
1

Models Matter, So Does Training: An Empirical
Study of CNNs for Optical Flow Estimation

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz

Abstract—We investigate two crucial and closely related aspects of CNNs for optical flow estimation: models and training. First, we
design a compact but effective CNN model, called PWC-Net, according to simple and well-established principles: pyramidal
processing, warping, and cost volume processing. PWC-Net is 17 times smaller in size, 2 times faster in inference, and 11% more
accurate on Sintel final than the recent FlowNet2 model. It is the winning entry in the optical flow competition of the robust vision
challenge. Next, we experimentally analyze the sources of our performance gains. In particular, we use the same training procedure of
PWC-Net to retrain FlowNetC, a sub-network of FlowNet2. The retrained FlowNetC is 56% more accurate on Sintel final than the
previously trained one and even 5% more accurate than the FlowNet2 model. We further improve the training procedure and increase
the accuracy of PWC-Net on Sintel by 10% and on KITTI 2012 and 2015 by 20%. Our newly trained model parameters and training
protocols will be available on https://github.com/NVlabs/PWC-Net.

Index Terms—Optical flow, pyramid, warping, cost volume, and convolutional neural network (CNN).

F

1 INTRODUCTION

Models matter. Since the seminal work of AlexNet [1]
demonstrated the advantages of deep models over shallow
ones on the ImageNet challenge [2], many novel deep
convolutional neural network (CNN) [3] models have been
proposed and have significantly improved in performance,
such as VGG [4], Inception [5], ResNet [6], and DenseNet [7].
Fast, scalable, and end-to-end trainable CNNs have signifi-
cantly advanced the field of computer vision in recent years,
and particularly high-level vision problems.

Inspired by the successes of deep learning in high-level
vision tasks, Dosovitskiy et al. [8] propose two CNN models
for optical flow, i.e., FlowNetS and FlowNetC, and introduce
a paradigm shift to this fundamental low/middle-level vi-
sion problem. Their work shows the feasibility of directly
estimating optical flow from raw images using a generic
U-Net CNN architecture [9]. Although their performance is
below the state of the art, FlowNetS and FlowNetC are the
best among their contemporary real-time methods.

Recently, Ilg et al. [10] stacked one FlowNetC and several
FlowNetS networks into a large model, called FlowNet2,
which performs on par with state-of-the-art methods but
runs much faster (Fig. 1). However, large models are more
prone to the over-fitting problem, and as a result, the sub-
networks of FlowNet2 have to be trained sequentially. Fur-
thermore, FlowNet2 requires a memory footprint of 640MB
and is not well-suited for mobile and embedded devices.

SpyNet [11] addresses the model size issue by combining
deep learning with two classical optical flow estimation
principles. SpyNet uses a spatial pyramid network and
warps the second image toward the first one using the initial
flow. The motion between the first and warped images is

• D. Sun and J. Kautz are with NVIDIA, Westford, MA 01886.
E-mail: {deqings, jkautz}@nvidia.com

• X. Yang and M.-Y. Liu are with NVIDIA, Santa Clara, CA 95050.
E-mail: {xiaodongy, mingyul}@nvidia.com

usually small. Thus SpyNet only needs a small network
to estimate the motion from these two images. SpyNet
performs on par with FlowNetC but below FlowNetS and
FlowNet2. The reported results by FlowNet2 and SpyNet
show a clear trade-off between accuracy and model size.

Is it possible to both increase the accuracy and reduce the
size of a CNN model for optical flow estimation? In principle,
the trade-off between model size and accuracy imposes a
fundamental limit for general machine learning algorithms.
However, we find that combining domain knowledge with
deep learning can achieve both goals simultaneously for the
particular problem of optical flow estimation.

SpyNet shows the potential of combining classical prin-
ciples with CNNs. However, we argue that its performance
gap with FlowNetS and FlowNet2 is due to the partial use
of classical principles. First, traditional optical flow methods
often pre-process the raw images to extract features that are
invariant to shadows or lighting changes [12], [13]. Further,
in the special case of stereo matching, a cost volume is
a more discriminative representation of the disparity (1D
flow) than raw images or features [14], [15], [16]. While
constructing a full cost volume is computationally pro-
hibitive for real-time optical flow estimation [17], our work
constructs a “partial” cost volume by limiting the search
range at each pyramid level. Linking different pyramid
levels using a warping operation allows the estimation of
large displacement flow.

Our network, called PWC-Net, has been designed to
make full use of these simple and well-established princi-
ples. It makes significant improvements in model size and
accuracy over existing CNN models for optical flow (Fig. 1).
PWC-Net is about 17 times smaller in size and 2 times faster
in inferencing than FlowNet2. It is also easier to train than
SpyNet and FlowNet2 and runs at about 35 frames per
second (fps) on Sintel resolution (1024×436) images. It is
the winning entry in the optical flow category of the first
robust vision challenge.

ar
X

iv
:1

80
9.

05
57

1v
1

 [
cs

.C
V

]
 1

4
Se

p
20

18

https://github.com/NVlabs/PWC-Net

2

Fig. 1. Left: PWC-Net outperforms all published methods on the MPI Sintel final pass benchmark in both accuracy and running time. Right:
compared with previous end-to-end CNN models for flow, PWC-Net reaches the best balance between accuracy and size. The comparisons among
PWC-Net, FlowNetS+, and FlowNetC+ show the improvements brought by the network architectures; all have been trained using the same training
protocols. The comparisons, FlowNetS vs. FlowNetS+, FlowNetC vs. FlowNetC+, and PWC-Net vs. PWC-Net+, show the improvements brought
by training protocols. Both models and training matter.

However, it is imprecise or even misleading to conclude
that the performance gains of PWC-Net come only from
the new network architecture, because training matters as
well. If trained improperly, a good model may perform
poorly. CNNs were introduced in the late 80’s [3], [18], but
it took decades to figure out the details to train deep CNNs
properly, such as dropout, ReLU units, batch normalization,
and data augmentation [1]. For optical flow, Dosovitskiy et
al. [8] report that FlowNetS outperforms FlowNetC. Ilg et al.
[10] show that using more iterations and dataset scheduling
results in improved performance for both FlowNetS and
FlowNetC. In particular, FlowNetC performs better than
FlowNetS with the new training procedure. For PWC-Net,
we have used the same network architecture in the first
version of our arXiv paper published in Sep. 2017, the
second (CVPR) version in Nov. 2017, and the current one.
The improvements over previous versions result solely from
better training procedures.

In some sense, a straight forward comparison between
PWC-Net and previous models is unfair, because the models
have been trained differently. The potential of some models
may be unfulfilled due to less than optimal training pro-
cedures. To fairly compare models, we retrain FlowNetC
and FlowNetS, the sub-networks of FlwoNet2, using the
same training protocol as PWC-Net. We observe signifi-
cant performance improvements: the retrained FlowNetC is
about 56% more accurate on Sintel final than the previously
trained one, although still 8% less accurate than PWC-Net. A
somewhat surprising result is that the retrained FlowNetC
is about 5% more accurate on Sintel final compared to
the published FlowNet2 model, which has a much larger
capacity. The last comparison clearly shows that better
training procedures may be more effective at improving the
performance of a basic model than increasing the model
size, because larger models are usually harder to train1.
The results show a complicated interplay between models

1. We cannot directly apply our training procedure to FlowNet2.

and training, which requires careful experimental designs
to identify the sources of performance gains.

In this paper, we further improve the training procedures
for PWC-Net. Specifically, adding KITTI and HD1K data
during fine-tuning improves the average end-point error
(EPE) of PWC-Net on Sintel final by 10% to 4.60, which
is better than all published methods. Fixing an I/O bug,
which incorrectly loaded 22% of the training data, leads to
a∼20% improvement on KITTI 2012 and 2015. At the time of
writing, PWC-Net has the second lowest outlier percentage
in non-occluded regions on KITTI 2015, surpassed only
by a recent scene flow method that uses stereo input and
semantic information [19].

To summarize, we make the following contributions:

• We present a compact and effective CNN model
for optical flow based on well-established principles.
It performs robustly across four major flow bench-
marks and is the winning entry in the optical flow
category of the robust vision challenge.

• We compare FlowNetS, FlowNetC and PWC-Net
trained using the same training procedure. On Sin-
tel final, the retrained FlowNetC is about 5% more
accurate than the reported FlowNet2, which uses
FlowNetC as a sub-network.

• We further improve the training procedures for Sin-
tel and fix an I/O bug for KITTI, both resulting
in significant performance gain for the same PWC-
Net network architecture. The newly trained model
parameters and training protocols will be available
on https://github.com/NVlabs/PWC-Net.

2 PREVIOUS WORK

Variational approach. Horn and Schunck [20] pioneer the
variational approach to optical flow by coupling the bright-
ness constancy and spatial smoothness assumptions using
an energy function. Black and Anandan [21] introduce

https://github.com/NVlabs/PWC-Net

3

Fig. 2. Network architecture of PWC-Net. We only show the flow estimation modules at the top two levels. For the rest of the pyramidal levels, the
flow estimation modules have the same structure as the second to top level.

a robust framework to deal with outliers, i.e., brightness
inconstancy and spatial discontinuities. As it is computa-
tionally impractical to perform a full search, a coarse-to-
fine, warping-based approach is often adopted [22]. Brox
et al. [23] theoretically justify the warping-based estima-
tion process. The variational approach is the most popular
framework for optical flow. However, it requires solving
complex optimization problems and is computationally ex-
pensive for real-time applications.

Sun et al. [24] review the models, optimization, and
implementation details for methods derived from Horn and
Schunck. One surprising finding is that the original Horn
and Schunck objective, when optimized using modern tech-
niques and implementation details, performs competitively
against contemporary state of the art. Thus, it is critical
to separate the contributions from the objective and the
optimization. Our work shows that it is also critical to
separate the contributions from the CNN models and the
training procedures.

One conundrum for the coarse-to-fine approach is small
and fast moving objects that disappear at coarse levels.
To address this issue, Brox and Malik [25] embed feature
matching into the variational framework, which is further
improved by follow-up methods [26], [27]. In particular,
the EpicFlow method [28] can effectively interpolate sparse
matches to dense optical flow and is widely used as a post-
processing method [17], [29], [30], [31], [32], [33]. Zweig and
Wolf [34] use CNNs for sparse-to-dense interpolation and
obtain consistent improvement over EpicFlow.

Most top-performing methods use CNNs as a compo-
nent in their system. For example, DCFlow [17], the best
published method on MPI Sintel final pass so far, learns
CNN features to construct a full cost volume and uses so-
phisticated post-processing techniques, including EpicFlow,
to estimate the optical flow. The next-best method, Flow-
FieldsCNN [30], learns CNN features for sparse match-
ing and densifies the matches by EpicFlow. The third-best
method, MRFlow [35] uses a CNN to classify a scene into
rigid and non-rigid regions and estimates the geometry and
camera motion for rigid regions using a plane + parallax
formulation. However, none of them are real-time or end-
to-end trainable.

Early work on learning optical flow. There is a long

history of learning optical flow before the deep learning era.
Simoncelli and Adelson [36] study the data matching errors
for optical flow. Freeman et al. [37] learn parameters of an
MRF model for image motion using synthetic blob world
examples. Roth and Black [38] study the spatial statistics of
optical flow using sequences generated from depth maps.
Sun et al. [39] learn a full model for optical flow, but the
learning has been limited to a few training sequences [12].
Li and Huttenlocker [40] use stochastic optimization to tune
the parameters for the Black and Anandan method [21],
but the number of parameters learned is limited. Wulff and
Black [41] learn PCA motion basis of optical flow estimated
by GPUFlow [42] on real movies. Their method is fast but
produces over-smoothed flow.

Recent work on learning optical flow. Inspired by the
success of CNNs on high-level vision tasks [1], Dosovit-
skiy et al. [8] construct two CNN networks, FlowNetS and
FlowNetC, for estimating optical flow based on the U-Net
denoising autoencoder [9]. The networks are pre-trained on
a large synthetic FlyingChairs dataset but can surprisingly
capture the motion of fast moving objects on the Sintel
dataset. The raw output of the network, however, contains
large errors in smooth background regions and requires
variational refinement [25]. Mayer et al. [43] apply the
FlowNet architecture to disparity and scene flow estimation.
Ilg et al. [10] stack several basic FlowNet models into a large
one, i.e., FlowNet2, which performs on par with state of the
art on the Sintel benchmark. Ranjan and Black [11] develop
a compact spatial pyramid network, called SpyNet. SpyNet
achieves similar performance as the FlowNetC model on the
Sintel benchmark, which is good but not state-of-the-art.

Another interesting line of research takes the unsuper-
vised learning approach. Memisevic and Hinton [44] pro-
pose the gated restricted Boltzmann machine to learn image
transformations in an unsupervised way. Long et al. [45]
learn CNN models for optical flow by interpolating frames.
Yu et al. [46] train models to minimize a loss term that com-
bines a data constancy term with a spatial smoothness term.
While inferior to supervised approaches on datasets with
labeled training data, existing unsupervised methods can
be used to (pre-)train CNN models on unlabeled data [47].

Cost volume. A cost volume stores the data matching
costs for associating a pixel with its corresponding pixels
at the next frame [14]. Its computation and processing are

4

standard components for stereo matching, a special case of
optical flow. Recent methods [8], [17], [31] investigate cost
volume processing for optical flow. All build the full cost
volume at a single scale, which is both computationally
expensive and memory intensive. By contrast, our work
shows that constructing a partial cost volume at multiple
pyramid levels leads to both effective and efficient models.

Datasets. Unlike many other vision tasks, it is extremely
difficult to obtain ground truth optical flow on real-world
sequences. Early work on optical flow mainly relies on
synthetic datasets [48], e.g., the famous “Yosemite”. Methods
may over-fit to the synthetic data and do not perform well
on real data [49]. Baker et al. [12] capture real sequences
under both ambient and UV lights in a controlled lab
environment to obtain ground truth, but the approach does
not work for outdoor scenes. Liu et al. [49] use human
annotations to obtain ground truth motion for natural video
sequences, but the labeling process is time-consuming.

KITTI and Sintel are currently the most challenging and
widely-used benchmarks for optical flow. The KITTI bench-
mark is targeted for autonomous driving applications and
its semi-dense ground truth is collected using LIDAR [50].
The 2012 set only consists of static scenes. The 2015 set is
extended to dynamic scenes via human annotations and
more challenging to existing methods because of the large
motion, severe illumination changes, and occlusions [51].
The Sintel benchmark [52] is created using the open source
graphics movie “Sintel” with two passes, clean and final.
The final pass contains strong atmospheric effects, motion
blur, and camera noise, which cause severe problems to ex-
isting methods. All published, top-performing methods [17],
[30], [35] rely heavily on traditional techniques. PWC-Net is
the first fully end-to-end CNN model that outperforms all
published methods on both the KITTI 2015 and Sintel final
pass benchmarks.

CNN models for dense prediction tasks in vision.
The denoising autoencoder [53] has been commonly used
for dense prediction tasks in computer vision, especially
with skip connections [9] between the encoder and decoder.
Recent work [54], [55] shows that dilated convolution layers
can better exploit contextual information and refine details
for semantic segmentation. Here we use dilated convolu-
tions to integrate contextual information for optical flow and
obtain moderate performance improvement. The DenseNet
architecture [7], [56] directly connects each layer to every
other layer in a feedforward fashion and has been shown to
be more accurate and easier to train than traditional CNN
layers in image classification tasks. We test this idea for
dense optical flow prediction.

3 APPROACH

We start from an overview of the network architecture of
PWC-Net, as shown in Figure 2. PWC-Net first builds a
feature pyramid from the two input images. At the top
level of the pyramid, PWC-Net constructs a cost volume
by comparing features of a pixel in the first image with
corresponding features in the second image. As the top
level is of small spatial resolution, we can construct the
cost volume using a small search range. The cost volume

and features of the first image are then fed to a CNN to
estimate the flow at the top level. PWC-Net then upsamples
and rescales the estimated flow to the next level. At the
second to top level, PWC-Net warps features of the second
image toward the first using the upsampled flow, and then
constructs a cost volume using features of the first image
and the warped features. As warping compensates the large
motion, we can still use a small search range to construct the
cost volume. The cost volume, features of the first image,
and the upsampeld flow are fed to a CNN to estimate flow
at the current level, which is then upsampled to the next
(third) level. The process repeats until the desired level.

As PWC-Net has been designed using classical princi-
ples from optical flow, it is informative to compare the key
components of PWC-Net with the traditional coarse-to-fine
approaches [20], [21], [23], [24] in Figure 3. First, as raw
images are variant to shadows and lighting changes [23],
[24], we replace the fixed image pyramid with learnable
feature pyramids. Second, we take the warping operation
from the traditional approach as a layer in our network to
estimate large motion. Third, as the cost volume is a more
discriminative representation of the optical flow than raw
images, our network has a layer to construct the cost vol-
ume, which is then processed by CNN layers to estimate the
flow. The warping and cost volume layers have no learnable
parameters and reduce the model size. Finally, a common
practice by the traditional methods is to post-process the
optical flow using contextual information, such as median
filtering [57] and bilateral filtering [58]. Thus, PWC-Net uses
a context network to exploit contextual information to refine
the optical flow. Compared with energy minimization, the
CNN models are computationally more efficient.

Next, we will explain the main ideas for each compo-
nent, including pyramid feature extractor, optical flow esti-
mator, and context networks. Please refer to the appendix
for details of the networks.

Feature pyramid extractor. Given two input images I1

and I2, we generate L-level pyramids of feature repre-
sentations, with the bottom (zeroth) level being the input
images, i.e., c0

t = It. To generate feature representation at
the lth layer, clt, we use layers of convolutional filters to
downsample the features at the l−1th pyramid level, cl−1

t ,
by a factor of 2. From the first to the sixth levels, the number
of feature channels are respectively 16, 32, 64, 96, 128, and
192.

Warping layer. At the lth level, we first upsample by
a factor of 2 and rescale the estimated flow from the l+1th
level, wl+1, to the current level. We then warp features of the
second image toward the first image using the upsampled
flow:

clw(x) = cl2
(
x + 2× up2(wl+1)(x)

)
, (1)

where x is the pixel index and up2 denote the ×2 upsam-
pling operator. We use bilinear interpolation to implement
the warping operation and compute the gradients to the
input CNN features and flow for backpropagation accord-
ing to [10], [59]. For non-translational motion, warping can
compensate for some geometric distortions and put image
patches at the right scale. Note that there is no upsampled

5

Fig. 3. Traditional coarse-to-fine approach vs. PWC-Net. Left: Image pyramid and refinement at one pyramid level by the energy minimization
approach [20], [21], [23], [24]. Right: Feature pyramid and refinement at one pyramid level by PWC-Net. PWC-Net warps features of the second
image using the upsampled flow, computes a cost volume, and process the cost volume using CNNs. Both post-processing and context network
are optional in each system. The arrows indicate the direction of flow estimation and pyramids are constructed in the opposite direction. Please
refer to the text for details about the network.

flow at the top pyramid level and the warped features are
the same as features of the second image, i.e., cLw =cL2 .

Cost volume layer. Next, we use the features to construct
a cost volume that stores the matching costs for associating a
pixel with its corresponding pixels at the next frame [14]. We
define the matching cost as the correlation [8], [17] between
features of the first image and warped features of the second
image:

cvl(x1,x2)=
1

N

(
cl1(x1)

)T
clw(x2), (2)

where T is the transpose operator and N is the length of the
column vector cl1(x1). For an L-level pyramid setting, we
only need to compute a partial cost volume with a limited
range of d pixels, i.e., |x1 − x2|∞≤d. A one-pixel motion at
the top level corresponds to 2L−1 pixels at the full resolution
images. Thus we can set d to be small. The dimension of the
3D cost volume is d2×H l×W l, where H l and W l denote
the height and width of the lth pyramid level, respectively.

Optical flow estimator. It is a multi-layer CNN. Its input
are the cost volume, features of the first image, and upsam-
pled optical flow and its output is the flow wl at the lth
level. The numbers of feature channels at each convolutional
layers are respectively 128, 128, 96, 64, and 32, which are
kept fixed at all pyramid levels. The estimators at different
levels have their own parameters instead of sharing the
same parameters. This estimation process is repeated until
the desired level, l0.

The estimator architecture can be enhanced with
DenseNet connections [7]. The inputs to every convolutional
layer are the output of and the input to its previous layer.
DenseNet has more direct connections than traditional lay-
ers and leads to significant improvement in image classifi-
cation. We test this idea for dense flow prediction.

Context network. Traditional flow methods often use
contextual information to post-process the flow. Thus we
employ a sub-network, called the context network, to effec-
tively enlarge the receptive field size of each output unit
at the desired pyramid level. It takes the estimated flow
and features of the second last layer from the optical flow
estimator and outputs a refined flow, ŵl0

Θ(x).
The context network is a feed-forward CNN and its

design is based on dilated convolutions [55]. It consists of

7 convolutional layers. The spatial kernel for each convo-
lutional layer is 3×3. These layers have different dilation
constants. A convolutional layer with a dilation constant k
means that an input unit to a filter in the layer are k-unit
apart from the other input units to the filter in the layer, both
in vertical and horizontal directions. Convolutional layers
with large dilation constants enlarge the receptive field of
each output unit without incurring a large computational
burden. From bottom to top, the dilation constants are
1, 2, 4, 8, 16, 1, and 1.

Training loss. Let Θ be the set of all the learnable
parameters in our final network, which includes the feature
pyramid extractor and the optical flow estimators at dif-
ferent pyramid levels (the warping and cost volume layers
have no learnable parameters). Let wl

Θ denote the flow field
at the lth pyramid level predicted by the network, and
wl

GT the corresponding supervision signal. We use the same
multi-scale training loss proposed in FlowNet [8]:

L(Θ)=
L∑

l=l0

αl

∑
x

|wl
Θ(x)−wl

GT(x)|2+γ|Θ|22, (3)

where | · |2 computes the L2 norm of a vector and the
second term regularizes parameters of the model. Note that
if the context network is used at the l0th level, wl0

Θ will be
replaced by the output of the context network, ŵl0

Θ(x). For
fine-tuning, we use the following robust training loss:

L(Θ)=
L∑

l=l0

αl

∑
x

(
|wl

Θ(x)−wl
GT(x)|+ε

)q
+γ|Θ|22 (4)

where | · | denotes the L1 norm, q < 1 gives less penalty to
outliers, and ε is a small constant.

4 EXPERIMENTAL RESULTS

Implementation details. The weights in the training loss (3)
are set to be α6 = 0.32, α5 = 0.08, α4 = 0.02, α3 = 0.01,
and α2 = 0.005. The trade-off weight γ is set to be 0.0004.
We scale the ground truth flow by 20 and downsample it
to obtain the supervision signals at different levels. Note
that we do not further scale the supervision signal at each
level, the same as [8]. As a result, we need to scale the
upsampled flow at each pyramid level for the warping layer.

6

For example, at the second level, we scale the upsampled
flow from the third level by a factor of 5 (= 20/4) before
warping features of the second image. We use a 7-level
pyramid (L = 6), consisting of 6 levels of CNN features
and the input images as the bottom level. We set the desired
level l0 to be 2, i.e., our model outputs a quarter resolution
optical flow and uses bilinear interpolation to obtain the
full-resolution optical flow. We use a search range of 4 pixels
to compute the cost volume at each level.

We first train the models using the FlyingChairs dataset
in Caffe [60] using the Slong learning rate schedule intro-
duced in [10], i.e., starting from 0.0001 and reducing the
learning rate by half at 0.4M, 0.6M, 0.8M, and 1M iterations.
The data augmentation scheme is the same as that in [10].
We crop 448 × 384 patches during data augmentation and
use a batch size of 8. We then fine-tune the models on the
FlyingThings3D dataset using the Sfine schedule [10] while
excluding image pairs with extreme motion (magnitude
larger than 1000 pixels). The cropped image size is 768×384
and the batch size is 4. Finally, we fine-tune the models
using the Sintel and KITTI training sets and will explain
the details below.

Fig. 4. Top: learning rate schedule for fine-tuning (the step values for
the first 105 iterations were provided by Eddy Ilg). Bottom: average end-
point error (EPE) on the final pass of the Sintel training set. We disrupt
the learning rate for a better minimum, which has better accuracy in both
the training and the test sets.

4.1 Main Results

4.1.1 MPI Sintel.

When fine-tuning on Sintel, we crop 768 × 384 image
patches, add horizontal flip, and do not add additive Gaus-
sian noise during data augmentation. The batch size is 4.

We use the robust loss function in Eq. (4) with ε = 0.01
and q = 0.4. We disrupt the learning rate, as shown in
Fig. 4, which empirically improves both the training and
test performance. We test two schemes of fine-tuning. The
first one, PWC-Net-ft, uses the clean and final passes of the
Sintel training data throughout the fine-tuning process. The
second one, PWC-Net-ft-final, uses only the final pass for
the second half of fine-tuning. We test the second scheme
because DCFlow learns the features using only the final
pass of the training data. Thus we test the performance of
PWC-Net when the final pass of the training data is given
more weight. We refer to the latter scheme as our training
protocol I, which we will use later to train other models.

PWC-Net has lower average end-point error (EPE) than
many recent methods on the final pass of the MPI-Sintel
benchmark (Table 1). Further, PWC-Net is the fastest among
all the top-performing methods (Fig. 1). We can further
reduce the running time by dropping the DenseNet con-
nections. The resulting PWC-Net-small model is about 5%
less accurate but 40% faster than PWC-Net.

PWC-Net is less accurate than traditional approaches
on the clean pass. Traditional methods often use image
edges to refine motion boundaries, because the two are
perfectly aligned in the clean pass. However, image edges
in the final pass are corrupted by motion blur, atmospheric
changes, and noise. Thus, the final pass is more realistic and
challenging. The results on the final and clean sets suggest
that PWC-Net may be better suited for real images, where
the image edges are often corrupted.

PWC-Net has higher errors on the training set but lower
errors on the test set than FlowNet2, suggesting that PWC-
Net may have a more appropriate capacity for this task.
Table 2 summarizes errors in different regions. PWC-Net
performs relatively better in regions with large motion and
away from the motion boundaries, probably because it has
been trained using only data with large motion. Figure 5
shows the visual results of different variants of PWC-Net
on the training and test sets of MPI Sintel. PWC-Net can
recover sharp motion boundaries but may fail on small and
rapidly moving objects, such as the left arm in “Market 5”.

4.1.2 KITTI.

When fine-tuning on KITTI, we crop 896 × 320 image
patches and reduce the amount of rotation, zoom, and
squeeze during data augmentation. The batch size is 4 too.
The large patches can capture the large motion in the KITTI
dataset. Since the ground truth is semi-dense, we upsample
the predicted flow at the quarter resolution to compare with
the scaled ground truth at the full resolution. We exclude
the invalid pixels in computing the loss function.

The CVPR version of PWC-Net outperforms many re-
cent two-frame optical flow methods on the 2015 set, as
shown in Table 3. On the 2012 set, PWC-Net is inferior to
SDF that assumes a rigidity constraint for the background.
Although the rigidity assumption works well on the static
scenes in the 2012 set, PWC-Net outperforms SDF in the
2015 set which mainly consists of dynamic scenes and is
more challenging. The visual results in Fig. 6 qualitatively
demonstrate the benefits of using the context network,
DenseNet connections, and fine-tuning, respectively. In par-

7

Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean)Frame 46 of “Market 5” (training, clean) Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth W/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o context

W/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNet PWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-Net PWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ft

Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final)Frame 5 of “Ambush 3” (test, final) Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6Frame 6 W/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o context

W/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNet PWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-Net PWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ftPWC-Net-Sintel-ft

Fig. 5. Results on Sintel training and test sets. Context network, DenseNet connections, and fine-tuning all improve the results. Small and rapidly
moving objects, e.g., the left arm in “Market 5”, are still challenging to the pyramid-based PWC-Net.

First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training)First frame (training) Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth W/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o context

W/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNet PWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-Net PWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ft

First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test)First frame (test) Second frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frame W/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o contextW/o context

W/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNetW/o DenseNet PWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-NetPWC-Net PWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ftPWC-Net-KITTI-ft

Fig. 6. Results on KITTI 2015 training and test sets. Fine-tuning fixes large regions of errors and recovers sharp motion boundaries.

ticular, fine-tuning fixes large regions of errors in the test
set, demonstrating the benefit of learning when the training
and test data share similar statistics.

First frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frameFirst frame Ground truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truthGround truth

Fig. 7. Improperly read images and flow fields due to an I/O bug.

An I/O bug. We use the Caffe code [8] to make all the
image pairs and flow fields into a single LMDB file for
training. The code requires that all the input images are
of the same resolution. The size of the first 156 sequences

of KITTI 2015 is 375 × 1242, but the last 44 are of different
resolutions, including 370×1224, 374×1238, and 376×1241.
The Caffe code cannot read the last 44 sequences properly,
as shown in Fig. 7. As a results, PWC-Net has been trained
using only 156 “good” sequences and 44 “bad” ones. As a
remedy, we crop all the sequences to the size of 370× 1224,
because there is no reliable way to resize the sparse ground
truth. Re-training with the correct 200 sequences leads to
about 20% improvement on the test set of KITTI 2012 (Fl-
Noc 4.22% → 3.41%) and 2015 (Fl-all 9.60% → 7.90%). At
the time of writing, PWC-Net is ranked second in non-
occluded regions among all methods on KITTI 2015. It is
surpassed by only one recent scene flow method that uses

8

TABLE 1
Average EPE results on MPI Sintel set. “-ft” means fine-tuning on the
MPI Sintel training set and the numbers in the parenthesis are results
on the data the methods have been fine-tuned on. ft-final gives more

weight to the final pass during fine-tuning. FlowNetC2 has been trained
using the same procedure as PWC-Net-ft-final.

Methods Training Test Time
Clean Final Clean Final (s)

PatchBatch [61] - - 5.79 6.78 50.0
EpicFlow [28] - - 4.12 6.29 15.0
CPM-flow [32] - - 3.56 5.96 4.30
FullFlow [31] - 3.60 2.71 5.90 240
FlowFields [62] - - 3.75 5.81 28.0
MRFlow [35] 1.83 3.59 2.53 5.38 480
FlowFieldsCNN [30] - - 3.78 5.36 23.0
DCFlow [17] - - 3.54 5.12 8.60
SpyNet-ft [11] (3.17) (4.32) 6.64 8.36 0.16
FlowNet2 [10] 2.02 3.14 3.96 6.02 0.12
FlowNet2-ft [10] (1.45) (2.01) 4.16 5.74 0.12
LiteFlowNet-CVPR (1.64) (2.23) 4.86 6.09 0.09
LiteFlowNet-arXiv (1.35) (1.78) 4.54 5.38 0.09
FlowNetS+ (2.80) (2.76) 6.49 6.54 0.01
FlowNetC+ 2.31 2.34 5.04 5.47 0.05
PWC-Net-small 2.83 4.08 - - 0.02
PWC-Net-small-ft (2.27) (2.45) 5.05 5.32 0.02
PWC-Net 2.55 3.93 - - 0.03
PWC-Net-ft (1.70) (2.21) 3.86 5.13 0.03
PWC-Net-ft-final (2.02) (2.08) 4.39 5.04 0.03
PWC-Net ROB (1.81) (2.29) 3.90 4.90 0.03
PWC-Net+ (1.71) (2.34) 3.45 4.60 0.03

TABLE 2
Detailed results on the Sintel benchmark for different regions, velocities

(s), and distances from motion boundaries (d).

Final matched unmatched d0−10 d10−60 d60−140 s0−10 s10−40 s40+

PWC-Net 2.44 27.08 4.68 2.08 1.52 0.90 2.99 31.28
FlowNet2 2.75 30.11 4.82 2.56 1.74 0.96 3.23 35.54
SpyNet 4.51 39.69 6.69 4.37 3.29 1.40 5.53 49.71
Clean
PWC-Net 1.45 23.47 3.83 1.31 0.56 0.70 2.19 23.56
FlowNet2 1.56 25.40 3.27 1.46 0.86 0.60 1.89 27.35
SpyNet 3.01 36.19 5.50 3.12 1.72 0.83 3.34 43.44

stereo input and semantic information [19] (Fl-all scores:
5.07% vs 4.69%) and more accurate than other scene flow
methods, such as another recent one that also uses semantic
information [64]. Note that scene flow methods can use
the estimated depth and the camera motion to predict the
flow of out-of-boundary pixels and thus tend to have better
accuracy in all regions.

4.1.3 Robust Vision Challenge2

PWC-Net ROB is the winning entry in the optical flow
competition of the robust vision challenge, which requires
applying a method using the same parameter setting to four
benchmarks: Sintel [52], KITTI 2015 [51], HD1K [65], and
Middlebury [12]. To participate the challenge, we fine-tune
the model using training data from Sintel, KITTI 2015, and
HD1K and name it as PWC-Net ROB. We do not use the
Middlebury training data because the provided eight image
pairs are too small and of low resolution compared to other
datasets. We use a batch size of 6, with 2 image pairs from
Sintel, KITTI, and HD1K respectively. The cropping size is
768 × 320 for Sintel and KITTI 2015. For HD1K, we first
crop 1536× 640 patches and then downsample the cropped

2. http://www.robustvision.net

TABLE 3
Results on the KITTI dataset. “-ft” means fine-tuning on the KITTI

training set and the numbers in the parenthesis are results on the data
the methods have been fine-tuned on.

Methods
KITTI 2012 KITTI 2015

AEPE AEPE Fl-Noc AEPE Fl-all Fl-all
train test test train train test

EpicFlow [28] - 3.8 7.88% - - 26.29 %
FullFlow [31] - - - - - 23.37 %
CPM-flow [32] - 3.2 5.79% - - 22.40 %
PatchBatch [61] - 3.3 5.29% - - 21.07%
FlowFields [62] - - - - - 19.80%
MRFlow [35] - - - - 14.09 % 12.19 %
DCFlow [17] - - - - 15.09 % 14.83 %
SDF [29] - 2.3 3.80% - - 11.01 %
MirrorFlow [63] - 2.6 4.38% - 9.93% 10.29%
SpyNet-ft [11] (4.13) 4.7 12.31% - - 35.07%
FlowNet2 [10] 4.09 - - 10.06 30.37% -
FlowNet2-ft [10] (1.28) 1.8 4.82% (2.30) (8.61%) 10.41 %
LiteFlowNet-CVPR (1.26) 1.7 - (2.16) (8.16%) 10.24 %
LiteFlowNet-arXiv (1.05) 1.6 3.27% (1.62) (5.58%) 9.38 %
PWC-Net 4.14 - - 10.35 33.67% -
PWC-Net-ft-CVPR (1.45) 1.7 4.22% (2.16) (9.80%) 9.60%
PWC-Net-ft (1.08) 1.5 3.41% (1.45) (7.59%) 7.90%

images and flow fields to 768× 320. For the mixed datasets,
we use more iterations and learning rate disruptions, as
shown in Fig. 8.

Fig. 8. Learning rate schedule for fine-tuning using data from Sintel,
KITTI, and HD1K. For this mixed dataset, we use more iterations and
learning rate disruptions than the learning rate schedule in Fig. 4.

Using mixed datasets increases the test error on KITTI
2015 (F-all 9.60% → 11.63%) but reduces the test error on
MPI Sintel final (AEPE 5.04% → 4.9). There is a larger mis-
match between the training and test data of Sintel than those
of KITTI 2015. Thus, using more diverse datasets reduces
the over-fitting errors on Sintel. We further use a batch size
of 4, with 2 image pairs from Sintel, 1 from KITTI, and 1
from HD1K respectively, which is our training procotol II.
It results in a further performance gain, i.e., PWC-Net+ in
Table 2.

The Middlebury images are of lower resolution and we
upsample them so that the larger of the width and height of
the upsampled image is around 1000 pixels. PWC-Net ROB
has similar performance as the Classic+NL method (avg.
training EPE 0.24 vs. 0.22; avg. test EPE 0.33 vs 0.32).

PWC-Net ROB is ranked first on the HD1K bench-
mark [65], which consists of real-world images corrupted by
rain, glare, and windshield wipers etc.. The 2560× 1080 res-

http://www.robustvision.net

9

TABLE 4
Ablation experiments. Unless explicitly stated, the models have been trained on the FlyingChairs dataset.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Feature ↑ 1.92 3.03 4.17 4.57 26.73% 11.64 39.80%
Feature ↓ 2.18 3.36 4.56 5.75 30.79% 14.05 44.92%
Image 2.95 4.42 5.58 7.28 31.25% 16.29 45.13%

(a) Larger-capacity feature pyramid extractor has better performance.
Learning features leads to significantly better results than fixed image
pyramids.

Max. Chairs Sintel Sintel KITTI 2012 KITTI 2015
Disp. Clean Final AEPE Fl-all AEPE Fl-all
0 2.13 3.66 5.09 5.25 29.82% 13.85 43.52%
2 2.09 3.30 4.50 5.26 25.99% 13.67 38.99%

Full model (4) 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
6 1.97 3.31 4.60 4.96 27.05% 12.97 40.94%

(b) Cost volume. Removing the cost volume (0) results in moderate
performance loss. PWC-Net can handle large motion using a small search
range to compute the cost volume.

Trained on FlyingChairs Fine-tuned on FlyingThings
Chairs Clean Final Chairs Clean Final

5-level 2.13 3.28 4.52 2.62 2.98 4.29
6-level 1.95 2.96 4.32 2.28 2.50 3.97
Full model (7) 2.00 3.33 4.59 2.30 2.55 3.93

(c) More feature pyramid levels help after fine-tuning on FlyingThings.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Estimator ↑ 1.92 3.09 4.50 4.64 25.34% 12.25 39.18%
Estimator ↓ 2.01 3.37 4.58 4.82 26.35% 12.83 40.53%

(d) Larger-capacity optical flow estimator has better performance.

Trained on FlyingChairs Fine-tuned on FlyingThings
Chairs Clean Final Chairs Clean Final

Full model 2.00 3.33 4.59 2.34 2.60 3.95
No DenseNet 2.06 3.09 4.37 2.48 2.83 4.08
No Context 2.23 3.47 4.74 2.55 2.75 4.13

(e) Context network consistently helps; DenseNet helps after fine-tuning
on FlyingThings.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

1st run 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
2nd run 2.00 3.23 4.36 4.70 25.52% 12.57 39.06%
3rd run 2.00 3.33 4.65 4.81 27.12% 13.10 40.84%

(f) Independent runs with different initializations lead to minor
performance differences.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
No warping 2.17 3.79 5.30 5.80 32.73% 13.74 44.87%

(g) Warping layer is a critical component for the performance.

Chairs Sintel Sintel KITTI 2012 KITTI 2015
Clean Final AEPE Fl-all AEPE Fl-all

Full model 2.00 3.33 4.59 5.14 28.67% 13.20 41.79%
Residual 1.96 3.14 4.43 4.87 27.74% 12.58 41.16%

(h) Residual connections in the optical flow estimator are helpful.

olution images causes out-of-memory issue on an NVIDIA
Pascal TitanX GPU with 12GB memory and requires an
NVIDIA Volta 100 GPU with 16GB memory. Figure 9 shows
some visual results on Middlebury and HD1K test set.
Despite minor artifacts, PWC-Net ROB performs robustly
across these benchmarks using the same set of parameters.

4.2 Ablation Experiments

Feature pyramid extractor. PWC-Net uses a two-layer CNN
to extract features at each pyramid level. Table 5a sum-
marizes the results of two variants that use one layer (↓)
and three layers (↑) respectively. A larger-capacity feature
pyramid extractor leads to consistently better results on both
the training and validation datasets. Replacing the feature
pyramids with image pyramids results in about 40% loss in
accuracy, confirming the benefits of learning features.

To further understand the effect of the pyramids, we
test feature pyramids with different levels, as shown in
Table 5c. Using 5-level pyramids leads to consistently worse
results. Using 6-level pyramids has better performance than
the default 7-level pyramids when trained on FlyingChairs,
but the two have close performance after fine-tuning using
FlyingThings3D. One possible reason is that the cropping
size for FlyingChairs (448× 384) is too small for the 7-level
pyramids. The size of the top level is 7 × 6, too small for a
search range of 4 pixels. By contrast, the cropping size for
FlyingThings3D (768 × 384) is better suited for the 7-level-
pyramids.

Optical flow estimator. PWC-Net uses a five-layer CNN
in the optical flow estimator at each level. Table 5d shows

the results by two variants that use four layer (↓) and
seven layers (↑) respectively. A larger-capacity optical flow
estimator leads to better performance. However, we observe
in our experiments that a deeper optical flow estimator
might get stuck at poor local minima, which can be detected
by checking the validation errors after a few thousand
iterations and fixed by running from a different random
initialization.

Removing the context network results in larger errors on
both the training and validation sets (Table 5e). Removing
the DenseNet connections results in higher training error
but lower validation errors when the model is trained on
FlyingChairs. However, after the model is fine-tuned on
FlyingThings3D, DenseNet leads to lower errors.

We also test a residual version of the optical flow esti-
mator, which estimates a flow increment and adds it to the
initial flow to obtain the refined flow. As shown in Table 5h,
this residual version slightly improves the performance.

Cost volume. We test the search range to compute the
cost volume, shown in Table 5b. Removing the cost volume
results in consistent worse results. A larger range leads to
lower training error. However, all three settings have similar
performance on Sintel, because a range of 2 at every level
can already deal with a motion up to 200 pixels at the
input resolution. A larger range has lower EPE on KITTI,
likely because the images from the KITTI dataset have larger
displacements than those from Sintel. A smaller range,
however, seems to force the network to ignore pixels with
extremely large motion and focus more on small-motion
pixels, thereby achieving lower Fl-all scores.

10

First frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of TeddyFirst frame of Teddy Second frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frame PWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROB

First frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of GroveFirst frame of Grove Second frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frame PWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROB

First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02First frame of HD1K sequence 02 Second frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frame PWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROB

First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19First frame of HD1K sequence 19 Second frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frameSecond frame PWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROBPWC-Net ROB

Fig. 9. Results on Middlebury and HD1K test sets. PWC-Net ROB has not been trained using the training data of Middlebury but performs
reasonably well on the test set. It cannot recover the fine motion details of the twigs in Grove though. PWC-Net ROB has reasonable results
in the regions occluded by the windshield wipers in sequence 02 of the HD1K test set.

Warping. Warping allows for estimating a small optical
flow (increment) at each pyramid level to deal with a large
optical flow. Removing the warping layers results in a
significant loss of accuracy (Table 5g). Without the warping
layer, PWC-Net still produces reasonable results, because
the default search range of 4 to compute the cost volume is
large enough to capture the motion of most sequences at the
low-resolution pyramid levels.

Independent Runs. To test the robustness to the ini-
tializations, we train PWC-Net with different runs. These
independent runs have almost the same training error but
some minor differences in performance on the validation
sets, as shown in Table 5f.

Dataset scheduling. We also train PWC-Net using dif-
ferent dataset scheduling schemes, as shown in Table 5.
Sequentially training on FlyingChairs, FlyingThings3D, and
Sintel gradually improves the performance, consistent with
the observations in [10]. Directly training using the test data
leads to good “over-fitting” results, but the trained model
does not perform as well on other datasets.

Model size and running time. Table 6 summarizes the

TABLE 5
Training dataset schedule leads to better local minima. () indicates

results on the dataset the method has been trained on.

Data Chairs Sintel (AEPE) KITTI 2012 KITTI 2015
AEPE Clean Final AEPE Fl-all AEPE Fl-all

Chairs (2.00) 3.33 4.59 5.14 28.67% 13.20 41.79%
Chairs-Things 2.30 2.55 3.93 4.14 21.38% 10.35 33.67%
Chairs-Things-Sintel 2.56 (1.70) (2.21) 2.94 12.70% 8.15 24.35%
Sintel 3.69 (1.86) (2.31) 3.68 16.65% 10.52 30.49%

model size for different CNN models. PWC-Net has about
17 times fewer parameters than FlowNet2. PWC-Net-small
further reduces this by an additional 2 times via dropping
DenseNet connections and is more suitable for memory-
limited applications.

The timings have been obtained on the same desktop
with an NVIDIA Pascal TitanX GPU. For more precise
timing, we exclude the reading and writing time when
benchmarking the forward and backward inference time.
PWC-Net is about 2 times faster in forward inference and at
least 3 times faster in training than FlowNet2.

11

Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3Frame 15 of Ambush 3 Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16Frame 16 FlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetC FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+

Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1Frame 11 of Market 1 Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12Frame 12 FlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetCFlowNetC FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+FlowNetC+

Fig. 10. Training procedure matters. FlowNetC and FlowNetC+ use the same network architecture but have been trained differently. FlowNetC+
has been trained using our procedure and generates results with finer details and fewer artifacts than the previously trained FlowNetC.

TABLE 6
Model size and running time. PWC-Net-small drops DenseNet

connections. For training, the lower bound of 14 days for FlowNet2 is
obtained by 6(FlowNetC) + 2×4 (FlowNetS). The inference time is for

1024× 448 resolution images.

Methods FlowNetS FlowNetC FlowNet2 SpyNet PWC-Net PWC-Net-small
#parameters (M) 38.67 39.17 162.49 1.2 8.75 4.08
Parameter Ratio 23.80% 24.11% 100% 0.74% 5.38% 2.51%
Memory (MB) 154.5 156.4 638.5 9.7 41.1 22.9
Memory Ratio 24.20% 24.49% 100% 1.52% 6.44% 3.59%
Training (days) 4 6 >14 - 4.8 4.1
Forward (ms) 11.40 21.69 84.80 - 28.56 20.76
Backward (ms) 16.71 48.67 78.96 - 44.37 28.44

4.3 Training Matters

We used the same architecture in the first [66] and second
(CVPR) versions of our arXiv paper but observed an about
10% improvement on the final pass of the Sintel test set.
The performance improvement results solely from changes
in the training procedures, including performing horizontal
flips, not adding additive Gaussian noise, and disrupting
the learning rate. One questions arises: how do other models
perform using the same training procedure as PWC-Net?

To better understand the effects of models and train-
ing and fairly compare with existing methods, we re-train
the FlowNetS and FlowNetC models using exactly the
same training procedure as PWC-Net, including the robust
training loss function. We name the retrained model as
FlowNetS+ and FlowNetC+ respectively and evaluate them
using the test set of Sintel, as summarized in Table 1.
Figure 10 shows the visual results FlowNetC trained using
different training protocols. The results by FlowNetC+ have
fewer artifacts and are more piece-wise smooth than the re-
viously trained FlowNetC. As shown in Table 1, FlowNetC+
is about 8% less accurate on Sintel final and 3 times larger in
model size than PWC-Net , which demonstrates the benefit
of the new network architecture under the same training
procedure.

To our surprise, FlowNetC+ is about 5% more accurate
than the published FlowNet2 model on the final pass,
because FlowNet2 uses FlowNetC as a sub-network. We
should note that this is not a fair comparison for FlowNet2,
because we are unable to apply the same training protocol to
the FlowNet2 model, which requires sequential training of
several sub-networks. It is expected that a more careful, cus-
tomized training schemes would improve the performance
of FlowNet2.

It is often assumed or taken for granted that the results
published by authors represent the best possible perfor-
mance of a method. However, our results show that we

should carefully evaluate published methods to “identify
the source of empirical gains” [67]. When we observe im-
provements over previous models, it is critical to analyze
whether the gain results from the model or the training pro-
cedure. It would be informative to evaluate models trained
in the same way or compare training procedures using
the same model. To enable fair comparisons and further
innovations, we will make our training protocols available.

5 COMPARISON WITH CLOSELY-RELATED WORK

As the field is changing rapidly, it is informative to do
a detailed discussion of the closely-related work. Both
FlowNet2 [10] and SpyNet [11] have been designed using
principles from stereo and optical flow. However, the archi-
tecture of PWC-Net has significant differences.

SpyNet uses image pyramids while PWC-Net learns fea-
ture pyramids. FlowNet2 uses three-level feature pyramids
in the first module of its whole network, i.e., FlowNetC. By
contrast, PWC-Net uses much deeper feature pyramids. As
analyzed in the ablation study, using deeper feature pyra-
mids usually leads to better performance. Both SpyNet and
FlowNet2 warp the input images, while PWC-Net warps
the features, which enables the information to propagate
throughout the whole feature pyramids.

SpyNet feeds CNNs with images, while PWC-Net feeds
a cost volume. As the cost volume is a more discriminative
representation of the search space for optical flow, the learn-
ing task for CNNs becomes easier. FlowNet2/FlowNetC
constructs the cost volume at a single resolution with a
large search range. However, using features at a fixed res-
olution may not be effective at resolving the well-known
“aperture problem” [20], [68], [69], [70]. By contrast, PWC-
Net constructs multi-resolution cost volume and reduces the
computation using a small search range.

Regarding performance, PWC-Net outperforms SpyNet
by a significant margin. Additionally, SpyNet has been
trained sequentially, while PWC-Net can be trained end-
to-end from scratch. FlowNet2 achieves impressive perfor-
mance by stacking several basic models into a large-capacity
model. The much smaller PWC-Net obtains similar or better
performance by embedding classical principles into the net-
work architecture. It would be interesting to use PWC-Net
as a building block to design large networks.

Two recent papers also incorporate domain knowledge
of flow into the CNN architectures. LiteFlowNet [71] uses
similar ideas as PWC-Net, including feature pyramids,
warping features, and constructing a cost volume with a

12

limited search range at multiple resolutions. LiteFlowNet
furthers incorporates a flow regularization layer to deal with
outliers using a feature-driven local convolutions. However,
LiteFlowNet requires sequential (stage-wise) training. The
CVPR final version of LiteFlowNet (March. 2018) is about
8% less accurate on Sintel final than the first arXiv version
of PWC-Net [66] published in Sep. 2017 (avg. EPE 6.09 vs.
5.63). In an updated arXiv version [72] published in May
2018, LiteFlowNet uses similar data augmentation schemes
as the CVPR final version of PWC-Net, e.g., not adding
Gaussian noise, horizontal flipping (image mirroring), and
reducing the spatial data augmentation for KITTI. With
these changes, LiteFlowNet reports performance close to
PWC-Net on Sintel final (avg. EPE: 5.33 vs 5.04) and KITTI
2015 (F-all: 9.38% vs. 9.60%). This further confirms the
importance of training in obtaining top performance.

Another paper, TVNet [73], subsumes a specific optical
flow solver, the TV-L1 method [74], and is initialized by
unfolding its optimization iterations as neural layers. TVNet
is used to learn rich and task-specific patterns and obtains
excellent performance on activity classification. The readers
are urged to read these papers to better understand the
similarities and differences.

TABLE 7
Comparison of network architectures.

Principles FlowNetC FlowNet2 SpyNet PWC-Net
Pyramid 3-level 3-level Image 6-level
Warping - Image Image Feature

Cost volume single-level single-level - multi-level
large range large range small range

6 CONCLUSIONS

We have developed a compact but effective CNN model for
optical flow estimation using simple and well-established
principles: pyramidal processing, warping, and cost volume
processing. Combining deep learning with domain knowl-
edge not only reduces the model size but also improves the
performance. PWC-Net is about 17 times smaller in size,
2 times faster in inference, easier to train, and 11% more
accurate on Sintel final than the recent FlowNet2 model. It
performs robustly across four different benchmarks using
the same set of parameters and is the winning entry in the
optical flow competition of the robust vision challenge.

We have also shown that the performance gains of
PWC-Net result from both the new model architecture and
the training procedures. Retrained using our procedures,
FlowNetC is even 5% more accurate on Sintel final than
the published FlowNet2, which uses FlowNetC as a sub-
network. We have further improved the training procedures,
which increase the accuracy of PWC-Net on Sintel by 10%
and on KITTI 2012 and 2015 by 20%. The results show the
complicated interplay between models and training and call
for careful experimental designs to identify the sources of
empirical gains. To enable comparison and further inno-
vations, we will make the retrained models and training
protocols available on https://github.com/NVlabs/PWC-
Net.

Acknowledgements We would like to thank Zhile Ren
and Jinwei Gu for porting the Caffe code to PyTorch, Eddy
Ilg for clarifying details about the FlowNet2 paper, Ming-
Hsuan Yang for helpful suggestions, Michael Pellauer for
proofreading, github users for clarifying questions, and the
anonymous reviewers at ICCV’17 and CVPR’18 for con-
structive comments.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems (NIPS), 2012. 1, 2, 3

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet
large scale visual recognition challenge,” International Journal of
Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015. 1

[3] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to hand-
written zip code recognition,” Neural computation, 1989. 1, 2

[4] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014. 1

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 1

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 1

[7] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten,
“Densely connected convolutional networks,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017. 1, 4, 5

[8] A. Dosovitskiy, P. Fischery, E. Ilg, C. Hazirbas, V. Golkov, P. van der
Smagt, D. Cremers, T. Brox et al., “FlowNet: Learning optical flow
with convolutional networks,” in IEEE International Conference on
Computer Vision (ICCV), 2015. 1, 2, 3, 4, 5, 7

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical Image Computing and Computer Assisted In-
tervention (MICCAI), 2015. 1, 3, 4

[10] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“FlowNet 2.0: Evolution of optical flow estimation with deep
networks,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 1, 2, 3, 4, 6, 8, 10, 11

[11] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 1, 3, 8, 11

[12] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and
R. Szeliski, “A database and evaluation methodology for optical
flow,” International Journal of Computer Vision (IJCV), 2011. 1, 3, 4, 8

[13] J. Weber and J. Malik, “Robust computation of optical flow in a
multi-scale differential framework,” International Journal of Com-
puter Vision (IJCV), vol. 14, no. 1, pp. 67–81, 1995. 1

[14] A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz,
“Fast cost-volume filtering for visual correspondence and be-
yond,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2013. 1, 3, 5

[15] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms,” International
Journal of Computer Vision (IJCV), 2002. 1

[16] J. Zbontar and Y. LeCun, “Stereo matching by training a convo-
lutional neural network to compare image patches,” Journal of
Machine Learning Research (JMLR), 2016. 1

[17] J. Xu, R. Ranftl, and V. Koltun, “Accurate optical flow via direct
cost volume processing,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017. 1, 3, 4, 5, 8

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998. 2

[19] A. Behl, O. H. Jafari, S. K. Mustikovela, H. A. Alhaija, C. Rother,
and A. Geiger, “Bounding boxes, segmentations and object coordi-
nates: How important is recognition for 3D scene flow estimation
in autonomous driving scenarios?” in IEEE International Conference
on Computer Vision (ICCV), 2017. 2, 8

https://github.com/NVlabs/PWC-Net
https://github.com/NVlabs/PWC-Net

13

[20] B. Horn and B. Schunck, “Determining optical flow,” Artificial
Intelligence, 1981. 2, 4, 5, 11

[21] M. J. Black and P. Anandan, “The robust estimation of multiple
motions: Parametric and piecewise-smooth flow fields,” Computer
Vision and Image Understanding (CVIU), 1996. 2, 3, 4, 5

[22] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/Kanade meets
Horn/Schunck: combining local and global optic flow methods,”
International Journal of Computer Vision (IJCV), 2005. 3

[23] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Euro-
pean Conference on Computer Vision (ECCV), 2004. 3, 4, 5

[24] D. Sun, S. Roth, and M. J. Black, “A quantitative analysis of current
practices in optical flow estimation and the principles behind
them,” International Journal of Computer Vision (IJCV), 2014. 3, 4,
5

[25] T. Brox and J. Malik, “Large displacement optical flow: Descriptor
matching in variational motion estimation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence (TPAMI), 2011. 3

[26] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “Deep-
Flow: Large displacement optical flow with deep matching,” in
IEEE International Conference on Computer Vision (ICCV), 2013. 3

[27] L. Xu, J. Jia, and Y. Matsushita, “Motion detail preserving optical
flow estimation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2012. 3

[28] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid,
“EpicFlow: Edge-preserving interpolation of correspondences for
optical flow,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 3, 8

[29] M. Bai, W. Luo, K. Kundu, and R. Urtasun, “Exploiting semantic
information and deep matching for optical flow,” in European
Conference on Computer Vision (ECCV), 2016. 3, 8

[30] C. Bailer, K. Varanasi, and D. Stricker, “CNN-based patch match-
ing for optical flow with thresholded hinge embedding loss,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. 3, 4, 8

[31] Q. Chen and V. Koltun, “Full flow: Optical flow estimation by
global optimization over regular grids,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. 3, 4, 8

[32] Y. Hu, R. Song, and Y. Li, “Efficient coarse-to-fine patchmatch for
large displacement optical flow,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 3, 8

[33] Y. Yang and S. Soatto, “S2f: Slow-to-fast interpolator flow,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
3

[34] S. Zweig and L. Wolf, “Interponet, a brain inspired neural net-
work for optical flow dense interpolation,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017. 3

[35] J. Wulff, L. Sevilla-Lara, and M. J. Black, “Optical flow in mostly
rigid scenes,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 3, 4, 8

[36] E. P. Simoncelli, E. H. Adelson, and D. J. Heeger, “Probability
distributions of optical flow,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 1991. 3

[37] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael, “Learning low-
level vision,” International Journal of Computer Vision (IJCV), 2000.
3

[38] S. Roth and M. J. Black, “On the spatial statistics of optical flow,”
International Journal of Computer Vision (IJCV), 2007. 3

[39] D. Sun, S. Roth, J. P. Lewis, and M. J. Black, “Learning optical
flow,” in European Conference on Computer Vision (ECCV), 2008. 3

[40] Y. Li and D. P. Huttenlocher, “Learning for optical flow using
stochastic optimization,” in European Conference on Computer Vision
(ECCV), 2008. 3

[41] J. Wulff and M. J. Black, “Efficient sparse-to-dense optical flow
estimation using a learned basis and layers,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 120–130.
3

[42] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and
H. Bischof, “Anisotropic Huber-L1 optical flow,” in British Machine
Vision Conference (BMVC), 2009. 3

[43] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy,
and T. Brox, “A large dataset to train convolutional networks
for disparity, optical flow, and scene flow estimation,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
3

[44] R. Memisevic and G. Hinton, “Unsupervised learning of image
transformations,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2007. 3

[45] G. Long, L. Kneip, J. M. Alvarez, H. Li, X. Zhang, and Q. Yu,
“Learning image matching by simply watching video,” in Euro-
pean Conference on Computer Vision (ECCV), 2016. 3

[46] J. J. Yu, A. W. Harley, and K. G. Derpanis, “Back to basics:
Unsupervised learning of optical flow via brightness constancy
and motion smoothness,” in CoRR, 2016. 3

[47] W.-S. Lai, J.-B. Huang, and M.-H. Yang, “Semi-supervised learning
for optical flow with generative adversarial networks,” in Ad-
vances in Neural Information Processing Systems (NIPS), 2017. 3

[48] J. Barron, D. Fleet, and S. Beauchemin, “Performance of optical
flow techniques,” International Journal of Computer Vision (IJCV),
1994. 4

[49] C. Liu, W. T. Freeman, E. H. Adelson, and Y. Weiss, “Human-
assisted motion annotation,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2008. 4

[50] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? The KITTI vision benchmark suite,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2012. 4

[51] M. Menze and A. Geiger, “Object scene flow for autonomous vehi-
cles,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015. 4, 8

[52] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A natural-
istic open source movie for optical flow evaluation,” in European
Conference on Computer Vision (ECCV), 2012. 4, 8

[53] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,”
in International Conference on Machine Learning (ICML), 2008. 4

[54] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “DeepLab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs,” IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI),
2017. 4

[55] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in International Conference on Learning Representa-
tions (ICLR), 2016. 4, 5

[56] S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio,
“The one hundred layers tiramisu: Fully convolutional densenets
for semantic segmentation,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshop, 2017. 4

[57] A. Wedel, T. Pock, C. Zach, D. Cremers, and H. Bischof, “An
improved algorithm for TV-L1 optical flow,” in Dagstuhl Motion
Workshop, 2008. 4

[58] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi, “Bilateral
filtering-based optical flow estimation with occlusion detection,”
in European Conference on Computer Vision (ECCV), 2006. 4

[59] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial trans-
former networks,” in Advances in Neural Information Processing
Systems (NIPS), 2015. 4

[60] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture
for fast feature embedding,” in ACM Multimedia, 2014. 6

[61] D. Gadot and L. Wolf, “PatchBatch: A batch augmented loss for
optical flow,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 8

[62] C. Bailer, B. Taetz, and D. Stricker, “Flow fields: Dense correspon-
dence fields for highly accurate large displacement optical flow
estimation,” in IEEE International Conference on Computer Vision
(ICCV), 2015. 8

[63] J. Hur and S. Roth, “MirrorFlow: Exploiting symmetries in joint
optical flow and occlusion estimation,” in IEEE International Con-
ference on Computer Vision (ICCV), Oct 2017. 8

[64] Z. Ren, D. Sun, J. Kautz, and E. Sudderth, “Cascaded scene flow
prediction using semantic segmentation,” in 3DV, 2017. 8

[65] D. Kondermann, R. Nair, K. Honauer, K. Krispin, J. Andrulis,
A. Brock, B. Gussefeld, M. Rahimimoghaddam, S. Hofmann,
C. Brenner et al., “The hci benchmark suite: Stereo and flow
ground truth with uncertainties for urban autonomous driving,”
in CVPR Workshops, 2016, pp. 19–28. 8

[66] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “PWC-Net: CNNs for
optical flow using pyramid, warping, and cost volume,” arXiv
preprint arXiv:1709.02371, 2017. 11, 12

[67] Z. C. Lipton and J. Steinhardt, “Troubling trends in machine
learning scholarship,” arXiv preprint arXiv:1807.03341, 2018. 11

[68] E. H. Adelson and J. A. Movshon, “Phenomenal coherence of
moving visual patterns,” Nature, vol. 300, no. 5892, p. 523, 1982.
11

[69] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” 1981, pp. 674–679. 11

14

[70] Y. Weiss, E. P. Simoncelli, and E. H. Adelson, “Motion illusions as
optimal percepts,” Nature neuroscience, vol. 5, no. 6, p. 598, 2002.
11

[71] T.-W. Hui, X. Tang, and C. Change Loy, “Liteflownet: A
lightweight convolutional neural network for optical flow estima-
tion,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 11

[72] T. Hui, X. Tang, and C. C. Loy, “Liteflownet: A lightweight
convolutional neural network for optical flow estimation,” arXiv
preprint arXiv:1805.07036, 2018. 12

[73] L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, and J. Huang, “End-
to-end learning of motion representation for video understand-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 12

[74] C. Zach, T. Pock, and H. Bischof, “A duality based approach
for realtime tv-l 1 optical flow,” in German Conference on Pattern
Recognition (DAGM), 2007. 12

APPENDIX

In this appendix, we proivde more details about PWC-Net.
Figure 11 shows the architecture for the 7-level feature pyra-
mid extractor network used in our experiment. Note that the
bottom level consists of the original input images. Figure 12
shows the optical flow estimator network at pyramid level
2. The optical flow estimator networks at other levels have
the same structure except for the top level, which does not
have the upsampled optical flow and directly computes
cost volume using features of the first and second images.
Figure 13 shows the context network that is adopted only at
pyramid level 2.

Fig. 11. The feature pyramid extractor network. The first image (t = 1)
and the second image (t=2) are encoded using the same Siamese net-
work. Each convolution is followed by a leaky ReLU unit. The convolu-
tional layer and the×2 downsampling layer at each level is implemented
using a single convolutional layer with a stride of 2. clt denotes extracted
features of image t at level l;

15

Fig. 12. The optical flow estimator network at pyramid level 2. Each
convolutional layer is followed by a leaky ReLU unit except the last (light
green) one that outputs the optical flow.

Fig. 13. The context network at pyramid level 2. Each convolutional layer
is followed by a leaky ReLU unit except the last (light green) one that
outputs the optical flow. The last number in each convolutional layer
denotes the dilation constant.

