for stashing buffers while leaving suf-
ficient storage to completely satisfy the normal demands of
all ports. We conservatively partitioned the buffers with 7/8 of
the storage configured for stashing on the five endpoint ports,
3/4 on the ten local ports, and none on the five global ports.
Therefore, each switch contains a total of 237.5 KB of stashing
storage capacity. We conduct some sensitivity tests where we
artificially restrict the amount of stashing storage at each port
to 50% and 25% of that total capacity.

Network endpoints generate traffic at the granularity of
messages, with sizes specified for each experiment. Endpoints
use a mechanism similar to InfiniBand queue-pairs to transmit
messages: source endpoints have a separate send queue for
each destination and destination endpoints have a separate
receive queue for each source. Multiple active send queues
at a source arbitrate for the injection port on a per-packet,
round-robin basis.

For application trace simulation, we conducted experiments
using the SST/Macro full system simulator, version 6.1 [32].
SST/Macro is a coarse-grained simulator that is capable of
modeling entire HPC systems from the application layer down
to the network hardware. The simulator implements an MPI
library which allows it to translate complex MPI operations



0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 N
et

w
o

rk
 L

at
en

cy
 (

u
s)

Offered Load (flits/s/node)

Baseline

Stash 100% Cap.

Stash 50% Cap.

Stash 25% Cap.

(a) Latency vs. Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

A
cc

ep
te

d
 T

h
ro

u
gh

p
u

t 
(f

lit
s/

s/
n

o
d

e)

Offered Load (flits/s/node)

Baseline

Stash 100% Cap.

Stash 50% Cap.

Stash 25% Cap.

(b) Offered Load vs. Accepted Throughput

Fig. 5. Performance impact of stashing storage for end-to-end reliability under
a uniform-random traffic pattern.

into individual network messages suitable for lower-level
network simulation.

We modified SST/Macro to use Booksim as the network
layer, allowing us to test our architectural designs directly
with system-level experiments. Endpoints of the trace sim-
ulations use an existing SST/Macro configuration similar to
the NERSC Edison system [33], with 24 cores and 50 GB/s
of memory bandwidth. Each endpoint has a single 10 GB/s
injection channel connected to the network, matching the
switch channel bandwidth. Detailed instructions on download-
ing and running the simulation infrastructure appear in the
reproducibility appendix.

VI. RESULTS

A. End-to-end Reliability

The end-to-end reliability mechanism stresses two aspects
of the stashing buffer architecture: storage bandwidth and ca-
pacity. First, all end ports can stream packets at the maximum
injection rate simultaneously and each of these packets creates
a copy that needs to be stored in a stashing buffer. Although
the copies travel on a separate VC, they still double the internal
crossbar bandwidth pressure from the end ports and compete
with the normal traffic for tile crossbar and column channel
bandwidth. Second, if the stashing buffer capacity on a switch
is full or cannot be accessed due to contention, the storage
VC in the crossbar will back up, which can stop traffic from
leaving end ports and degrade the network injection rate.

Since we expect network errors that trigger retransmission
to be rare, our tests focus on how the addition of stashing
traffic affects the error-free performance of the network. As
the experimental control, we simulated a network constructed
using the baseline tiled switch without stashing or retransmis-
sion. Endpoints in the baseline can have an arbitrary number
of outstanding packets and should offer the best performance
under error-free conditions. We compare the baseline to net-
works constructed with three versions of stashing switches:
one with all the available buffer capacity (100% Cap), one
restricted to half of the available capacity (50% Cap), and
one restricted to one quarter of the available capacity (25%
Cap). The restricted versions reveal sensitivity to total buffer
capacity since performance is negatively affected whenever all
the stashing buffers are exhausted.

We begin by evaluating a synthetic, uniform-random traffic
pattern with single-packet messages. Figure 5a shows the
latency versus throughput curves for the various networks,
derived by averaging over all endpoints. The stashing net-
works with 100% and 50% capacity have nearly identical
performance to the baseline even at very high network in-
jection rates. This shows that the additional stashing storage
bandwidth inside the switches has no appreciable impact on
performance. Additionally, there is more than enough stashing
capacity to cover the round-trip latencies across all network
loads for the dragonfly we simulated. Only by severely restrict-
ing the capacity to 25% do we observe an early saturation for
the network.

Figure 5b shows the offered versus accepted load of the
networks, again averaged over all endpoints. When a network
is below saturation, it is able to deliver all of the offered traffic
and the graph appears linear. Once it saturates, its accepted
load plateaus, regardless of further load increase. Similar to
Figure 5a, the stashing networks with full and half capacity
show nearly identical performance to the baseline, reaching
90% saturation throughput. Part of the reason this is not higher
is because of bandwidth consumed by ACKs.

The network with 25% stashing capacity shows a lower
saturation throughput of approximately 78%. The expected
saturation throughput of this network can be calculated from
the network latency and stashing capacity, which is approx-
imately 60 KB per switch. This is shared among the five
endpoints, resulting in an average of 12 KB worth of packets in
flight per endpoint. Figure 5a shows that the average network
latency just before saturation is approximately 0.8 us (1.6 us
round-trip). Applying Little’s Law, we calculate a theoretical
injection rate sustainable by 12 KB of stashing storage as 75%,
closely resembling the simulation result.

The uniform-random traffic experiments show that under
benign network conditions there is more than enough stashing
capacity to sustain a high volume of traffic. However, the
communication patterns of real applications are typically not
random, with traffic bursts and congestion as applications
progress through communication phases.

We tested the end-to-end retransmission buffers under more
realistic conditions using MPI traces of HPC applications



TABLE II
DESIGNFORWARD APPLICATION TRACES

Application Name Description Size (ranks)

BIGFFT 3D FFT with 2D domain decomposition pattern, medium problem size 1024
AMG Algebraic multigrid solver for unstructured mesh physics packages 1728
MultiGrid Geometric multigrid V-Cycle from production elliptic solver (BoxLib) 1000
Fill Boundary Halo update from production PDE solver code (BoxLib) 1000
AMR Full adaptive mesh refinement V-Cycle from production cosmology code (BoxLib/Castro) 1728
MiniFE Finite element solver mini-application 1152

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

BIGFFT FillBoundary AMR MiniFE MulitGrid AMG

N
o

rm
al

iz
ed

 R
u

n
ti

m
e 

Baseline Stash 100% Cap. Stash 50% Cap. Stash 25% Cap.

Fig. 6. Execution time of MPI application traces normalized to the baseline
with no stashing and retransmission buffers.

from the Department of Energy’s DesignForward project [34].
Details of the traces are listed in Table II. Following the
recommendation provided with the traces, we simulated with
one rank per endpoint instead of one rank per core. Unless
otherwise stated, application ranks are mapped to endpoints
in the system contiguously without gaps. As a result, most
network switches are either fully utilized, with five active
endpoints, or idle, with no active endpoints. Furthermore, we
did not model computation time in order to focus on the
communication aspects of the applications.

Figure 6 shows the normalized execution time of the traces
relative to the baseline network. In four of the traces (AMR,
MiniFE, MultiGrid, AMG), all networks with stashing show
nearly identical performance to the baseline, including the
network with only 25% of available capacity. This can be
explained by several factors. First, these traces have a low
average network load, and the impact of restricted capacity is
only dominant at high average loads, as shown in Figure 5.
Second, although an endpoint can experience a high instan-
taneous injection rate (e.g., when sending a large message),
it can monopolize all of the stashing capacity on the switch
as long as other endpoints are not all experiencing high load
at the same time. In other words, the network performance
of bursty applications is more likely to be governed by the
available stashing storage per switch, rather than the average
storage per endpoint.

For the two traces that cause higher average network load
than the others—BIGFFT and FillBoundary—we see more
performance degradation caused by limited stashing capacity.
With these bandwidth-bound applications, it is more likely
that multiple endpoints sharing a switch will simultaneously
experience high injection rates. As a result, the average stash-

Baseline

Stash 50% Cap.
Stash 100% Cap.

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Simulation Time (us)

V
ic

ti
m

 A
ve

ra
ge

 L
at

en
cy

 (
u

s)

 

(a) Victim Average Latency over Time

0 1 2 3 4 5 6 7 8 9 10
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Network Latency (us)

In
ve

rs
e

 C
u

m
u

la
ti

ve
 L

at
e

n
cy

 D
is

tr
ib

u
ti

o
n

 (
fr

ac
ti

o
n

 o
f 

p
a

ck
e

ts
)

 

Baseline w/o Aggresssor

Baseline
Stash 50% Cap.

Stash 100% Cap.

(b) Victim Traffic Latency Distribution

Fig. 7. Network transient response to the onset of congestion.

ing storage per endpoint has a more dominant effect, and the
network with only 25% storage capacity shows significantly
worse performance. Even so, for the two networks with larger
stashing capacity, the increase in the execution time is at most
2% compared to the baseline.

Interestingly, the data also shows that for some traces,
networks with stashing can outperform the baseline. This
anomaly is caused by the interaction between stashing and
network congestion. Stashing capacity limits the number of
outstanding packets that endpoints can inject before receiving
acknowledgments, making them self-pacing. If the traffic is
prone to congestion, self-paced endpoints can reduce the sever-
ity by capping the injection pressure on the network, leading
to better overall application throughput in some situations.

B. Improving Congestion Control

Stashing congested packets stresses several aspects of the ar-
chitecture, including storage bandwidth, capacity, and retrieval



bandwidth. To study the impact of a congested aggressor on
a victim sharing the network, we used two sets of synthetic
traffic patterns.

In the first experiment, the victim runs a uniform random
traffic pattern on 3020 endpoints with a 40% injection rate.
The aggressor has 48 source endpoints sending traffic to 12
destinations at maximum rate, creating a dozen 4:1 oversub-
scribed hotspots scattered across the network. All traffic uses
single-packet messages. We tested an ECN-enabled network
using three switch models: a baseline tiled switch, a stashing
switch with full storage capacity (100% Cap), and a stashing
switch with half of the total capacity (50% Cap). A network
without ECN suffers severe performance degradation in our
scenario and is not included in the results.

Figure 7a shows the average network latency of the victim
packets over time. The aggressor is activated at 20us causing
a sudden increase in traffic that slows the victim down as
congestion mounts. This is followed by a transition phase as
ECN engages and the congestion continues to build. At about
60us, ECN has successfully throttled the aggressor traffic
sources and the behavior of the victim returns to normal.

In both networks using stashing buffers, the victim suffers
less after the activation of the aggressor. The packets that
would have created the transient congestion in the network
are temporarily stashed away. This reduces the HoL blocking
experienced by the victim and allows its latency to remain
close to normal. As one would expect, the network with
maximum stashing capacity outperforms the network with
only 50% capacity; more stashing buffers allow a network
to absorb more of the transient congestion and keep it from
affecting the victim.

While the dozen hotspots across the network appear to
create a visible but small impact on the average latency of the
baseline network, it is highly skewed. Victim packets that share
paths with the aggressor can experience significantly higher
latencies during the transient. We demonstrate this using
a cumulative latency distribution for the same experiments,
shown in Figure 7b. In addition to the data from the three
previous networks, we added the baseline network without the
aggressor present as a reference.

Since the victim traffic has a benign communication pattern,
the simulation without the aggressor shows a very tightly
bound latency distribution. With the aggressor present, the
victim traffic in the baseline network shows a very long tail, in-
dicating that some packets experience very high latencies. This
is because they are blocked behind the temporary congestion
created by the aggressor. As stashing capacity is increased, the
tail latencies drop because victim packets are far less likely
to be blocked. At full capacity, the maximum latency is only
about 3× the best case (baseline without an aggressor). The
effect of this on a victim application can be dramatic because
a blocked message might be part of a collective operation.

To illustrate the behavior of the stashing buffers during the
congestion event, we focus on a single switch connected to
one of the aggressor hotspots, in Figure 8. The curves show
the offered load of the aggressor traffic and the utilization of

Stash Buffer Util.

Aggressor Load

0 10 20 30 40 50 60 70 80 90 100
0

1

Simulation Time (us)

St
as

h
 B

u
ff

er
 U

ti
liz

at
io

n
 (

fr
a

ct
io

n
 o

f 
ca

p
ac

it
y)

 

 

0 10 20 30 40 50 60 70 80 90 100
0

2

4

A
gg

re
ss

o
r 

O
ff

er
ed

 L
o

a
d

 (
fl

it
s/

cy
cl

e)

Fig. 8. Congestion control buffer usage during congestion event.

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 32 64 128 256 512

9
0

th
 P

er
ce

n
ti

le
 L

at
e

n
cy

 (
u

s)
Aggressor Burst Size (packets/message)

Baseline ECN

Stash 100% Cap.

Stash 50% Cap.

Fig. 9. Victim traffic tail latency when sharing the network with an aggressor
traffic of various burstiness.

the stashing buffers. When the aggressor starts at 20us, with
an average bandwidth of 4 flits/cycle, the offered load shoots
up and the stashing buffer utilization quickly follows.

About 12us after the onset of the aggressor, the offered
load decreases sharply as ECN feedback begins to throttle
back the traffic sources. The utilization of the stashing buffers
remains high as the network continues to stash and relieve
the pressure during the transient. Eventually, at about 60us,
the ECN algorithm converges to a steady state where the
aggressor’s average offered load is decreased to 1 flit/cycle
and the hotspot is alleviated. Consequently, the stashing buffer
utilization falls to near zero.

To test the congestion mitigation of stashing in a more
generalized environment where one application can be subject
to transient hotspots caused by another “bandwidth hog”, we
used a victim traffic pattern on half of the 3080 endpoints and
an aggressor on the other half. The victim traffic pattern was
again uniform-random with a 40% injection rate and single-
packet messages. The aggressor also used a uniform-random
traffic pattern, but ran at the maximum injection rate.

We varied the message size of the aggressor from single-
packet to 512 packets per message. Larger messages simulate a
bursty traffic environment because all packets belonging to the
same message are injected consecutively and to the same des-
tination. When multiple large messages from different sources
converge to the same destination, transient congestion can arise
even with the uniform-random communication pattern.

The experiment shows that while the accepted throughput
of the victim traffic remained at 40% for all networks across



all burst sizes, the latency experienced by the victim is quite
different. Figure 9 shows the 90th percentile latency of the
victim’s packets in the presence of the aggressor. That is, each
data point is a lower bound on the 10% of packets with the
highest latency.

Across all burst sizes, the stashing switches always outper-
form the baseline network. As the burstiness of the network
and the resulting congestion increases, the stashing switches
absorb the impact of the transient effectively while the baseline
suffers. As a result, the victim traffic is far less likely to
experience transient HoL blocking.

Because of the extended feedback delay of ECN, it per-
forms poorly for short-term congestion and performs best
for extended, long-term congestion. Short-term congestion
disappears before ECN can react and long-term congestion
benefits from ECN’s steady-state behavior. Therefore, we see
a peak in the curves of Figure 9, showing how increasing
message sizes push latencies steadily higher until the con-
gestion becomes severe enough (at 256 packets/message) to
benefit from ECN. As the message size continues to increase,
the length of congestion events also continues to increase and
ECN becomes increasingly more effective at reaching a steady
state. The networks with stashing see very little perturbation
across the message sizes and always outperform the baseline,
showing again how stashing effectively absorbs the congestion
transients until ECN kicks in.

We have shown that the stashing architecture can be used
to significantly improve the latency distribution of a network
experiencing congestion. Even though the fraction of packets
suffering extremely long latencies is small, the impact can be
significant at the application level, depending on the operations
carried in those packets. For example, in collective operations
such as barriers and reductions, a few long-latency packets will
nearly always extend the critical paths of those operations.

VII. RELATED WORK

Dynamically allocating otherwise idle resources is not a new
concept. Architectures such as dynamic-allocated multiple-
queues (DAMQ) [20] have long been proposed and deployed
in switches to efficiently share buffers between multiple co-
locating FIFOs. Other works have proposed flexible buffer
management systems for sharing between variable numbers
of VCs in both network-on-chip [35] and large-scale net-
works [36]. These schemes largely focus on the sharing of
buffers within a single port of the switch. Our work can be
viewed as a progression to the next level of dynamic buffer
sharing. With stashing, we have expanded the scope of sharing
to the entire switch chip without affecting the normal operation
of the switch.

This chip-level dynamic sharing of buffers is made possible
by the abundance of bandwidth offered by the tiled switch
architecture, first proposed in [17], and implemented in [18].
Since then, other tiled switches with different port counts and
internal configurations have been deployed [5], [6]. However,
all these designs still use dedicated input and output buffering
per port. Our design is a significant improvement on the

existing architecture, allowing the otherwise unused bandwidth
in the switch to be repurposed for moving stashing packets
without penalty.

With regard to our use case studies, there have been many
recent works on the various aspects of ECN-type protocols.
These include how congestion should be detected in the
network [23], [24], precision of congestion feedback [37],
[38], and endpoint response when congestion is detected
[39]. These studies focus on the various aspects of the ECN
algorithm and do not directly address the transient congestion
during ECN activation. Our congestion use case is orthogonal
to these studies and can be paired with any of these algorithms
to improve their transient response to congestion.

Using extra buffers to alleviate HoL blocking caused by
tree-saturation has been proposed by Escudero-Sahuquillo, et
al. [40], [41]. They designed a method to identify and separate
the congested traffic into its own set of dedicated queues.
Our congestion control use case shares some commonalities,
since both works use additional buffering in the network to
mitigate the impact of congestion. However, our contribution
goes beyond, as we propose to use existing buffering resources
available on the switch as opposed to adding dedicated queues.
In addition, our stashing mechanisms work in collaboration
with ECN protocols to ensure that the packets are not stashed
indefinitely, allowing the stashing buffers to be used more
dynamically as congestion comes and goes in a network.

VIII. CONCLUSION

This paper introduced the stashing architecture, which pro-
vides global access to the idle buffer resources of a tiled
switch using available internal bandwidth. We showed how
to create fully accessible stashing buffers from underutilized
port memory by statically partitioning the switch input and
output buffers and then adding two internal virtual channels
to facilitate access. This enables a variety of network features
to be realized without adding additional storage to the switch.

We demonstrated and evaluated the architecture with two
separate case studies: using stashing to implement network
end-to-end retransmission, and improving ECN-type conges-
tion control by alleviating HoL blocking. Our simulations of
end-to-end retransmission showed that storing to the stashing
buffers does not degrade the normal network performance. Our
simulations of ECN improvement showed that the worst-case
packet latencies suffered by victim applications as a result
of network congestion could be dramatically reduced when
stashing was used to absorb transients.

As the cost of producing cutting-edge technology continues
to increase, it becomes prohibitively expensive to design and
build custom components. Techniques like stashing allow new
capabilities of commodity designs to be unlocked by small
architectural modifications, resulting in low-cost solutions to
difficult problems. This advantage is clearly demonstrated by
our end-to-end storage implementation, which enables highly
reliable communication for directly attached accelerators.



REFERENCES

[1] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,
highly-scalable dragonfly topology,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ser. ISCA ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 77–88.
[Online]. Available: https://doi.org/10.1109/ISCA.2008.19

[2] M. Xie, Y. Lu, K. Wang, L. Liu, H. Cao, and X. Yang, “Tianhe-1a
interconnect and message-passing services,” IEEE Micro, vol. 32, no. 1,
pp. 8–20, Jan 2012.

[3] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi,
“Dragonfly+: Low cost topology for scaling datacenters,” in 2017
IEEE 3rd International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB), Feb 2017, pp.
1–8.

[4] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rim-
mer, K. D. Underwood, and R. C. Zak, “Intel omni-path architecture:
Enabling scalable, high performance fabrics,” in 2015 IEEE 23rd Annual
Symposium on High-Performance Interconnects, Aug 2015, pp. 1–9.

[5] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray cascade:
a scalable hpc system based on a dragonfly network,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, 2012, pp. 103:1–103:9. [Online].
Available: http://dl.acm.org/citation.cfm?id=2388996.2389136

[6] Y. Dai, K. Wang, G. Qu, L. Xiao, D. Dong, and X. Qi, “A scalable
and resilient microarchitecture based on multiport binding for high-
radix router design,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2017, pp. 429–438.

[7] R. Alverson, D. Roweth, and L. Kaplan, “The gemini system
interconnect,” in Proceedings of the 2010 18th IEEE Symposium on
High Performance Interconnects, ser. HOTI ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 83–87. [Online]. Available:
http://dx.doi.org/10.1109/HOTI.2010.23

[8] N. R. Adiga et al., “An overview of the bluegene/l supercomputer,” in
Proceedings of the 2002 ACM/IEEE Conference on Supercomputing,
ser. SC ’02. Los Alamitos, CA, USA: IEEE Computer Society Press,
2002, pp. 1–22. [Online]. Available: http://dl.acm.org/citation.cfm?id=
762761.762787

[9] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. Satterfield, B. Steinmacher-Burow, and
J. Parker, “The ibm blue gene/q interconnection fabric,” IEEE Micro,
vol. 32, no. 1, pp. 32–43, 2012.

[10] J. Dongarra, “Report on the Sunway TaihuLight System,” University of
Tennessee, Department of Electrical and Computer Science, Tech. Rep.
UT-EECS-16-742, Jun 2016.

[11] Cable News Network. (2017, Jul.) Japan is building the fastest
supercomputer ever made. https://www.cnn.com/2017/06/13/tech/
supercomputer-japan/index.html. Accessed: 2018-03-19.

[12] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC Series
Network,” Cray, Inc., Tech. Rep. WP-Aries01-1112, 2012.

[13] Intel Corporation. Intel omni-path cable products. https://www.intel.
com/content/www/us/en/products/network-io/high-performance-fabrics/
omni-path-cables.html. Accessed: 2018-03-15.

[14] “Transmission Control Protocol,” RFC 793, Sep. 1981. [Online].
Available: https://rfc-editor.org/rfc/rfc793.txt

[15] InfiniBand Architecture Specification, Volume 1, Release 1.3, InfiniBand
Trade Association, Mar 2015.

[16] NVIDIA Corporation. (2018) Nvlink fabric. https://www.nvidia.com/
en-us/data-center/nvlink. Accessed: 2018-05-24.

[17] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture of
a high-radix router,” in Proceedings of the 32nd Annual International
Symposium on Computer Architecture, ser. ISCA ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 420–431. [Online].
Available: https://doi.org/10.1109/ISCA.2005.35

[18] S. Scott, D. Abts, J. Kim, and W. J. Dally, “The blackwidow high-
radix clos network,” in 33rd International Symposium on Computer
Architecture (ISCA’06), 2006, pp. 16–28.

[19] M. Katevenis, P. Vatsolaki, and A. Efthymiou, “Pipelined memory
shared buffer for vlsi switches,” in Proceedings of the conference on
Applications, technologies, architectures, and protocols for computer
communication, ser. SIGCOMM ’95. New York, NY, USA: Association
for Computing Machinery, 1995, pp. 39–48.

[20] Y. Tamir and G. L. Frazier, “High-performance multiqueue buffers for
vlsi communication switches,” in [1988] The 15th Annual International
Symposium on Computer Architecture. Conference Proceedings, May
1988, pp. 343–354.

[21] Wikimedia Foundation, Inc. (2018, Mar.) End-to-end principle. https:
//en.wikipedia.org/wiki/End-to-end principle. Accessed: 2018-03-28.

[22] E. Gran, M. Eimot, S.-A. Reinemo, T. Skeie, O. Lysne, L. Huse, and
G. Shainer, “First experiences with congestion control in infiniband
hardware,” in Parallel Distributed Processing, 2010 IEEE International
Symposium on, pp. 1 –12.

[23] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo,
“A new scalable and cost-effective congestion management strategy
for lossless multistage interconnection networks,” in High-Performance
Computer Architecture. 11th International Symposium on, 2005, pp. 108
– 119.

[24] J.-L. Ferrer, E. Baydal, A. Robles, P. Lopez, and J. Duato, “A scalable
and early congestion management mechanism for mins,” in Parallel, Dis-
tributed and Network-Based Processing, 18th Euromicro International
Conference on, 2010.

[25] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168 (Proposed Standard),
RFC Editor, Fremont, CA, USA, pp. 1–63, Sep. 2001, updated by
RFCs 4301, 6040. [Online]. Available: https://www.rfc-editor.org/rfc/
rfc3168.txt

[26] N. Jiang, D. U. Becker, G. Michelogiannakis, and W. J. Dally,
“Network congestion avoidance through speculative reservation,” in
Proceedings of the 2012 IEEE 18th International Symposium on High-
Performance Computer Architecture, ser. HPCA ’12. Washington,
DC, USA: IEEE Computer Society, 2012. [Online]. Available:
http://dx.doi.org/10.1109/HPCA.2012.6169047

[27] N. Jiang, L. Dennison, and W. J. Dally, “Network endpoint
congestion control for fine-grained communication,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’15. New York,
NY, USA: ACM, 2015, pp. 35:1–35:12. [Online]. Available: http:
//doi.acm.org/10.1145/2807591.2807600

[28] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[29] N. Jiang, D. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. Shaw, J. Kim, and W. Dally, “A detailed and flexible cycle-accurate
network-on-chip simulator,” in Performance Analysis of Systems and
Software (ISPASS), 2013 IEEE International Symposium on, April 2013,
pp. 86–96.

[30] D. U. Becker and W. J. Dally, “Allocator implementations for network-
on-chip routers,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, Nov 2009, pp. 1–12.

[31] M. Garcia, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero,
“Efficient routing mechanisms for dragonfly networks,” in 2013 42nd
International Conference on Parallel Processing, Oct 2013, pp. 582–
592.

[32] H. Adalsteinsson, S. Cranford, D. A. Evensky, J. P. Kenny,
J. Mayo, A. Pinar, and C. L. Janssen, “A simulator for large-
scale parallel computer architectures,” Int. J. Distrib. Syst. Technol.,
vol. 1, no. 2, pp. 57–73, Apr. 2010. [Online]. Available: http:
//dx.doi.org/10.4018/jdst.2010040104

[33] B. Austin and N. J. Wright, “Measurement and interpretation of
microbenchmark and application energy use on the cray xc30,” in
Proceedings of the 2Nd International Workshop on Energy Efficient
Supercomputing, ser. E2SC ’14. Piscataway, NJ, USA: IEEE Press,
2014, pp. 51–59. [Online]. Available: http://dx.doi.org/10.1109/E2SC.
2014.7

[34] (2013) Characterization of the DOE mini-apps. [Online]. Available:
http://portal.nersc.gov/project/CAL/designforward.htm

[35] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and
C. R. Das, “Vichar: A dynamic virtual channel regulator for network-on-
chip routers,” in 2006 39th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO’06), Dec 2006, pp. 333–346.

[36] P. Fuentes, E. Vallejo, R. Beivide, C. Minkenberg, and M. Valero,
“Flexvc: Flexible virtual channel management in low-diameter net-
works,” in 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2017, pp. 842–854.

[37] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, R. Pan,
B. Prabhakar, and M. Seaman, “Data center transport mechanisms:

https://doi.org/10.1109/ISCA.2008.19
http://dl.acm.org/citation.cfm?id=2388996.2389136
http://dx.doi.org/10.1109/HOTI.2010.23
http://dl.acm.org/citation.cfm?id=762761.762787
http://dl.acm.org/citation.cfm?id=762761.762787
https://www.cnn.com/2017/06/13/tech/supercomputer-japan/index.html
https://www.cnn.com/2017/06/13/tech/supercomputer-japan/index.html
https://www.intel.com/content/www/us/en/products/network-io/high-performance-fabrics/omni-path-cables.html
https://www.intel.com/content/www/us/en/products/network-io/high-performance-fabrics/omni-path-cables.html
https://www.intel.com/content/www/us/en/products/network-io/high-performance-fabrics/omni-path-cables.html
https://rfc-editor.org/rfc/rfc793.txt
https://www.nvidia.com/en-us/data-center/nvlink
https://www.nvidia.com/en-us/data-center/nvlink
https://doi.org/10.1109/ISCA.2005.35
https://en.wikipedia.org/wiki/End-to-end_principle
https://en.wikipedia.org/wiki/End-to-end_principle
https://www.rfc-editor.org/rfc/rfc3168.txt
https://www.rfc-editor.org/rfc/rfc3168.txt
http://dx.doi.org/10.1109/HPCA.2012.6169047
http://doi.acm.org/10.1145/2807591.2807600
http://doi.acm.org/10.1145/2807591.2807600
http://dx.doi.org/10.4018/jdst.2010040104
http://dx.doi.org/10.4018/jdst.2010040104
http://dx.doi.org/10.1109/E2SC.2014.7
http://dx.doi.org/10.1109/E2SC.2014.7
http://portal.nersc.gov/project/CAL/designforward.htm


Congestion control theory and ieee standardization,” in Communication,
Control, and Computing, 2008 46th Annual Allerton Conference on,
sept. 2008, pp. 1270 –1277.

[38] J.-L. Ferrer, E. Baydal, A. Robles, P. Lopez, and J. Duato, “Congestion
management in mins through marked and validated packets,” in
Proceedings of the 15th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 254–261. [Online]. Available:
http://dx.doi.org/10.1109/PDP.2007.32

[39] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp
(dctcp),” in Proceedings of the ACM SIGCOMM 2010 Conference,
ser. SIGCOMM ’10. New York, NY, USA: ACM, 2010, pp. 63–74.
[Online]. Available: http://doi.acm.org/10.1145/1851182.1851192

[40] J. Escudero-Sahuquillo, P. Garcı́a, F. Quiles, J. Flich, and J. Duato,
“Fbicm: Efficient congestion management for high-performance
networks using distributed deterministic routing,” in Proceedings of the
15th International Conference on High Performance Computing, ser.
HiPC’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 503–517.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1791889.1791941

[41] J. Escudero-Sahuquillo, E. G. Gran, P. J. Garcia, J. Flich, T. Skeie,
O. Lysne, F. J. Quiles, and J. Duato, “Combining congested-flow
isolation and injection throttling in hpc interconnection networks,”
in Proceedings of the 2011 International Conference on Parallel
Processing, ser. ICPP ’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 662–672. [Online]. Available: http://dx.doi.org/10.
1109/ICPP.2011.80

http://dx.doi.org/10.1109/PDP.2007.32
http://doi.acm.org/10.1145/1851182.1851192
http://dl.acm.org/citation.cfm?id=1791889.1791941
http://dx.doi.org/10.1109/ICPP.2011.80
http://dx.doi.org/10.1109/ICPP.2011.80


APPENDIX

A. Abstract

This artifact contains the directions to the simulation infras-
tructure used to generate results in the paper Exploiting Idle
Resources in a High-Radix Switch for Supplemental Storage.

B. Description
1) Check-list (artifact meta information):
• Algorithm: Full system and network simulation
• Program: SST/Macro 6.1, Modified Booksim 2.0
• Compilation: GCC 7.3 or higher
• Dataset: Department of Energy DesignForward application

traces
• Run-time environment: Linux
• Hardware: Any
• Publicly available?: Yes

2) How software can be obtained (if available): Code
for various simulator components can be downloaded from
GitHub. We made significant modifications to the Booksim
simulator to implement the switch architectures presented in
this study. We have also added interfacing code to allow
SST/Macro to use Booksim as the network layer to produce
results from MPI application traces.

SST/Macro6.1: https://github.com/sstsimulator/sst-macro/
tree/v6.1.0 Final
Modified Booksim: https://github.com/njiang37/sc18
stashing switch

3) Hardware dependencies: None.
4) Software dependencies:

• Autoconf: 2.68 or later
• Automake: 1.11.1 or later
• Libtool: 2.4 or later
• GCC 7.3.0 or late
• Flex 2.6.0
• Bison 3.0.4
• MATLAB 2010 or later (for reading statistics files)
5) Datasets: MPI traces from the DesignForward project

can be downloaded from http://portal.nersc.gov/project/CAL/
designforward.htm

C. Installation
Clone the SST/Macro repository and version

$ git clone https://github.com/sstsimulator/sst-macro.git
$ cd sst-macro
$ git checkout v6.1.0_Final

SST/Macro can be compiled and installed following the user
guide included with the simulator.

Clone the modified Booksim repository

$ git clone https://github.com/njiang37/sc18_stashing_switch

Follow the README file in the Booksim repository for a
detailed walk-through of integrating the two simulators. The
integration process assumes a freshly installed SST/Macro
6.1.0 repository since it requires minor modifications to
SST/Macro files to instantiate the Booksim network.

D. Experiment workflow

Experiments are run on the simulator using different con-
figuration files. Run scripts and configuration files for both
synthetic traffic experiments and MPI traffic experiments are
included in the Booksim repository’s sim scripts directory.

E. Evaluation and expected result

The network simulator prints out periodic updates of net-
work status such as latency and throughput which are collected
in a log file and parsed. The network simulation also generates
a statistics file in MATLAB m-file format. Cumulative distri-
bution of network latency is generated from these statistics
files using MATLAB. Output log parser and MATLAB script
files are included in the Booksim repository’s result scripts
directory.

For application traces, the SST/Macro simulator outputs the
estimated execution time of the trace.

F. Experiment customization

Various options in the SST/Macro or Booksim configuration
files can be changed to modify system and network behavior.
See the user guides included with each simulator for cus-
tomization details.

https://github.com/sstsimulator/sst-macro/tree/v6.1.0_Final
https://github.com/sstsimulator/sst-macro/tree/v6.1.0_Final
https://github.com/njiang37/sc18_stashing_switch
https://github.com/njiang37/sc18_stashing_switch
http://portal.nersc.gov/project/CAL/designforward.htm
http://portal.nersc.gov/project/CAL/designforward.htm

	Introduction
	Baseline Tiled Switch
	Stashing Switch
	Storage Access
	Storage Isolation
	Storage Management

	Use Cases
	Use Case: End-to-end Reliability
	Use Case: Improving Congestion Control
	Other Use Cases

	Methods
	Results
	End-to-end Reliability
	Improving Congestion Control

	Related Work
	Conclusion
	References
	Appendix
	Abstract
	Description
	Check-list (artifact meta information)
	How software can be obtained (if available)
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Evaluation and expected result
	Experiment customization


