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ABSTRACT

Early routability prediction helps designers and tools perform pre-
ventive measures so that design rule violations can be avoided
in a proactive manner. However, it is a huge challenge to have a
predictor that is both accurate and fast. In this work, we study

how to leverage convolutional neural network to address this chal-
lenge. The proposed method, called RouteNet, can either evaluate
the overall routability of cell placement solutions without global
routing or predict the locations of DRC (Design Rule Checking)
hotspots. In both cases, large macros in mixed-size designs are

taken into consideration. Experiments on benchmark circuits show
that RouteNet can forecast overall routability with accuracy simi-
lar to that of global router while using substantially less runtime.
For DRC hotspot prediction, RouteNet improves accuracy by 50%
compared to global routing. It also significantly outperforms other
machine learning approaches such as support vector machine and
logistic regression.

1 INTRODUCTION

Every chip design project must complete routing without design
rule violation before tapeout. However, this basic requirement is
often difficult to be satisfied especially when routability is not ad-
equately considered in early design stages. In light of this fact,
routability prediction has received serious attention in both aca-
demic research and industrial tool development. Moreover, routabil-
ity is widely recognized as a main objective for cell placement.
In industrial designs, fast trial global routing is often employed

for routability prediction at placement stage [24]. The “fast" here
is relative to full-fledged global router that generates solutions for
further detailed routing. Such trial global routing is still too slow
from the routability prediction point of view, as it is called many
times within placement engine. Probabilistic prediction [15, 25] and
other fast alternatives [21] have been developed. However, their
sacrifice on accuracy is quite significant and trial global routing is
still the de facto standard despite its costly runtime [24].
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In addition to forecasting overall routability, one also needs to
predict locations of Design Rule Checking (DRC) hotspots where
routability optimization engines can be applied to fix them. Evi-
dently, predicting hotspot locations is much more difficult than

forecasting overall routability, which is often indicated by Design
Rule Violation (DRV) count. In this case, even global routing is not
accurate enough [4] due to complicated design rules imposed upon
design layout for manufacturing. Overall, global routing is neither
fast enough for overall routability forecast nor accurate enough for
pinpointing DRC hotspots.

To find accurate yet fast routability prediction approach, people
recently exploremachine learning techniques, which have exhibited
exciting progress and have been investigated in several EDA appli-
cations [11], including lithography hotspot detection [7], structured
design placement [23] and NoC router modeling [10]. In [18, 26],
Multivariate Adaptive Regression Spline (MARS) is applied for
forecasting detailed routing routability. However, global routing so-
lution is still required as an input feature to the learning here so that

there is no benefit for runtime reduction. MARS and Support Vec-
tor Machine (SVM)-based routability forecast without using global
routing information is proposed in [3]. However, this technique
does not indicate how to handle macros, which prevail in modern
chip designs and considerably increase the difficulty of routability
prediction [26]. In [4], an SVM-based method is introduced for pre-
dicting locations of DRC hotspots. It shows accuracy improvement
compared to global routing on testcases without macros. Cases
without macros allow this method to use a set of small regions in
a circuit as a training set and predict routability of other regions
of the same circuit. Such convenience disappears when macros
present, as a large region (often entire layout) of a circuit needs to
be “receptive" to the machine learning model.

In this work, we attempt to solve two problems: 1. fast routability
forecast for cell placement in terms of the number of Design Rule
Violations (#DRV) such that a few relatively routable placement
solutions can be identified among many candidate solutions; 2. the
prediction of DRC hotspot locations such that the few identified
solutions can be proactively modified to prevent design rule viola-
tions. In both of the problems, we will consider macros, which are
prevalent in modern industrial designs. Our approach is built upon
Convolutional Neural Network (CNN), which largely contributed
to the recent success and popularity of the machine learning field
but has not been investigated for routability prediction. A key ra-
tionale is that CNN has been demonstrated very effective for image
recognition while chip layout information, such as pin density, can
be treated as images. In overall routability forecast, we make use of



RUDY [21], a previous work of fast routability estimation, which can
also be easily represented as images. The main differences between
our method, called RouteNet, and previous machine learning-based

works are summarized in Table 1.

Table 1: Comparison among different machine learning
techniques.“GR" indicates global routing.

Methods
Use
GR?

Predict
#DRV?

Predict
hotspot?

Handle
macros?

[18] (Qi, et al., ICCD14) Y Y N Y
[26] (Zhou, et al., ASQED15) Y Y N N
[3] (Chan, et al., ICCD16) N Y N N
[4] (Chan, et al., ISPD17) Y N Y N

RouteNet #DRV prediction N Y N Y
RouteNet hotspot prediction Y N Y Y

The main contribution of our work includes:

• Our work provides the first systematic study on CNN-based
routability prediction. Intuitively, this is a promising direc-
tion but has not been well studied in the past.
• Our method, RouteNet, can quickly forecast overall routabil-
ity in terms of DRV count considering macros. It achieves
similar accuracy to that of global routing but is orders of

magnitude faster even if training time is counted. To the best
of our knowledge, this is the first routability predictor that
has both such high accuracy and high speed.
• For predicting DRC hotspot locations considering macros,
RouteNet makes a large progress of 50% accuracy improve-
ment versus global routing. It also remarkably outperforms
SVM and logistic regression-based prediction.

2 BACKGROUND

2.1 CNN and Transfer Learning

CNNhas demonstrated its impressive classification and object detec-
tion ability on ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) since 2012 [13]. Many deep and complex variations have
been proposed since then. As the winner of ILSVRC in 2015, ResNet
is one of state-of-the-art CNN architectures [8]. Compared with
traditional machine learning algorithms, CNN learns more abstract
patterns from images. Our RouteNet transfers such state-of-the-art
ability in image pattern recognition to circuits for capturing the
patterns about routability.
In practice, it requires a huge dataset and a long time to train a

network from scratch (from random initialization). Thus, it is com-
mon to download a network pretrained on a large image database
like ImageNet [6] and then fine-tune it with the dataset related to
the specific task. Such pretraining and fine-tuning processes are
referred to as transfer learning. RouteNet takes the benefit of trans-
fer learning. It predicts routability based on a pretrained ResNet
architecture.
Figure 1 shows a typical structure of CNN, which is composed

by convolutional (CONV) layers, pooling (POOL) layers and fully-
connected (FC) layers. CONV layers and POOL layers perform
downsampling and produce a three-dimensional featuremap smaller
than the input. FC layers, near the end of CNN, produce one-
dimensional output. The final output is a single vector of class
scores, whose length equals the number of classes.

Figure 1: Convolutional Neural Network (CNN). CNN inte-
grates convolutional layers (CONV), pooling layers (POOL) and
fully-connected (FC) layers into an end-to-end structure.

2.2 Fully Convolutional Network

Compared with CNN targeting image classification, the CNN archi-
tecture without FC layers is firstly proposed to perform end-to-end
semantic segmentation [14]. Such architecture, named Fully Con-
volutional Network (FCN), outputs an image with size equal to
or smaller than input. To compensate the downsampling effect of
CONV and POOL layers, transposed-convolutional (TRANS) layers
are usually added at the end to upsample feature maps and control
the size of final output. Such architecture is widely used in many
computer vision problems, like crowd counting [20] and biomedi-
cal image segmentation [19]. Besides eliminating FC layers, many
FCNs have both deep and shallow paths in one network. Some of
them have multiple shortcuts, which concatenate feature maps in
the front directly to feature maps near the end. As a result, both
longer and shorter paths exist from input layer to final output layer.
Such multi-path architecture reserves both shallow and deep in-
formation and ensures a high accuracy in both pixel segmentation
and classification.

Unlike the overall routability (#DRV) prediction, which is a classi-
fication problem, DRC hotspot detection is more like an end-to-end
object detection task, which is more difficult to solve. The nice
property of FCN allows input to be any size and produces an out-
put with exactly same size as input, indicating the existence of
DRC hotspots at any region. The DRC hotspot detection method in
RouteNet is based on such FCN architecture and adopts the path
shortcut structure.

2.3 RUDY

RUDY (Rectangular Uniform wire DensitY) [21] is a pre-routing
congestion estimator. It is employed as an input feature to our

RouteNet as it partially correlates with routing congestion, is fast
to obtain and can be directly represented as images that dovetail
with RouteNet.

Given a cell placement, RUDY of a net is obtained by uniformly
spreading the wire volume of this net into its bounding box. For the

kth net with bounding box {xkmin , x
k
max , y

k
min , y

k
max }, its RUDY

at location (x , y) is defined as

wk = xkmax − xkmin , h
k = ykmax − ykmin

ck =
⎧⎪⎨
⎪
⎩

1 x ∈ [xkmin ,x
k
max ] , y ∈ [ykmin ,y

k
max ]

0 otherwise



Figure 2: Three-dimensional input tensor constructed by stack-
ing two-dimensional features including (1) pin density, (2)
macro region, (3) long-range RUDY, (4) RUDY pins.

RUDYk (x ,y) ∝ ck wk + hk

wk × hk
RUDYs of all K nets are calculated and superimposed on top of

each other to provide a rough estimation of routing congestion as

RUDY (x ,y) =
K∑

k=1

RUDYk (x ,y)

3 PROBLEM FORMULATION

We aim at solving two problems: 1. early forecast of overall routabil-
ity; 2. the prediction of DRC hotspot locations. In problem 1, the
routability of a placement is evaluated by its DRV count denoted
as #DRV. The task is to fit a function f#DRV that estimates ground-
truth DRV count of a placement. In applications, f#DRV is employed
to select a few placements with relatively low #DRV from many
candidate placement solutions. In problem 2, DRC hotspots mean
the specific locations with high density of DRVs. The task is to find
a function fhotspot that detects most DRC hotspots in a placement.

RouteNet solves problem 1 without performing any routing while
its solution to problem 2 uses global routing as a feature. Since
problem 2 is performed on a few relatively routable designs, its

runtime constraint is less tight than problem 1. In both tasks, the
informative features about placements are input and DRV informa-
tion is the prediction target. The ground-truth DRV information is
also referred to as label.

To evaluate routability in terms of design rule violations, a layout
(or placement solution) is tessellated into an array of grid cells, each

of which is an l × l square. Then, a rectangular layout with size
W ×H is divided intow ×h grid cells, wherew =W /l and h = H/l .
In our experiments, l is set to be the height of standard cells.
After design rule checking, the location and area of all DRC

violations are reported. The overall DRV count for the ith placement
solution is recorded as yi ∈ N. The density of DRV is calculated
at a grid-level granularity. The DRV density in each grid cell is a

summation of contributions from all violations covering this grid
cell. As a result, for the ith placement withw ×h grid cells, its DRV
density is a two-dimensional matrix Yi ∈ Rw×h . When the density
of violations in a grid cell is higher than a threshold ϵ , this grid
cell is labeled as a DRC hotspot. Existence of DRC hotspots is a

Figure 3: Macros and DRC hotspot distribution. All macros
are red rectangles. Orange circles indicate regionswith high
density of DRC hotspots. Blue dashed circles indicate the
remaining sparsely distributed hotspots.

Boolean matrixVi ∈ {0, 1}w×h , whereVimn
= (Yimn

> ϵ ) for grid
cell (m,n).
Similar to DRV density, densities of different informative fea-

tures are calculated as the input of RouteNet. The jth feature of

ith placement is Xi j ∈ Rw×h . If F different features are generated,
the input for the ith placement is Xi ∈ Rw×h×F . Such Xi is con-
structed by stacking all two-dimensional features {Xi j | j ∈ [1, F ]}
together in a third dimension as shown in Figure 2. Inputs for the
two problems are not exactly the same. For example, since #DRV
prediction starts early, global routing information is not included

in input X #DRV
i . The two problems are formally stated as follows.

Problem 1 (#DRV prediction). Find an estimator f ∗
#DRV

of DRV

count in a placement:

f#DRV : X
(#DRV )
i ∈ Rw×h×F1 → yi ∈ N

f ∗#DRV = argmin
f

Loss ( f (X
(#DRV )
i ), yi )

Problem2 (Hotspot prediction). Find a detector f ∗
hotspot

of hotspots.

It reports locations of all DRC hotspots in a placement.

fhotspot : X
(hotspot )
i ∈ Rw×h×F2 → Vi ∈ {0, 1}w×h

f ∗
hotspot

= argmin
f

Loss ( f (X
(hotspot )
i ), Vi )

4 THE CHALLENGE OF MACROS

In this section, the influence of macros on DRV is discussed. Figure 3
shows the distribution of DRC hotspots on a benchmark circuit with
macros. The orange circles in Figure 3 indicate a strong tendency for
hotspots to aggregate at the small gap between neighboring macros.

The remaining small number of hotspots, indicated by blue dashed
circles, also locate sparsely around the edges of some macros. To
detect hotspots more precisely, such distribution pattern has to
be captured. This requires global information about neighboring
macros. When estimating DRV of a grid cell, one needs to consider
how large its neighboring region is receptive to the estimator. Only
when such receptive region is large enough can the estimator decide
whether such grid cell actually locates inside a gap between two
macros.



Figure 4: Correlation between #DRV and coefficient of vari-
ation of pin density.

Figure 4 shows the impact of macros on the correlation between

pin density and #DRV. R2 here measures the strength of linear
relationship between two variables on a 0 to 1 scale. The coefficient
of variation is calculated by σ

μ , where σ and μ are the standard

deviation and mean value of pin density across all grid cells. It

measures how evenly pins are distributed. The work of [3] indicates
the existence of correlation between pin density and #DRV, which is
confirmed in Figure 4(a). But with macros, such correlation largely
disappears in Figure 4(b).
Overall, a layout without macros is much more homogeneous

than that with macros. The homogeneity implies resemblance
among different regions of a chip layout. As such, the DRC hotspot
detection work of [4] can use individual small regions as training
data. By contrast, mixed-size designs with macros must have a
much larger region, often entire layout, as a single training case, in
order to capture the global view. The homogeneity also allows the
DRV count forecast [3] to use only a small number of chip statistics,
such as the distribution of pin density and the worst negative slack,

as input features to the model. However, the information carried
by such statistics is not sufficient for cases with macros as shown
by Figure 4, and more detailed local information is necessary.

5 THE ROUTENET ALGORITHM

In this section, we first describe all input features extracted at differ-
ent stages of physical design flow. Then, both the #DRV prediction
method and the hotspot detection method of RouteNet are pre-
sented.

5.1 Feature Extraction

Figure 5 shows the input features extracted at different layout stages.
Here is a detailed description:

• Macro: After floorplanning, the locations of all macros are
fixed. Several features about macro are extracted:
– the region occupied by macros.
– density distribution of macro pins in each metal layer.
• Global cell & global RUDY: After global placement, cell
locations become available and then RUDY is calculated. Fea-
tures from this stage are denoted by global cell and global

RUDY. After detailed placement, the information from global
cell and global RUDY are recalculated by refined cell loca-
tions, denoted as cell and RUDY.
• Cell: For both global cell and cell, two features are extracted:
– density distribution of cells.

Figure 5: Feature extraction in physical design flow.

– density distribution of cell pins.
• RUDY: For both global RUDY and RUDY, three features are
calculated:
– long-range RUDY.
– short-range RUDY.
– RUDY pins.

The original RUDY feature is decomposed into long-range
and short-range RUDY. Long-range RUDY is from nets cover-
ing a distance longer than a threshold. Similarly, short-range
RUDY is for nets shorter than this threshold. Such decompo-

sition is due to a stronger correlation between long-range
RUDY and DRV than the shorter one. To further capture
such effect, RouteNet uses another feature named RUDY pins.
It is similar to pin density, while the contribution of each pin
equals the long-range RUDY of the net it connects to.
• Congestion: Two types of congestion are generated by
placement and routing tool. The trial global routing, also de-
noted as trial routing, can be performed at the end of detailed
placement. It produces an estimation of routing congestion,
named TR congestion. Compared with it, the full-fledged
global routing generates a more detailed congestion map,
named GR congestion.
• DRC violation: DRC violations from all metal layers are
included. It is the prediction target and the label for training
RouteNet. Its density is calculated in the same way as all
other features. Most DRC violations only occupy very small
regions.

For the ith placement, all above F features Xi j ∈ Rw×h are
calculated independently and then combined together as one input

tensor Xi ∈ Rw×h×F .

5.2 #DRV Prediction

As an early routability forecast, the #DRV prediction by RouteNet
is performed before detailed placement starts. Details are shown
in Algorithm 1. In order to convert #DRV prediction to an image
classification task, both input features and prediction target are

preprocessed.
The range of #DRV is broad for different placements of the same

design. At this early stage, two placements with a slight difference



Algorithm 1 Algorithm of RouteNet for #DRV Prediction

Input: Number of training placements: N , Features:

{Xi ∈ Rw×h×3 | i ∈ [1,N ]}, Targets: {yi ∈ R | i ∈ [1,N ]}
Preprocess:

1: for each int i ∈ [1,N ] do

2: Resize Xi ∈ Rw×h×3 into X #DRV
i ∈ R224×224×3

3: Find 25%, 50%, 75% quantizes of yi : q1, q2, q3
4: for each int i ∈ [1,N ] do
5: Ci ← 0
6: for each int t ∈ [1, 3] do
7: if yi > qt then
8: Ci ← t , break

9: Form dataset {(X #DRV
i , Ci ) |i ∈ [1,N ]}

10: Training set {(X #DRV
i , Ci ) | Ci = 0 or Ci = 3}

Training:

1: Get pretrained ResNet18 fRes : R
224×224×3 → R1000

2: Replace output layer, s.t. f#DRV : R224×224×3 → R
3: Choose MSE as loss function, SGD for optimization
4: Train f#DRV with preprocessed dataset for ∼30 epoches

Output: f#DRV estimating #DRV level

in #DRV may not have substantially different patterns in their
features, especially when routing information is absent. As a result,
RouteNet can wrongly capture such minor difference if the exact
#DRV is used as label. To avoid this, we group placements into
four #DRV levels, referred to as c0, c1, c2, c3, respectively, where c0
corresponds to the class of placements with the least #DRV and c3
corresponds to class with the most #DRV.

For all CNN models pretrained on dataset ImageNet, the dimen-
sion of input image Xi is fixed to be 224 × 224 × 3. This means the
input images have 224× 224 pixels and 3 channels (RGB). To utilize
such pretrained model, the original input tensor Xi ∈ Rw×h×F
needs to be resized into X #DRV

i ∈ R224×224×3. To accomplish this,
three features (macro, global long-range RUDY, global RUDY pins)

are firstly selected to construct 3-channel input tensor in Rw×h×3.
We choose them because they intuitively contain more global and
general information than feature like pin density. After that, the

3-channel input is resized into R224×224×3 by interpolation. Figure 6
shows visualizations of preprocessed input, (a)(b) and (c)(d) are dif-
ferent placements with different levels of #DRV for two benchmark
circuits.
After the preprocessing step, transfer learning is applied to a

pretrained 18-layer ResNet. The output layer is replaced to pro-
duce a single score. During the fine-tuning process, the weights
in every layer are changeable. Mean Square Error (MSE) is used

as loss function and Stochastic Gradient Descent (SGD) is used for
optimization.
The dataset is randomly split into the training set and the val-

idation set. For the training set, all data in classes c1 and c2 are
removed, only classes c0 and c3 are kept. That is, only placements
in highest #DRV or lowest #DRV levels will be used for training.
Such removal proves to give better results than keeping all four

classes.

Figure 6: Input features for #DRV prediction. Red: macro re-
gion; Green: global long-range RUDY; Blue: global RUDY pins.

5.3 DRC Hotspot Detection

Different from #DRV prediction, hotspot detection is more like an
object detection task. The output can no longer be a simple score
value or vector. Instead, we make it a two-dimensional density map,
directly reflecting the existence of all hotspots in a placement. In

this case, the size of output equals circuit size fhotspot (Xi ) ∈ Rw×h .
FCN enables such function format and accepts input with different
w , h. As a result, different designs can be used for training and
inference on exactly the same model.

Figure 7 shows the FCN architecture. It accepts input tensor with

size Rw×h×F and produces a two-dimensional Rw×h output. In this
structure, a shortcut directly connects the 2nd layer to the 7th layer,
providing a shorter path from input to output. Two POOL layers

downsize feature maps from h ×w to h
4 × w

4 in the front, then two
TRANS layers upsample the size back to h ×w . Strides of kernels in
CONV and TRANS layers are set to 1 and 2, respectively. The kernel
sizes are indicated by the number in parentheses, ranging from 3 to 9
grid cells. Such pooling structure and large kernel size substantially
enlarge the regions receptive to each grid cell in output. Compared

with previous methods capturing features within a small region,
more neighboring or global information is available for FCN and
the result function fhotspot will be more complex.

Figure 7: FCN architecture for hotspot detection.



During the training process, the DRV density Yi is used as label.
DRV density is clipped by a threshold c in Equation (1) to reduce the
dominating effect of a few grid cells with very high DRV density.
Batch normalization [9] is applied to accelerate convergence in
training. The Adam method [12] is used for optimization. The loss
function is defined by a summation of pixel-wise Euclidean distance
and L2 regularization in Equation (2),

Y
clip
imn

=min(Yimn
, c ) (1)

Loss =
N∑

i=1

w∑

m=1

h∑

n=1

| | f hotspot (Ximn
) − Y clipimn

| |2 + λ | |W | |2 (2)

where λ is regularization coefficient andW denotes all weights in
FCN. By adding such L2 norm into loss function, all weights are
forced to decay towards zero. As a result, it reduces unnecessary

weights and avoids overfitting.

6 EXPERIMENTAL RESULTS

6.1 Experiment Setup

Table 2: Circuit Designs Used in Experiment

Circuit Name #Macros #Cells #Nets Width (µm) #Placements

des_perf 4 108288 110283 900 600
edit_dist 6 127413 131134 800 300
fft 6 30625 32088 800 300
matrix_mult_a 5 149650 154284 1500 300
matrix_mult_b 7 146435 151614 1500 300

Five designs from ISPD 2015 benchmarks [1] are used in the
experiment. Table 2 shows their basic information. The shapes of

all five designs are squares1, whose sizes range from 800 µm to
1500 µm. For each circuit design, at least 300 different floorplans
are generated by placing macros at different locations with the
“obstacle-aware macro placement" algorithm [5]. Though placed
differently, macros all tend to locate near the chip boundary in
order to leave plenty of space at chip center region, where routing
demand tends to be high. Then, each floorplan is placed and routed
by Cadence Encounter v14.20 [2]. DRC violation information for
each layout is recorded as label.

Both #DRVprediction and hotspot detectionmethods of RouteNet
are tested on all five designs. When each design is tested, the ma-
chine learning model is trained only on data from the other four
designs. This ensures that the tested design is totally unseen to the
corresponding model, which eliminates the possibility of informa-
tion leak from the testing dataset to the training dataset.

All algorithms are implemented in Python. CNN is implemented
based on PyTorch [16]. As references for comparison, SVM and
Logistic Regression (LR)-based methods are implemented based on
scikit-learn [17]. Hyperparameters are carefully tuned. Training
and inference of all methods are performed on a machine with 2.40
GHz CPU and one NVIDIA GTX 1080 graphics card.

6.2 Overall #DRV Prediction

For comparison, the previous method [3] is directly transferred to
our benchmark as a reference. In this method, only the maximum

1Not a requirement. RouteNet accepts rectangular circuit design in any size.

Table 3: #DRV Prediction Comparison

Circuit Name
c0/c1+c2+c3 accuracy (%) Best rank in top 10

SVM LR TR GR
Route
Net SVM LR TR GR

Route
Net

des_perf 63 74 80 77 80 87th 15th 2nd 1st 2nd

edit_dist 69 68 78 77 76 17th 17th 3rd 3rd 2nd

fft 66 62 73 70 75 6th 6th 2nd 33rd 1st

matrix_mult_a 66 65 78 74 72 30th 5th 1st 1st 5th

matrix_mult_b 63 62 76 73 76 22nd 93rd 4th 1st 4th

Average 65 66 77 74 76 32nd 27th 2nd 8th 3rd

value (across all grid cells) and the coefficients of variation of fea-
tures are extracted for each placement. The same preprocessing is
performed. Both LR and SVM with Radial Basis Function kernel
are tested as classifiers. Compared with RouteNet, the input of this

method X
Ref
i ∈ R2×F contains much less feature information.

The goal of #DRV prediction is to select a small set of placements
with low #DRV from many candidates. Table 3 shows the perfor-
mance in #DRV prediction. The “c0/c1+c2+c3" accuracy checks the
binary classification accuracy by treating all placements in c1, c2,
c3 as one class and c0 as the other. As indicated in Algorithm 1, c0
means the lowest #DRV level. This accuracy evaluates how different
methods recognize placements with the lowest #DRV level. The
result shows that RouteNet has similar accuracy as trial routing

(TR) and global routing (GR).
We are also interested in the quality of placements selected by

each method. To evaluate this, we first rank all placements from
same design in ascending order of #DRV. Then for each method,
the top ten placements predicted to have least #DRV are selected.
Among such ten placements, the rank of the placements with least
ground truth #DRV is reported as “Best rank in top 10" in Table 3.

On average, RouteNet finds the 3rd best placement from hundreds
of candidates within 10 selections. Again, it shows comparable
performance with trial routing and global routing, and is much

better than both LR and SVM.
When Table 3 only shows the rank of the best placement in 10

selections, Figure 8 further indicates the gap between such “best in
ten" and the actually 1st-ranked placement with least #DRV. Such

Figure 8: Trade-off between error with actually 1st-
rankedplacement and inference time in #DRVprediction.



gap is denoted as error in #DRV value. Each point represents the
result of one design. Besides accuracy, runtime is another essential
factor to consider. Figure 8 also shows the inference time for each
method. Inference time is the overall time taken to predict one
placement, starting at the end of global placement. In practice,
RouteNet is trained in advance with other designs, so the training
process costs no extra time during inference. But for reference,
we still provide “RouteNet_w_train", which includes the training
time of RouteNet. In Figure 8, the results for RouteNet aggregate
at the lower left corner, which means low inference time and high
accuracy are achieved at the same time. By contrast, trial routing
and global routing take substantially longer runtime to reach similar
accuracy. LR and SVM, however, cannot guarantee low error though

they are quite fast. Our RouteNet is the only fast and accurate
method in #DRV prediction. Even with training time included, the
average inference time for one placement is still less than one
second.

6.3 DRC Hotspot Detection

For comparison, alternative methods similar to the previous work
[4] are implemented. Features from each grid cell itself are extracted
as its input, then grid cells are classified independently by either
LR or SVM.

Table 4: Hotspot Detection Comparison

Circuit Name
FPR
(%)

TPR (%)
TR GR LR SVM RouteNet

des_perf 0.54 17 56 54 42 74
edit_dist 1.00 25 36 38 28 64
fft 0.30 21 45 54 31 71
matrix_mult_a 0.21 13 30 34 12 49
matrix_mult_b 0.24 13 37 41 20 53

Average 0.46 18 41 44 27 62

Table 4 shows the accuracy in hotspot detection. TPR (True Posi-
tive Rate) and FPR (False Positive Rate) are used for evaluation. FPR

describes the rate of grid cells being wrongly classified as hotspots.
TPR, also named recall or sensitivity, describes the percentage of de-
tected hotspots over all existing hotspots. By adjusting the decision
threshold of prediction result, FPR and TPR change proportionally.
For a fair comparison, we compare the TPR of all methods under
the same FPR. The same decision threshold is used for all designs,
which results in slightly different FPR among designs, but all under
1%. It ensures the number of errors is acceptable.

Prediction Result

Positive Negative Evaluation

Label
Positive TP FN TPR =

TP

TP + FN

Negative FP TN FPR =
FP

FP +TN

As Table 4 shows, global routing is amuch better hotspot detector
than trial routing, although both methods have similar accuracy
in overall #DRV prediction. LR demonstrates better accuracy than
global routing. SVM, however, is inferior to global routing even
with our best effort on hyperparameter tuning. RouteNet is superior

Figure 9: Visualization of hotspot detection results.

to all methods and improves global routing accuracy by 50%. Figure
9 provides an illustration of hotspot detection results. The result
of RouteNet is closer to the ground truth. Orange circles indicate
grid cells wrongly recognized as hotspots with high confidence
by LR. These grid cells typically locate at the edges of macros. LR
exaggerates the influence of macro on them.

7 DISCUSSION

To further explore the hotspot detection problem, some variations
of both FCN and alternative methods are evaluated. Results are
shown in Table 5 and 6. These variant methods are briefly described
as follows.

• Infer seen: Training and inference are performed on different
placements of the same circuit.
• Less data: Trained on less data. Only placements from two
circuits are used for training instead of four.
• No short: No shortcut. The shortcut structure is removed
from current FCN architecture.
• Less conv: Three convolutional layers (with channels 64, 32,
32) in the middle of shortcut are removed, resulting in a
shallower network.
• No pool: Based on the shallow network above, the POOL
layers are removed. TRANS layers are replaced by normal

CONV layers.
• 5 × 5 LR: Using window size of 5 × 5 grid cells to capture
neighboring features of each grid cell in LR. Similarly, 9 × 9
LR means 9 × 9 grid cells of window size.
• 5×5 SVM: The same as the 5×5 LR above in feature extraction,
but for SVM.

The effect of training and inference on different designs is ex-
plored by “Infer seen" and “Less data" in Table 5. Difference in
designs used for training and inference can be vital to the transfer-
ability of an algorithm. That is, if the distribution of DRC hotspots
varies greatly among different designs, the pattern learned from
training data may not be applicable to new “unseen" designs. Com-
pared with original RouteNet, the better performance for “Infer
seen" in Table 5 implies the existence of certain pattern unique to
each design. But lower accuracy for “Less data" indicates that more
training data from different designs can bridge such gap.

The FCN structure in RouteNet has both shallow and deep paths
connecting input and output layers. In order to check the effect
of such two-path structure, two variations “No short" and “Less
conv" are tested. “No short" removes the shorter path and “Less

conv" removes the longer path. As expected, Table 5 shows accuracy
degradation for both variations. More interestingly, by removing



Table 5: Hotspot Detection for FCN Variations

Circuit Name
FPR
(%)

TPR (%)

Infer
seen

Less
data

No
short

Less
conv

No
pool

Route
Net

des_perf 0.54 77 71 71 73 68 74
edit_dist 1.00 68 61 63 62 55 64
fft 0.30 74 70 68 68 69 71
matrix_mult_a 0.21 51 46 45 45 45 49
matrix_mult_b 0.24 58 50 51 50 50 53

Average 0.46 66 60 60 60 57 62

Table 6: Hotspot Detection for Alternative Methods

Circuit Name
FPR
(%)

TPR (%)

LR
5×5
LR

9×9
LR SVM

5×5
SVM

9×9
SVM

des_perf 0.54 54 58 58 42 47 29
edit_dist 1.00 38 39 38 28 29 20
fft 0.30 54 56 54 31 41 23
matrix_mult_a 0.21 34 36 35 12 32 9
matrix_mult_b 0.24 41 44 42 20 39 16

Average 0.46 44 47 45 27 38 19

POOL and TRANS structures in “No pool", which leads to a large
reduction in receptive region, overall accuracy further degrades. It
supports our claim on the importance of receptive region and the
global information in hotspot detection.
Table 6 shows how a larger receptive region affects other ma-

chine learning methods in hotspot detection. We tested several
larger window sizes for feature extraction as 3 × 3, 5 × 5, 7 × 7,
9× 9 grid cells. The 5× 5 window size turns out to perform the best.
Again, the large receptive region gives better results, but 5 × 5 is
the upper limit in our experiment. An even larger window blurs
the local information of the target grid cell. Compared with these
alternative methods, RouteNet provides a better solution to obtain
the benefit of large receptive region.

8 CONCLUSION AND FUTURE RESEARCH

This work advanced the state of the art of routability prediction at
two fronts. For overall routability forecast of mixed-size designs,
RouteNet achieves similar accuracy as global routing but is several
orders of magnitude faster. This largely solves the challenge of hav-
ing both accurate and fast routability prediction of general designs.
For DRC hotspot detection with consideration of macros, RouteNet
also makes an important step forward by improving global router’s
accuracy by 50%. We will further improve the prediction accuracy
for both scenarios in our future research.
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