
Throughput-Oriented GPU Memory Allocation
Isaac Gelado

NVIDIA

Santa Clara, California

igelado@nvidia.com

Michael Garland

NVIDIA

Santa Clara, California

mgarland@nvidia.com

Abstract
Throughput-oriented architectures, such as GPUs, can sus-

tain three orders of magnitude more concurrent threads than

multicore architectures. This level of concurrency pushes

typical synchronization primitives (e.g., mutexes) over their

scalability limits, creating significant performance bottle-

necks in modules, such as memory allocators, that use them.

In this paper, we develop concurrent programming tech-

niques and synchronization primitives, in support of a dy-

namic memory allocator, that are efficient for use with very

high levels of concurrency.

We formulate resource allocation as a two-stage process,

that decouples accounting for the number of available re-

sources from the tracking of the available resources them-

selves. To facilitate the accounting stage, we introduce a

novel bulk semaphore abstraction that extends traditional

semaphore semantics by optimizing for the casewhere threads

operate on the semaphore simultaneously. We also similarly

design new collective synchronization primitives that enable

groups of cooperating threads to enter critical sections to-

gether. Finally, we show that delegation of deferred reclama-

tion to threads already blocked greatly improves efficiency.

Using all these techniques, our throughput-oriented mem-

ory allocator delivers both high allocation rates and low

memory fragmentation on modern GPUs. Our experiments

demonstrate that it achieves allocation rates that are on aver-

age 16.56 times higher than the counterpart implementation

in the CUDA 9 toolkit.

Keywords Concurrency,MemoryAllocation, GPUProgram-

ming

1 Introduction
Modern throughput-oriented architectures, exemplified by

NVIDIA GPUs, are used to accelerate applications in a wide

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PPoPP ’19, February 16–20, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6225-2/19/02. . . $15.00

https://doi.org/10.1145/3293883.3295727

range of domains, including computer graphics, scientific

computation, and machine learning. Such architectures rely

on massive multithreading as the key to efficient execution;

for example, over the last decade, the maximum number of

simultaneous threads has risen from 6,144 on the NVIDIA

G80 to 172,032 on the NVIDIA GV100 architectures, respec-

tively. Utilizing such large thread populations is relatively

straightforward when applications exhibit abundant data

parallelism. However, applications that rely on concurrent

data structures, and accompanying synchronization prim-

itives (e.g., mutexes) that arbitrate access to them, present

a greater challenge. Because many techniques for manag-

ing concurrent data access have been designed to suit the

needs of multiprocessor systems with 2–3 orders of magni-

tude fewer threads, we find they often perform poorly when

faced with the level of contention that can arise on GPUs.

In this paper, we explore the design of a throughput-ori-

ented memory allocator suitable for implementing the stan-

dard C malloc and free interfaces available to threads run-

ning on the GPU. It represents both a critical building block

for applications requiring dynamic memory management

and an exemplar of the class of techniques that require con-

current access to shared data structures. Because there can be

many tens of thousands of threads running concurrently, we

focus on maximizing the total (de)allocation rate, measured

by (de)allocation calls completed per second. We simultane-

ously seek to minimize memory fragmentation, which can

grow rapidly at high allocation rates if left unchecked.

Currently few GPU applications use dynamic memory,

however a high performance allocation will benefit GPU soft-

ware in domains such as graph analytics (e.g., Gunrock [23]),

data analytics (e.g., RAPIDS [2]), sparse linear algebra (e.g.,

cuSolver [8]), or databases (e.g., kinetica [1]). Often time

programmers allocate an upper bound array in the host to

circumvent the low performance device allocator. This re-

sults in a waste of memory and limits the application dataset

sizes. To fit larger datasets, programmers rely on a two-phase

approach: a first stage computes the amount of memory re-

quired, and a second phase performs the actual computation.

A high throughput device allocator removes the refactoring

of algorithms, and would remove the need for pre-computa-

tions.

Contention within the allocator can be extremely high,

since any one of the many concurrent threads on the GPU—

up to 172,032 on current architectures—may call malloc and
free at any time. Therefore, our allocator design is focused

1

https://doi.org/10.1145/3293883.3295727

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Isaac Gelado and Michael Garland

on techniques for contention management, all of which we

believe are also applicable to the design of most concurrent

data structures on the GPU. First, we design shared data struc-

tures that allow fine-grained mutual exclusion regions.

We track free memory at coarse granularity using a buddy

system [14], based on a static binary tree, that requires lock-

ing at most two nodes to perform any update. By minimizing

locking, many coarse-grained operations can proceed con-

currently. Second, we exploit parallel execution within
critical sections. Concurrent threads in a given kernel may

often allocate memory blocks of the same size. Rather than

serializing their execution, we group multiple threads to exe-

cute a parallel lookup to find multiple free blocks within the

same critical section using collective synchronization primi-
tives. For example, a cooperating group of threads can collec-

tively acquire a mutex together, work collectively to perform

an operation, and collectively release the mutex when all

are finished. This both reduces contention and exploits local

parallelism within critical sections. Third, we delegate exe-
cution to already waiting threads rather than forcing many

threads to wait as well. For example, we extend our Read-

Copy-Update [18] (RCU) mechanism for managing linked

lists of memory blocks to permit threads to delegate commit

operations to any other thread already waiting to commit.

Applying these principles, we have designed a new high-

throughput memory allocator for massively multithreaded

architectures such as the GPU. Our CUDA C++ implementa-

tion, benchmarked on an NVIDIA Titan V, delivers substan-

tially higher allocation throughput compared to the malloc
and free implementations provided in the CUDA 9 Toolkit;

in our benchmarks delivering an allocation rate between 0.22

and 346 times faster, with and average 16.56X improvement.

The first contribution of this paper are a novel synchro-

nization primitive, bulk semaphores, that generalizes count-
ing semaphores and enables efficient concurrent allocation

of resources. The second contribution of this paper is a exten-

sion of RCU to enable delegation of clean-tasks that avoids

unnecessarily blocking the execution of threads. The third

contribution are collective synchronization primitives, the first
synchronization construct that enables parallel execution

within critical sections. Finally, the forth contribution of this

paper is a new high-throughput GPU memory allocator that

relies on our other contributions to achieve high scalability.

2 Background
Dynamically allocating memory is a collaboration between

the operating system (OS) and a user-level memory allocator.

The OS allocates regions of the virtual address space of the

application and commits physical pages as needed to provide

storage resources. The user-level memory allocator—invoked

by the application through interfaces such as malloc—subdivides
regions provided by the OS to fulfill application requests.

Most modern user-level memory allocators [4, 6, 11] share

the same high-level architecture. Arenas manage memory

in large fixed-size chunks; for example, jemalloc [11] uses
2 MB chunks. The arena also defines a set bins, each of which
corresponds to a fixed allocation size, and includes metadata

to locate available blocks of that size. To support concurrent

(de)allocation, the arena is protected by a synchronization

primitive (e.g., a mutex) that is locked prior to starting any

operation and released upon completion.

The number of arenas is typically chosen to be a multiple

of the number of CPU cores [11] or the expected number of

threads [4]. A thread is assigned an arena upon its first call

to the allocator, and all subsequent allocations are served

from this arena. This association of arenas to cores/threads

enables concurrent allocations and improves CPU cache hit

rates [4], albeit at the cost of higher memory fragmentation.

2.1 GPU Execution Model
Our goal is to develop an allocator design suitable for through-

put-oriented processors that rely on massive multi-threading

to achieve high performance.We focus specifically onNVIDIA’s

Volta architecture [19] because it is the first generation of

GPU architecture to support independent thread scheduling,
which guarantees forward progress for individual threads re-

gardless of control flow. This guarantee greatly simplifies the

implementation of thread-level synchronization primitives.

We use CUDA C++ for our prototype implementation.

CUDA applications execute tasks on the GPU in the form

of grids, which organize the potentially many threads of a

kernel into thread blocks. All threads within a single thread

block share access to on-chipmemory and can efficiently syn-

chronize with each other using hardware-supported barriers.

Each thread block is placed on a given Streaming Multipro-

cessor (SM), the hardware unit on which all threads of that

block will run.

Host code running on the CPU can reserve portions of

GPUmemory using the cudaMalloc interface, which fills the
role of the OS-level allocator described above and which we

use unmodified. Individual threads running on the GPU re-

quest dynamic allocation by calling malloc, and it is through
this interface that our implementation is exposed to the ap-

plication.

2.2 Scalable Memory Allocation
The first GPU memory allocator, XMalloc [12], is based on

lock-free FIFO queues that hold both available chunks and

bins of pre-defined sizes. Chunks are allocated from blocks

of contiguous memory that can be sub-divided into arbitrary

sizes. XMalloc keeps a list of available memory blocks sepa-

rated by boundary tags, and operations over memory blocks

require locking. We use the same allocation strategy as XMal-

loc; a coarse-grained allocator makes large allocations, and

fulfills requests from a fine-grained allocator that handles

small allocations.

2

Throughput-Oriented GPU Memory Allocation PPoPP ’19, February 16–20, 2019, Washington, DC, USA

ScatterAlloc [20] also implements a similar architecture

but relies on the CUDA dynamic memory allocator to allo-

cate chunks and handle large allocations. ScatterAlloc tracks

memory availability using bitmaps. To prevent collisions

when atomically updating a bitmap, ScatterAlloc defines a

hashing function that scatters the atomic operations over

the words of the bitmap. We use a similar technique to scat-

ter the traversal of a static binary tree in our coarse grained

allocator to prevent collisions when locating memory blocks.

Widmeret al. [24] built a memory allocator similar to

XMalloc, but they defined a non-standard per-warp allo-

cation interface to coalesce (de)allocation requests. We im-

plement the standard malloc and free interface, and we

transparently coalesce requests within the allocator by de-

tecting which threads are concurrently invoking it and using

specialized paths for single-threaded and full-warp opera-

tions.

Vinkler et al. [22] studied different dynamic memory al-

location algorithms focusing on minimizing the number of

registers used by the allocator code and proposed a simple al-

locator based on incrementing a free pointer in the memory

pool to be used as a coarse-grained allocator. This approach

lead to large memory fragmentation. We use a buddy sys-

tem as the coarse-grained allocator, which is known to keep

fragmentation low [14]. We track free memory using a bi-

nary tree, similarly to Marotta et al. [16], but we couple

bulk semaphores to this data structure to throttle down the

number of concurrent updates to the tree.

HAlloc [3] is the fastest GPU memory allocator currently

available. It defines a statically sized memory pool that gets

sub-divided into chunks at initialization time, and relies on

the CUDA dynamic memory allocator to handle large al-

locations. For each allocation size, HAlloc keeps only one

active bin from which to allocate. Whenever usage within

a bin reaches a configurable threshold, HAlloc replaces it

with a new active bin. This strategy maximizes the chances

of subsequent allocations finding an available block in the

active bin. HAlloc also keeps per-size lists of bins that are

almost-exhausted, and of bins that are almost-empty. Free

operations move bins between this two lists, and bins in the

almost-empty list are used to select new active bins when

needed. Our fine-grained allocator also keeps per-size bins,

but we use a linked-list to track all active bins, and thus avoid

costly active bin replacement operations.

3 Concurrent Resource Management
In this section we describe the synchronization primitives

we use in our GPU memory allocator, semaphores and RCU,

and discuss how we can adapt them to accommodate the

massive amounts of concurrency and the thread execution

model of modern GPUs. Section 4 explains how we use these

primitives to aid in the construction of our memory allocator.

3.1 False Resource Starvation
Resource allocators often group available resources into

pools (e.g., chunks in jemalloc). One could conceive a pool

design using a lock-free or a wait-free data structure, e.g.,

a wait-free queue [15]. Initially, the queue contains a single

memory block that encompasses all the available memory.

A first thread dequeues this memory block to allocate the re-

quested memory from it. If another thread allocates memory,

it would find the pool empty, and return an out-of-memory
error. If this thread would have waited for the first one to

enqueue the modified block, the allocation would have suc-

ceeded. We refer to this problem as false resource starvation.
The simplest scheme to prevent a resource manger from

running into the false resource starvation problem is to seri-

alize (de)allocation operations. Most allocators implement

these operations within a critical section protected by a mu-

tex. However, serialization results in unacceptable perfor-

mance when the number of concurrent operations is high.

Most concurrent CPU memory allocators rely on serving

only a small number of threads (or even one) from each mem-

ory arena. This design is not suitable for a GPU since the

total number of threads is far too large. For example, using 32

threads per arena and a chunk size of 512KB would require

preallocating up to 5GB of memory for the arenas.

We develop two-stage resourcemanagement, that jointly
with a novel synchronization primitive, bulk semaphores,
enables executing the maximum number of concurrent allo-

cation/free operations without running into the false resource
starvation problem. Many components of our GPU memory

allocator will rely on these techniques to offer high allocation

throughput.

3.2 Two-stage Resource Management
Counting semaphores [10] provide a natural way to track

resources and solve the false resource starvation problem.

For instance, given a fixed amount of a resource, we track

how many units are left using a counting semaphore ini-

tialized to the initial number of resource units. A counting

semaphore keeps an internal integer value, S , and supports

two operations:

• wait(N): if S ≥ N , then S ← S − N ; otherwise, the

calling thread is blocked.

• signal(N): S ← S + N , and wake up the waiting

threads to re-attempt the wait operation.

Threads execute a wait operation to acquire an integer num-

ber of units of resource, and a signal operation to release

them.

If the amount of a given resource can grow and shrink over

time, we can modify the semantics of wait(N) to support

this use-case.

• if S ≥ N , then S ← S − N and return N .

• if N > S ≥ 0, then S ← −1 and return S .
• otherwise, the calling thread is blocked.

3

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Isaac Gelado and Michael Garland

Figure 1. Two-stage allocation example using (a) counting

semaphores, and (b) bulk semaphores.In the example 8 con-

current threads use two-stage allocation with a resource

batch size of four units.

If wait returns a value smaller than the requested amount

of resources, N , the calling thread is in charge of growing

the resource pool. For instance, consider the example in Fig-

ure 1(a), where the semaphore count is initially 0. The first

thread calling wait (Thread #0 in the figure), sets its value

to −1 and receives 0 as a return value. Since the return value,

0, is smaller than the amount of resources requested, 1, the

thread starts allocating a new batch of resources (four in

our example). All other threads block on the wait opera-

tion. Once Thread #0 allocates the new batch, it executes

a signal(4) operation and wakes up Threads #1-4. Notice

that Thread #4 gets 0 as return value, so it allocates a new

batch.

Counting semaphores use a two-stage resource manage-

ment scheme. In the first stage, a call to wait allocates a given
amount of resources. On a second stage, a lookup and update

operation over some data structure, e.g., a bitmap, locates

which resources were allocated. Notice that the number of

threads concurrently accessing the tracking data structure

is limited to the number of available elements, which limits

the contention overheads [5].

Two-stage resourcemanagement using counting semaphores

has a built-in scalability barrier. Once a thread is allocating

a new batch of resources, all arriving threads block. If the

number of concurrent threads is large, by the time the re-

sources in the new batch become available, it is very likely

that the number of waiting threads is larger than the batch

size [13]. The strategy of increasing the bach size proves inef-

ficient, since we have to keep increasing it as the number of

concurrent threads grows, leading to unacceptable resource

fragmentation.

Algorithm 1 WAIT operation on a batch semaphore

procedure wait(Sem, N , B)
while T rue do

atomic
if Sem .C + Sem .E − Sem .R < N then

Sem .E ← Sem .E + B − N
return −1

else if Sem .C ≥ I then
Sem .C ← Sem .C − N
return 0

else
Sem .R ← Sem .R + N

end if
end atomic

while Sem .C < N and Sem .R < (Sem .C + Sem .E) do
yield

end while

atomic
Sem .R ← Sem .R − N

end atomic
end while

end procedure

3.3 Bulk Semaphores
We develop bulk semaphores to enable scalable two-stage

resource management. A batch semaphore is based on three

counters:

• C: the semaphore value, e.g., how many units of a

resource are currently available.

• E: the expected counter, e.g., how many units of a

resource we expect to become available.

• R: the reservation counter, e.g., how many units of a

resource have been reserved by waiting threads.

We define expected availability of a bulk semaphore as

its value after all expected units, E, have been added to the

semaphore, and all reserved units, R, have been subtracted.

This quantity determines if a thread can eventually decre-

ment N units from the semaphore without resulting in a

negative value. A thread trying to decrement the semaphore

by a quantity N smaller than its expected availability can

safely wait until C ≥ N . Otherwise, the thread would need

to allocate a new batch of units for the semaphore.

We extend the semantics for wait and signal operations

in bulk semaphores. Besides the amount N to increment/

decrement the semaphore value, these operations also take

a batch size, B, as input parameters. Algorithm 1 describes

a wait operation on a batch semaphore. If the semaphore

expected availability is less than the decrement value, it

increments the expected value E by the batch size B. Other-
wise, if the semaphore counter is greater or equal than the

decrement value, it decrements the semaphore counter C .
Otherwise, the code increments the reservation counter R
by N and waits until any of the previous conditions are met.

Algorithm 2 describes a signal operation on a batch

semaphore. This operation takes two integers N and B as

inputs, increments the semaphore value by the sum of the

inputs (I +B), and decrements the expected counter E by B. If
the integer B is different from zero, it wakes up to B threads

4

Throughput-Oriented GPU Memory Allocation PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Algorithm 2 SIGNAL operation on a batch semaphore

procedure signal(Sem, N , B)
atomic

Sem .C ← Sem .C + N
Sem .E ← Sem .E − B

end atomic
end procedure

blocked in a wait operation. Notice that bulk semaphores

generalize counting semaphores. If the expected count is in-

finite, wait and signal operations have the same semantics

as in counting semaphores as long as we use a zero value for

the batch size B.
When the return value of a wait operation is non-zero,

the thread will eventually add the promised units to the

semaphore using a signal operation. If the thread fails to

add the promised elements, it must also signal the condition

to the semaphore. Both, wait and signal operations must

update the value of several counters atomically. A possible

implementation packs all the semaphore counters into a 64-

bit word, and uses atomic compare-and-swap operations to

update them.

Figure 1(b) illustrates how bulk semaphores enable scal-

able two-stage allocations. Thread #0 executes a wait(1, 4)
operation, which sets the expected count to 3, and returns −1.

Thread #0 starts allocating a new batch of resources while

Threads #1-#3 execute wait operations over the semaphore,

which increment the reserved count from zero to three.

When Thread #4 executes a wait operation, all expected

resources have been reserved and, thus, the thread incre-

ments the expected count, and starts allocating a new batch

of resources. This is in contrast to counting semaphores in

Figure 1(a), where Thread #4 remains blocked until Thread #0

signals the semaphore.

Threads block on a wait operation whenever there are

enough expected resources to supply them. If more resources

are needed to meet demand, bulk semaphores let many con-

current threads allocate as many new batches as are actually

needed. The perfect match between the number of waiting

threads and the number of expected resources provides an

efficient solution to the false resource starvation problem.

4 GPU Memory Allocator
Our allocator exposes its functionality to the application

through the standard malloc and free interfaces. For malloc,
we first round the allocation size up to the closest power of

two, and forward the request to a fine-grained allocator, UAl-
loc, or to a coarse-grained allocator, TBuddy, depending on
the allocation size.

A key property of our design is that memory allocated

by TBuddy is guaranteed to be page aligned, while memory

allocated by UAlloc is guaranteed to never be page aligned.

We exploit these guarantees on calls to free, inspecting the

memory address and forwarding it to TBuddy if the address

is page aligned or to UAlloc otherwise. This removes the need

for a shared data structure to track the ownership of alloca-

tions, which might become a potential point of contention

in our design.

4.1 The Tree Buddy Allocator
Most CPU user-level allocators forward coarse-grained allo-

cation requests to the OS kernel, such as via mmap in POSIX.

The OS kernel allocates a contiguous range in the process

virtual address space using a simple algorithm (e.g., first-fit)

that delivers high performance at the cost of high fragmen-

tation. OS allocations tolerate high memory fragmentation

because the size of the virtual address space (e.g., 256TB for

x86-64 CPUs) is orders of magnitude larger than the amount

of physical memory. A GPU memory allocator can only allo-

cate memory within a small memory pool pre-allocated by

the CPU. Hence, we implement coarse-grained allocations

using a buddy system, which offers a good trade-off between

performance and memory fragmentation [7, 11, 14].

Buddy systems are typically implemented as a table of free-

lists. The index of a table entry corresponds to the allocation

order for the blocks in the free-list, where the size of each

block is Paдesize × 2
order

.

An allocation operation of order n, removes the first el-

ement of the nth free-list. If the list is empty, the system

allocates a block of order n + 1 and splits it into two blocks

of order n—these two blocks are called buddies. The allocator
inserts one block in the free-list of order n, and marks the

other block as busy. A free operation for a block of order n
checks if the buddy block is available. If it is, the allocator

marks the buddy block as busy, removes it from the free-list,

merges both buddies into a block of order n + 1 and executes
a free operation over this new block. If the buddy is busy,

the allocator marks the block as available, and inserts it into

the free-list.

Allocation and free operations lock the buddy system to

prevent concurrent accesses to the free-lists and avoid false
resource starvation. The performance of this implementation

degrades as we increase the number of concurrent operations

due to the serialization introduced by its use of locking. Our

goal is to design a buddy system that enables concurrent

allocation and free operations while avoiding false resource

starvation.

Figure 2 shows the design of our Tree Buddy (TBuddy) al-
locator. We use two-stage resource management (Section 3.2)

to track memory blocks of each order. One batch semaphore

per order, with batch size of two, tracks the number of avail-

able blocks. A static binary tree tracks the state of memory

blocks. A node of height h tracks a memory block of order h,
and can be in three different states: Available, if the mem-

ory block can be allocated; Busy, if the memory block and

all the memory blocks in its sub-tree cannot be allocated;

or Partial, if the memory block cannot be allocated, but its

sub-tree contains at least one available block.

5

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Isaac Gelado and Michael Garland

Figure 2.Design of our coarse-grained Tree BuddyAllocator

Notice that for the tree to describe a buddy system, the

following two properties must hold. First, two sibling nodes

cannot be available at the same time. Any operation that

results in this state must set both nodes as busy and their

parent node as available. Second, if a node is available, all
the nodes in its sub-tree must be busy. This ensures that all
allocations happen over disjoint memory ranges.

An allocation operation of order n, first waits on the nth

batch semaphore. If the result of this operation is 0, it tra-

verses the tree to locate a node of height n in the available
state, and atomically switches it to busy. If the result of

wait is −1, it allocates a block of order n + 1, and splits it

by switching the block state from busy to partial, and the

state of one child node from busy to available. Finally, the
thread signals the semaphore to notify the existence of a

new available block.

A free operation of order n first attempts to merge the

block with its buddy. If the merge operation fails, the thread

switches the block from busy to available, and signals the

semaphore. A merge operation only proceeds if the buddy of

the block triggering the operation can be allocated. To sup-

port this, we augment batch semaphores with a try-wait
operation, that decrements the semaphore if its value is pos-

itive, and returns an error otherwise. If the try-wait opera-

tion succeeds, the merge operation executes an atomic com-

pare-and-swap operation to transition the buddy block from

available to busy. If the state transition fails, the thread

signals the semaphore and returns a failure. Otherwise, the

parent block transitions from partial to available, and the

thread signals the (n+1)th semaphore. A free operation must

attempt a merge even if the buddy block is busy because

a concurrent free operation might release it in the mean-

time. Only the failure to decrement the batch semaphore

guarantees that the merge cannot proceed.

To ensure the consistency of the buddy tree, we propagate

allocation and free operations from the node to its parent.

If a node transitions from available to busy, the parent

node might need to transition from partial to busy. If a
node transitions from busy to available, the parent node

might need to transition from busy to partial. Analogously,
transitions from busy to partial, or from partial to busy
might require the parent node to also perform the same

transition. During the propagation process we might run

into race conditions if two threads attempt to transition

the state of the same node. For instance, let us assume a

thread has freed a node (busy→ available), whose parent
is in a busy state. Before this threads propagates the state

change to the parent node, a concurrent thread allocates

the very same block (available → busy). When the first

thread propagates the free operation to the parent, it forces

a transition to an inconsistent state (busy→ partial). To
prevent race conditions we lock the node and its parent

before performing any state transition. Notice that if we

need to update the grandparent node, we only need to hold

the lock for the parent and the grandparent node.

4.2 The UnAligned Allocator
The Unaligned Allocator (UAlloc) resembles existing concur-

rent CPU memory allocators. Figure 3 shows how memory

is organized in UAlloc. We assign one arena to each SM, i.e.,

up to 2, 048 threads can be sharing an arena to maximize

the L1 cache hit rate of applications [4]. Each arena handles

memory in chunks of 512KB which are further sub-divided

into 4KB bins. Once initialized, a bin contains allocations

of a fixed size. A bin has a 128 byte header that includes a

bitmap to track up to 512 different allocations; the minimum

allocation size is therefore 8 bytes. If the bin size is larger

than 8 bytes, the allocator initializes the bitmap to allow allo-

cating only the number of available blocks. The arena keeps

a per-size bin free-list to store bins with available elements.

The first two bins in a chunk are special. The first bin

contains the chunk header that includes a bitmap to track

the state of the 64 bins in the chunk. The bottom 3, 968 bytes
of these two chunks are divided into 62 tails, 128 bytes each.

The allocator logically appends each tail to the end of each

bin, so the total number of bytes available to allocate in a

bin is effectively 4KB. If the allocation size is larger than 128

bytes, the allocator cannot use the tail space. However, for
smaller allocations, this design reduces the allocator internal

fragmentation minimizing the amount of wasted space.

Since TBuddy always returns allocations aligned to the

allocation size, each chunk is aligned to 512KB, and each bin

is therefore 4KB aligned. Given that the first 128 bytes of

each bin are always used to keep the allocator internal data,

any allocation from UAlloc is guaranteed to never be aligned
to 4KB. As previously discussed, this enables determining

whether an allocation belongs to UAlloc or to TBuddy by

simply inspecting its alignment.

We implement allocation operations in UAlloc using two-

stage resource management. The first stage executes a wait
operation over the batch semaphore associated with the bin

free-list for the allocation size. If this operation returns zero,

we allocate a new bin from any of the chunks in the arena

6

Throughput-Oriented GPU Memory Allocation PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Figure 3. Design of our fine-grained UnAligned Allocator

chunk list. If this list is empty, i.e., there are no chunks with

available bins, we call TBuddy to allocate a new chunk. The

second stage traverses the bin free-list until it manages to

decrement a bin free counter without turning it negative.

Finally, we inspect the bin bitmap for a zero bit, and we atom-

ically set it to one. From the index of this bit, we compute

the offset of the allocated memory block within the chunk or

its associated tail. Bin allocations use a analogous approach

using the chunk bitmap.

4.2.1 Delegated Execution in Read-Copy-Update
An allocation operation might exhaust a bin, meaning that all

its blocks become used. In this case, the allocation removes

the bin from the free-list. Analogously, a free operation in-

serts a bin back into the free-list if the bin was exhausted,

and removes it from the free-list when freeing the last mem-

ory block. Since many threads can be (de)allocating memory

concurrently, we need to enclose the list traversal within a

critical section. We expect few threads to actually update the

list, while the majority only update the bin bitmap. Hence,

we use Read-Copy-Update [18] (RCU) as our synchronization

mechanism. Figure 4a illustrates how RCU manages concur-

rent accesses to a linked-list. RCU allows readers (light blue

bars in Figure 4a) to access the list even if one thread is up-

dating it. Writer threads execute serially (0 , 1 , and 2 in

Figure 4a) through a separate synchronization mechanism,

e.g., a mutex. A writer thread first logically updates the list,

e.g., unlinks one element from the list (0 in Figure 4a), and

adds a callback to actually release the element to the RCU

queue. Then the writer issues an RCU barrier to wait for all

readers to exit the RCU critical section, before executing the

callbacks in the RCU queue (3 in Figure 4a).

Most existing user-level RCU implementations [9] use per-

thread variables, and RCU operations require iterating over

all those variables. Given the large number of threads in

a GPU, these implementations incur very large overheads.

Sleepable Read-Copy-Update (SRCU) [17], originally designed

to allow reader threads to block within RCU read-side criti-

cal sections, provides a suitable GPU implementation. SRCU

keeps an epoch counter and a pair of reader counters, which
track the number of readers in two consecutive epochs.

Reader threads increment the reader counter of the current

epoch upon entering the RCU read-side critical section and

decrement its value upon exit. An RCU barrier acquires the

RCUmutex, increments the epoch counter (colored stripes in

Figure 4a), waits for the RCU counter for the previous epoch

to be zero (i.e., all readers exited the RCU critical section),

and releases the RCU mutex.

Notice that in SRCU barriers wait for all the threads that

entered an RCU read-side critical section before the epoch

counter is incremented, even if they did so after the RCU

barrier was issued. Although functionally correct, this can

degrade the application performance. For instance, in Fig-

ure 4a the RCU barrier issued at 2 cannot update the epoch

counter until the RCU barrier issued at 1 releases the RCU

mutex at 4 . Therefore, this RCU barrier waits for reader

threads that started executing long after the barrier was

issued 3 , occupying hardware resources and preventing

other thread-blocks from being executed. The large number

of concurrent threads in a GPU causes this effect to happen

quite often, resulting in significant performance overheads.

A property of SRCU is that if a RCU barrier (e.g., 2 in

Figure 4a) is issued while another RCU barrier is waiting

to increment the epoch counter (e.g., 1 in Figure 4a), both

7

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Isaac Gelado and Michael Garland

(a) Traditional RCU (b) GPU-aware RCU

Figure 4. RCU example running on a GPU using a linked-list. All thread-blocks include threads traversing the list, and

thread-blocks #0, #2, and #3 include one thread removing one element. The top part shows the state of the linked-list as it is

updated, the middle part shows the timeline for thread execution, and the bottom part shows a possible mapping between

thread-blocks and SMs in the GPU.

barriers can clear at the same time.We can exploit this tomin-

imize the time an SM is occupied waiting for RCU barriers

to clear by defining a conditional RCU barrier. A conditional

RCU barrier returns immediately when another RCU bar-

rier is waiting to increment the epoch counter, e.g., 2 in

Figure 4b. Otherwise, it becomes a full RCU barrier, e.g., 0

and 1 in Figure 4b. This construct delegates the execution

of RCU callbacks to the thread waiting on the RCU barrier,

hastening the release of hardware resources.

4.2.2 Collective Synchronization Primitives
Several threads within a thread-block often need to allocate

a new chunk concurrently. Prior to removing a chunk from

the list, threads lock the list mutex to prevent race conditions,

serializing their execution.

We exploit the concurrency guarantee of thread-blocks in

CUDA to reduce the serialization of chunk allocations. We

protect each chunk list using a collective mutex. A collec-

tive mutex allows a set of threads, e.g., a thread-block, to

collectively lock and unlock the mutex. Upon locking the mu-

tex, all threads in the thread-block enter the critical section.

Within the critical section, the threads can coordinate with

each other using barriers as needed. Each individual thread

executes an unlock operation over the mutex when it leaves

the critical section, but the mutex remains locked until all

threads in the thread-block have executed the unlock oper-

ation. For instance, during a chunk allocation, each thread

computes its index within the group of threads performing

the operation, collectively enters the critical-section, and tra-

verses the number of elements dictated by its index, to locate

the chunk to allocate. Before leaving the critical-section, the

thread with the highest index, splits the list by the chunk it

is allocating. This implementation allocates several chunks

with a single list operation, whereas the code using a regular

mutex requires as many list operations as allocations.

Although we use mutexes to illustrate the concept of col-

lective synchronization primitives, we can easily generalize

this concept to expand to other constructs. During an col-
lective acquire operation one thread is selected to actually

acquire the synchronization object, e.g., lock a mutex. A

barrier at the end of the implementation ensures that the

operation does not return until the elected thread has ef-

fectively acquire the synchronization object. Analogously,

a collective release operation first requires all participat-

ing thread to arrive to a barrier, and then a elected thread

effectively releases the synchronization object.

5 Evaluation
We evaluate our synchronization primitives and memory

allocator using the CUDA Toolkit version 9.2 and an NVIDIA

Titan V GPU. For each thread count, we run kernels using

thread-blocks of power-of-two (from 1 to 1,024) number of

threads and average the execution time for all of them.

5.1 Bulk Semaphores
We compare the allocation throughput of counting and bulk

semaphores when using two-stage resource allocation as-

suming we can allocate a batch of resources using a single

atomic operation. In this benchmark each thread allocates

one unit of resource from a batch, and batches are allocated

as they become empty. This experiment factors out the ef-

fect of the resource allocator and gives us an upper limit

to the achievable allocation rate for each synchronization

primitive.

8

Throughput-Oriented GPU Memory Allocation PPoPP ’19, February 16–20, 2019, Washington, DC, USA

0 100000 200000 300000 400000 500000
of concurrent threads

108

109

Al
lo

ca
tio

ns
 p

er
 se

co
nd

Counting Sempahores
Bulk Semaphores

Figure 5. Upper limit allocation throughput using counting

and bulk semaphores

We run this experiment for different batch sizes and num-

ber of concurrent threads. Figure 5 shows the allocation rate

for a batch size of 512, which matches the batch size we

use in UAlloc. Experimental results for other batch sizes are

analogous to Figure 5. As we hypothesized in Section 3.3,

bulk semaphores outperform counting semaphores [21] due

to concurrent batch allocations.

We observe that the allocation throughput starts decreas-

ing before the number of concurrent requests peaks. Our

profiling data indicates that this is an artifact of our bulk

semaphore implementation. In our implementation, updates

to the reserved value (R) saturate the atomic throughput of

the GPU sooner than the updates to the semaphore value

(E). The atomic throughput limits the maximum number of

concurrent batch allocations, which never reaches its the-

oretical maximum value, i.e., number of requests over the

batch size.

5.2 RCU Delegation
We evaluate RCU delegation using a benchmark that removes

those elements in a double linked-list whose tag matches

values in an input vector. In this benchmark, eachGPU thread

traverses the list searching for one input tag, and uses RCU

to enable concurrent traversals and removals. To control the

ratio between reader and writer threads, we ensure that the

input tag vector contains all tags in the list. The number of

tags corresponds to the number of readers, while the number

of elements in the list matches the number of writers.

Figure 6 shows the speedup of RCU delegation versus clas-

sical RCU on this benchmark for different ratios of reader and

writer threads. In the worst-case, RCU delegation is 1.01%

slower than classical RCU. For small thread counts, both

implementations deliver similar performance; our experi-

mental data shows that RCU delegation is 2.3% faster than

classical RCU, which is within the measurement error. As

0 50000 100000 150000 200000 250000
of concurrent threads

1.0

10.0

Sp
ee

du
p

vs
 C

la
ss

ica
l R

CU

Ratios
1:32
1:128
1:512
1:2048

Figure 6. Speedup of RCU Delegation vs. Classical RCU for

different ratios of writer:reader threads

expected, delegation provides minor performance gains for

small thread counts since the chance of two thread-blocks

waiting for the same set of reader threads is small. Analo-

gously, few collisions happen when the number of writers

is very small compared to the number of readers. However,

as the number of writers increase, whether by increasing

the number of concurrent threads or increasing the ratio

of writers to readers, RCU delegation prevents unnecessary

occupying hardware resources, speeding up the execution

by as much as 14X on this benchmark.

5.3 Allocator Performance
Having examined the performance of key concurrency prim-

itives used by our allocator, we now turn to the performance

of the allocator itself. We focus specifically on total allocator

throughput, which we characterize in terms of allocation

requests completed per second.

We use the standard CUDA system allocator—available

via the malloc and free interfaces in device code—as the

baseline for comparison. While the HAlloc allocator demon-

strated better performance for select benchmarks [3] on the

Kepler architecture, we found that it crashes in most experi-

mental cases on the Volta architecture. This appears to be the

result of unsafe warp-synchronous programming idioms that

result in data races on the newer architecture. As a result, we

are unable to include comparative data on its performance.

To measure allocation throughput, we run a benchmark

where each thread performs a single call to malloc to request
a fixed amount of memory. We run just enough threads to

completely exhaust the memory pool, so that no memory

remains free once all threads have finished. By exhausting

the memory pool, we can indirectly measure fragmentation

based on the number of threads that fail to allocate memory,

9

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Isaac Gelado and Michael Garland

8
B

16
 B

32
 B

64
 B

12
8

B

25
6

B

51
2

B

1
KB

2
KB

4
KB

8
KB

16
 K

B

32
 K

B

64
 K

B

12
8

KB

25
6

KB

51
2

KB

Allocation Size

104

105

106

107

Al
lo

ca
tio

ns
 p

er
 S

ec
on

d

CUDA
Our Allocator

Figure 7.Allocation throughput for CUDA and our allocator

for different allocation sizes

since there would be no failures in the absence of fragmen-

tation. This also ensures that we measure allocator perfor-

mance for the full spectrum of resource availability, from

the case where the entire pool is empty to the case where

precisely one piece of memory remains.

We repeat this benchmark for a range of allocation sizes.

For the smallest allocation size of 8 bytes, we use an 8MB

memory pool (i.e., we run 2
20
threads). We increase the mem-

ory pool as we increase the allocation size to keep running

one million threads for each case until we reach a memory

pool size of 512MB for a 512-byte allocation size. After this

size, we reduce the number of allocations keeping a 512MB

memory pool. Notice that this changes the contention profile

for sizes larger than 512 bytes, e.g., only 1,024 threads run

when allocating 512KB blocks. We use this memory pool

sizing strategy to keep the total execution time of our bench-

marks within reasonable limits. For example, exhausting

a 512MB memory pool using 8 byte allocations using all

possible configurations takes well over 72 hours.

Figure 7 shows the allocation rate for CUDA’s standard

allocator and our allocator. On each configuration, the gray

top bar indicates the contribution of failed allocations to the

allocation rate. Our allocator delivers a higher performance

for all allocation sizes expect for 2KB, 4KB, 64KB, and 128KB.

Besides the low allocation rate, the 2KB case also shows a

high number (50%) of failed allocations. This is a degenerated

case in our allocator since it actually rounds them up to

4KB, since a bin cannot hold two 2KB memory blocks. All

the allocation sizes where our allocator is outperformed by

the CUDA allocator are handled by the buddy system. As

expected from our design, the buddy system delivers amostly

constant allocation rate, which increases for larger allocation

sizes due to the smaller thread count. This is not the case

for the CUDA allocator, which presents two allocation rate

peaks for the sizes where it outperforms our allocator.

In Figure 7 we also observe that our allocator presents

a much lower failure rate. Our allocator presents a small

number of failures for the allocations handled by UAlloc due
to the memory used for the chunks and bins headers. For al-

location sizes larger than 4KB, handled by the buddy system,

our allocator never fails allocating. Besides the degenerate

case for 2KB, our allocator also has a moderate failure rate

for 1KB and 512B allocations. This is a direct consequence

of the fixed bin size used in our design; from a 4KB bin

devoted to 1KB allocations, only 3KB are available for alloca-

tions. These results indicate that we should use different bin

sizes for small and large allocations, even though this design

change is not likely to improve the allocation throughput.

6 Conclusions
The massive number of concurrent threads in modern GPUs

pushes traditional synchronization primitives beyond their

scalability limits. We have experienced this while design-

ing a throughput-oriented memory allocator for NVIDIA

GPUs. In this paper, we have explored how we can adapt

existing techniques and primitives to match the scalability

requirements of modern GPUs.

Our experience shows that existing design patterns, e.g.,

existing concurrent CPU memory allocators, can be adapted

to the concurrency levels of GPUs. However, such designs

tend to include synchronization primitives, e.g., semaphores,

whose effects are acceptable for the thread counts of exist-

ing multi-processor systems, but become major bottle-necks

when the number of threads is three orders of magnitude

larger. We found it necessary to design new synchronization

primitives, e.g., bulk semaphores, that avoid serialization to

achieve high performance. Our experience also indicates that

rather than building completely new synchronization con-

structs, we can adapt existing ones to fit the requirements of

GPU execution. Finally, we have shown how these low-level

techniques can be used to design a dynamic memory alloca-

tor that outperforms the standard implementation provided

by CUDA by as much as two orders of magnitude in our

benchmarks.

References
[1] [n. d.]. Kinetica Web Page. https://www.kinetica.com/a. Accessed:

2018-12-30.

[2] [n. d.]. RAPIDS Web Page. https://rapids.ai/. Accessed: 2018-12-30.
[3] Andrew V Adinetz and Dirk Pleiter. 2014. Halloc: a high-throughput

dynamic memory allocator for GPGPU architectures. In GPU Technol-
ogy Conference (GTC). 152.

[4] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R

Wilson. 2000. Hoard: A scalable memory allocator for multithreaded

applications. In ACM SIGARCH Computer Architecture News, Vol. 28.
ACM, 117–128.

[5] André B Bondi. 2000. Characteristics of scalability and their impact

on performance. In Proceedings of the 2nd international workshop on
Software and performance. ACM, 195–203.

[6] Jeff Bonwick and Jonathan Adams. 2001. Magazines and Vmem: Ex-

tending the Slab Allocator to Many CPUs and Arbitrary Resources..

10

https://www.kinetica.com/a
https://rapids.ai/

Throughput-Oriented GPU Memory Allocation PPoPP ’19, February 16–20, 2019, Washington, DC, USA

In USENIX Annual Technical Conference, General Track. 15–33.
[7] Daniel Bovet and Marco Cesati. 2005. Understanding The Linux Kernel.

Oreilly & Associates Inc.

[8] NVIDIA Cooprporation. [n. d.]. cuSolver Manual. NVIDIA.
[9] Mathieu Desnoyers, Paul E McKenney, Alan S Stern, Michel R Da-

genais, and Jonathan Walpole. 2012. User-level implementations of

read-copy update. IEEE Transactions on Parallel and Distributed Systems
23, 2 (2012), 375–382.

[10] Edsger W Dijkstra. 1968. Cooperating sequential processes. In The
origin of concurrent programming. Springer, 65–138.

[11] Jason Evans. 2006. A scalable concurrent malloc (3) implementation

for FreeBSD. In Proc. of the BSDCan Conference, Ottawa, Canada.
[12] Xiaohuang Huang, Christopher I Rodrigues, Stephen Jones, Ian Buck,

and Wen-mei Hwu. 2010. Xmalloc: A scalable lock-free dynamic mem-

ory allocator for many-core machines. In Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on. IEEE,
1134–1139.

[13] Leonard Kleinrock. 1976. Queueing systems, volume 2: Computer appli-
cations. Vol. 66. wiley New York.

[14] Kenneth Knowlton. 1965. A Fast Storage Allocator. Commun. ACM 8,

10 (1965), 623–624.

[15] Alex Kogan and Erez Petrank. 2011. Wait-free queues with multiple

enqueuers and dequeuers. In ACM SIGPLAN Notices, Vol. 46. ACM,

223–234.

[16] Romolo Marotta, Mauro Ianni, Andrea Scarselli, Alessandro Pellegrini,

and FrancescoQuaglia. 2018. A non-blocking buddy system for scalable

memory allocation on multi-core machines. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 164–165.

[17] Paul E McKenney. 2006. Sleepable Read-Copy Update.

[18] Paul E McKenney and John D Slingwine. 1998. Read-copy update:

Using execution history to solve concurrency problems. In Parallel
and Distributed Computing and Systems. 509–518.

[19] NVIDIA Coorporation. 2017. NVIDIA Tesla V100 GPU Architec-
ture. Technical Report WP-08608. http://www.nvidia.com/object/
volta-architecture-whitepaper.html

[20] Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter

Schmalstieg. 2012. Scatteralloc: Massively parallel dynamic mem-

ory allocation for the GPU. In Innovative Parallel Computing (InPar),
2012. IEEE, 1–10.

[21] Jeff A Stuart and John D Owens. 2011. Efficient synchronization

primitives for GPUs. arXiv preprint arXiv:1110.4623 (2011).
[22] M. Vinkler and V. Havran. 2014. Register Efficient Memory Alloca-

tor for GPUs. In Proceedings of High Performance Graphics (HPG ’14).
Eurographics Association, Goslar Germany, Germany, 19–28.

[23] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy

Riffel, and John D Owens. 2016. Gunrock: A high-performance graph

processing library on the GPU. In ACM SIGPLAN Notices, Vol. 51. ACM,

11.

[24] Sven Widmer, Dominik Wodniok, Nicolas Weber, and Michael Goesele.

2013. Fast dynamic memory allocator for massively parallel architec-

tures. In Proceedings of the 6th workshop on general purpose processor
using graphics processing units. ACM, 120–126.

11

http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html

	Abstract
	1 Introduction
	2 Background
	2.1 GPU Execution Model
	2.2 Scalable Memory Allocation

	3 Concurrent Resource Management
	3.1 False Resource Starvation
	3.2 Two-stage Resource Management
	3.3 Bulk Semaphores

	4 GPU Memory Allocator
	4.1 The Tree Buddy Allocator
	4.2 The UnAligned Allocator

	5 Evaluation
	5.1 Bulk Semaphores
	5.2 RCU Delegation
	5.3 Allocator Performance

	6 Conclusions
	References

