
95© NVIDIA 2019
E. Haines, T. Akenine-Möller (eds.), Ray Tracing Gems, https://doi.org/10.1007/978-1-4842-4427-2_8

CHAPTER 8

Cool Patches: A Geometric Approach
to Ray/Bilinear Patch Intersections
Alexander Reshetov
NVIDIA

ABSTRACT

We find intersections between a ray and a nonplanar bilinear patch using
simple geometrical constructs. The new algorithm improves the state of the art
performance by over 6× and is faster than approximating a patch with two triangles.

8.1 INTRODUCTION AND PRIOR ART

Computer graphics strives to visualize the real world in all its abundant shapes
and colors. Usually, curved surfaces are tessellated to take advantage of the
processing power of modern GPUs. The two main rendering techniques—
rasterization and ray tracing—now both support hardware-optimized triangle
primitives [5, 19]. However, tessellation has its drawbacks, requiring, for example,
a significant memory footprint to accurately represent the complex shapes.

Content creation tools instead tend to use higher-order surfaces due to their
simplicity and expressive power. Such surfaces can be directly tessellated and
rasterized in the DirectX 11 hardware pipeline [7, 17]. As of today, modern GPUs do
not natively support ray tracing of nonplanar primitives.

We revisit ray tracing of higher-order primitives, trying to find a balance between
the simplicity of triangles and the richness of such smooth shapes as subdivision
surfaces [3, 16], NURBS [1], and Bézier patches [2].

Commonly, third (or higher) degree representations are used to generate a
smooth surface with continuous normals. Peters [21] proposed a smooth surface
jointly modeled by quadratic and cubic patches. For a height field, a C1 quadratic
interpolation of an arbitrary triangular mesh can be achieved by subdividing
each triangle into 24 triangles [28]. The additional control points are needed to
interpolate the given vertex positions and derivatives. For a surface consisting
only of quadratic or piecewise-linear patches, the appearance of smoothness can
be achieved with Phong shading [22] by interpolating vertex normals, which is

https://doi.org/10.1007/978-1-4842-4427-2_8

96

illustrated in Figure 8-1. For such a model, the intersector we are going to propose
in the following sections runs about 7% faster than the optimized ray/triangle
intersector in the OptiX system [20] (when measuring wall-clock time).

Figure 8-1. Flat and Phong shading in the Gargoyle model [9]. The model has 21,418 patches, 33 of
those are completely flat.

Vlachos et al. [26] introduced curved point-normal (PN) triangles that only use
three vertices and three vertex normals to create a cubic Bézier patch. In such
a surface, shading normals are quadratically interpolated to model smooth
illumination. A local interpolation can be used to convert PN triangles to a G1
continuous surface [18].

Boubekeur and Alexa [6] were motivated by the same goal of using a purely local
representation and propose a method called Phong tessellation. The basic idea
of their paper is to inflate the geometry just enough to avoid the appearance of a
faceted surface.

All these techniques are well suited for rasterization, using sampling in a
parametric domain. If ray tracing is a method of choice, intersecting rays with
such surfaces requires solving nonlinear equations, which is typically carried out
through iterations [2, 13].

A triangle is defined by its three vertices. Perhaps the simplest curved patch that
interpolates four given points Qij and allows a single-step ray intersection is a
bilinear patch given by

 Q u,v u v Q u vQ u v Q uvQ00 01 10 11() (1)(1) (1) (1) .= - - + - + - + (1)

Such a bivariate surface goes through four corner points Qij for {u, v} = {i, j}. It is a
doubly ruled surface formed by lines u = const and v = const, which are shown as
blue and red lines in Figures 8-4 and 8-5. When all four corners lie in a plane, a
single intersection can be found by splitting a quadrilateral into two triangles.
A more efficient algorithm was proposed by Lagae and Dutré [15].

RAY TRACING GEMS

97

For nonplanar cases, there could be two intersections with a ray () = +R t o t d̂
defined by its origin O and a unit direction d̂ . The state of the art in ray tracing such
patches was established by Ramsey et al. [24], who algebraically solved a system of
three quadratic equations R(t) ≡ Q(u, v).

In iterative methods, the error can be reduced by increasing the number of
iterations. There is no such safety in the direct methods and even quadratic
equations may lead to an unbounded error. Ironically, the chance to have a
significant error increases for flatter patches, especially viewed from a distance.
For this reason, Ramsey et al. used double precision. We confirmed this
observation by converting their implementation to single precision, which results in
significant errors at some viewing directions, as can be seen in Figure 8-2.

Figure 8-2. Left two images: a cube and a rhombic dodecahedron with the curved quadrilateral faces
rendered with the technique by Ramsey et al. [24] (single precision). Right two images: our intersector,
which is more robust since it does not miss any intersections.

Finding a ray/triangle intersection is a much simpler problem [14] that can
be facilitated by considering elementary geometric constructs (a ray/plane
intersection, a distance between lines, an area of a triangle, a tetrahedron volume,
etc.). We exploit such ideas for a ray/patch intersection using the ruled property
of the surface (Equation 1). Note that a similar methodology was proposed by
Hanrahan [11], though it was only implemented for the planar case.

8.1.1 PERFORMANCE MEASUREMENTS

For ease of presentation, we named our technique GARP (acronym for Geometric
Approach to Ray/bilinear Patch intersections). It improves the performance of the
single precision Ramsey et al. [24] intersector by about 2×, as measured by wall-clock
time. Since ray tracing speed is substantially affected by the acceleration structure
traversal and shading, the real GARP performance is even higher than that.

To better understand these issues, we created a single-patch model and performed
multiple intersection tests to negate the effects of the traversal and shading on
performance. Such experiments demonstrate that the GARP intersector by itself is
6.5× faster than the Ramsey single precision intersector.

 COOL PATCHES: A GEOMETRIC APPROACH TO RAy/BILINEAR PATCH INTERSECTIONS

98

In fact, GARP is faster than the intersector in which each quadrilateral is
approximated by two triangles during rendering (it results in a somewhat different
image). We also measured the performance when quadrilaterals are split into
triangles during preprocessing and then submitted to a BVH builder. Interestingly,
such an approach is slower than the two other versions: GARP and run-time
triangle approximation. We speculate that the quadrilateral representation
of a geometry (compared with a fully tessellated one) serves as an efficient
agglomerative clustering, in spirit of Walter et al. [27].

One advantage of a parametric surface representation is that the surface is
defined by a bijection from a two-dimensional parametric space {u, v} ∈ [0, 1] × [0, 1]
into a three- dimensional shape. Applications that use rasterization can directly
sample in a two- dimensional parametric domain. In ray tracing methods, once the
intersection is found, it can be verified that the found u and v are in the [0, 1] interval
to keep only the valid intersections.

If an implicit surface f(x, y, z) = 0 is used as a rendering primitive, different patches
have to be trimmed and connected together to form a composite surface. For
bilinear patches, whose edges are line segments, such trimming is rather
straightforward. This is the approach that was adopted by Stoll et al. [25], who
proposed a way to convert a bilinear patch to a quadratic implicit surface. We did
not compare their method with GARP directly but noticed that the approach by
Stoll et al. requires clipping the found intersection by the front facing triangles of a
tetrahedron {Q00, Q01, Q10, Q11}. GARP performance is faster than using just two ray/
triangle intersection tests. We achieve this by considering the specific properties of
a bilinear patch (which is a ruled surface). On the other hand, implicit quadrics are
more general in nature and include cylinders and spheres.

8.1.2 MESH QUADRANGULATION

An important—though somewhat tangential to our presentation—question is how
to convert a triangular mesh into a quadrilateral representation. We have tested
three such systems:

1. the Blender rendering package [4].

2. the Instant field-aligned meshes method by Jakob et al. [12].

3. the Quadrangulation through Morse-parameterization hybridization system as
proposed by Fang et al. [9].

RAY TRACING GEMS

99

Only the last system creates a fully quadrangulated mesh. There are two possible
strategies for dealing with a triangle/quadrilateral mix: treat each triangle as a
degenerative quadrilateral, or use a bona fide ray/triangle intersector for triangles.
We have chosen the former approach since it is slightly faster (it avoids an additional
branch). Setting Q11 = Q10 in Equation 1 allows us to express barycentric coordinates
in a triangle {Q00, Q10, Q01} using patch parameters {u, v} as {(1 − u)(1 − v), u, (1 − u)v}.
As an alternative, the interpolation formula (Equation 1) can be used directly.

Figure 8-3 shows the different versions of the Stanford bunny model ray traced
in OptiX [20]. We cast one primary ray for each pixel at a screen resolution of
1000 × 1000 pixels, and use 9 ambient occlusion rays for each hit point. This is
designed to emulate a distribution of primary and secondary rays in a typical ray
tracing workload. The performance is measured by counting the total number of
rays processed per second, mitigating the effects of the primary ray misses on
overall performance. We set the ambient occlusion distance to ∞ and let such rays
terminate at “any hit” for all the models in the paper.

Figure 8-3. Different versions of the Stanford bunny ray traced on a Titan Xp using ambient occlusion.

Blender reuses the original model vertices, while the instant mesh system tries to
optimize their positions and allows to specify an approximate target value for the
number of new vertices; Figures 8-3d and 8-3e show the resulting mesh. Phong
shading is used in the models shown in Figures 8-3a and 8-3c.

For comparison, the single precision version of the intersector by Ramsey et al.
[24] achieves 409 Mrays per second for the model in Figure 8-3b and 406 Mrays/s
for the model in Figure 8-3c. For the double precision version of the code, the
performance drops to 196 and 198 Mrays/s, respectively.

Neither of the used quadrangulation systems know that we will be rendering
nonplanar primitives. Consequently, the flatness of the resulting mesh is used
in these systems as a quality metric (about 1% of the output quadrilaterals are

 COOL PATCHES: A GEOMETRIC APPROACH TO RAy/BILINEAR PATCH INTERSECTIONS

100

totally flat). We consider it as a limitation of our current quadrilateral mesh
procurement process and, conversely, as an opportunity to exploit the nonplanar
nature of the bilinearly interpolated patches in the future.

8.2 GARP DETAILS

Ray/patch intersections are defined by t (for the intersection point along the ray) and
{u, v} for the point on the patch. Knowing only t is not sufficient because a surface
normal is computed using the u and v values. Even though eventually we will
need all three parameters, we start with finding only the value of u, using simple
geometric considerations (i.e., not trying to solve algebraic equations outright).

Edges of a bilinear patch (Equation 1) are straight lines. We first define two points
on the opposite edges Pa(u) = (1 − u)Q00 + uQ10 and Pb(u) = (1 − u)Q01 + uQ11; then,
using these points, we consider a parametric family of lines passing through Pa
and Pb as shown in Figure 8-4. For any u ∈ [0, 1], the line segment (Pa(u), Pb(u))
belongs to the patch.

Figure 8-4. Finding ray/patch intersections.

First Step We first derive the equation for computing the signed distance between
the ray and the line (Pa(u), Pb(u)) and set it to 0. This distance is (Pa − O) ⋅ n/‖n‖,
where ()= - ´b aP P ˆn d . We need only the numerator, and setting it to 0 gives a
quadratic equation for u.

The numerator is a scalar triple product () () ˆ
a b aP O P P- × - ´d and it is the (signed)

volume of the parallelepiped defined by the three given vectors. It is a quadratic

RAY TRACING GEMS

101

polynomial of u. After some trivial simplifications, its coefficients are reduced to
the expressions a, b, and c computed in lines 14-17 in Section 8.4. We set apart the
expression for qn = (Q10 − Q00) × (Q01 − Q11), which can be precomputed. If the length
of this vector is 0, the quadrilateral is reduced to a (planar) trapezoid, in which case
the coefficient c for u2 is zero, and there is only one solution. We handle this case
with an explicit branch in our code (at line 23 in Section 8.4).

For a general planar quadrilateral that is not a trapezoid, the vector qn is
orthogonal to the quadrilateral’s plane. Explicitly computing and using its value
helps with the accuracy of computations, since in most models patches are almost
planar. It is important to understand that, even for planar patches, the equation
a + bu + cu2 = 0 has two solutions. One such situation is shown in the left part of
Figure 8-5. Both roots are in the [0, 1] interval and we have to compute v in order to
reject one of the solutions. This figure shows a self-overlapping patch. For a non-
overlapping planar quadrilateral, there could be only one root u in the [0, 1] interval
for which v ∈ [0, 1]. Even so, there is no reason to explicitly express this logic in the
program, as this needlessly increases code divergence.

Figure 8-5. Left: ray intersects planar patch at {u, v} = {0.3,0.5} and {0.74,2.66}. Right: there is no
intersection between the ray and the (extended) bilinear surface in which the patch lies.

Using the classic formula - ± -()b b ac c2 4 / 2 for solving a quadratic equation

has its perils. Depending on the sign of the coefficient b, one of the roots requires
computing the difference of the two (relatively) big numbers. For this reason, we
compute the stable root first [23] and then use Vieta’s formula u1u2 = a/c for the
product of the roots to find the second one (code starts at line 26).

Second Step Next, we find v and t for each root u that is inside the [0, 1] interval.
The simplest approach would be to pick any two equations (out of three) from

+ - = +()a b aP v P P O t d̂ . However, this will potentially result in numerical errors

 COOL PATCHES: A GEOMETRIC APPROACH TO RAy/BILINEAR PATCH INTERSECTIONS

102

since the coordinates of Pa(u) and Pb(u) are not computed exactly and choosing the
best two equations is not obvious.

We tested multiple different approaches. The best one, paradoxically, is to ignore the
fact that the lines +O t d̂ and Pa + v(Pb − Pa) intersect. Instead, we find the values of
v and t that minimize the distance between these two lines (which will be very close
to 0). It is facilitated by computing the vector ()= - ´b aP P ˆn d that is orthogonal to
both these lines as shown in Figure 8-4. The corresponding code starts at lines 31
and 43 in Section 8.4 which leverages some vector algebra optimizations.

Generally speaking, there will always be an intersection of a ray with a plane
(unless the ray is parallel to the plane). This is not true for a nonplanar bilinear
surface, as shown in the right part of Figure 8-5. For this reason, we abort the
intersection test for negative determinant values.

Putting everything together results in simple and clean code. It could be simplified
even further by first transforming the patch into a ray-centric coordinate system
in which O = 0 and { }=ˆ 0,0,1d . One such branch-free transformation was recently
proposed by Duff et al. [8]. However, we have found that such an approach is only
marginally faster, since the main GARP implementation is already optimized to a
high degree.

8.3 DISCUSSION OF RESULTS

The intersection point could be computed as either Xr = R(t) or as Xq = Q(u, v) using
the found parameters t, u, and v. The distance ║Xr - Xq║ between these two points
provides a genuine estimate for the computational error (in an ideal case, these two
points coincide). To get a dimensionless quantity, we divide it by the patch’s perimeter.
Figure 8-6 shows such errors for some models, which are linearly interpolated from
blue (for no error) to brown (for error ≥ 10–5). The two-step GARP process dynamically
reduces a possible error in each step: first, we find the best estimation for u and
then—using the found u—aim at further minimizing the total error.

Figure 8-6. Color-coded errors in models from Fang et al. [9] collection. We linearly interpolate from
blue (for error = 0) to brown (for error ≥10−5).

RAY TRACING GEMS

103

Figure 8-7. The original version of Happy Buddha rendered with OptiX ray/triangle intersector (7a)
and three quadrangulated models (7b-7d). The performance data (in Mrays/s on Titan Xp) is given for
the following intersectors:

↗ GARP in world coordinates,

↑ GARP in ray-centric coordinates,

⊲⊳ treating each quadrilateral as two triangles,

[24] and the Ramsey et al. intersector.

Mesh quadrangulation, to some degree, improves its quality. During such
a process, vertices become more aligned, allowing for a better ray tracing
acceleration structure. Depending on the complexity of the original model, there
is an ideal vertex reduction ratio, at which all model features are still preserved,
while the ray tracing performance is significantly improved. We illustrate this in
Figures 8-7 to 8-9, showing the original triangular mesh on the left (rendered with
OptiX intersector) and three simplified patch meshes, reducing the total number of
vertices roughly by 50% for each subsequent model.

 COOL PATCHES: A GEOMETRIC APPROACH TO RAy/BILINEAR PATCH INTERSECTIONS

104

Figure 8-8. Stanford Thai Statue.

Figure 8-9. Stanford Lucy model.

RAY TRACING GEMS

105

For the quadrangulation, we used the instant field-aligned mesh system described
by Jakob et al. [12]. This does not always create pure quadrilateral meshes: in our
experiments, roughly 1% to 5% triangles remained in the output. We treated each
such a triangle as a degenerative quadrilateral (i.e., by simply replicating the third
vertex). For models from the Stanford 3D scanning repository, which are curved
shapes, about 1% of the generated patches are totally flat.

For each model in Figures 8-7 through 8-9, we report performance for the GARP
algorithm, for GARP in the ray-centric coordinate system, for the version in which
each quadrilateral is treated as two triangles, and for the reference intersector
by Ramsey et al. [24]. Performance is measured by counting the total number of
rays cast, including one primary ray per pixel and 3 × 3 ambient occlusion rays for
each hit. The GARP wall-clock performance improvement, with respect to a single
precision Ramsey code, is inversely proportional to the model complexity, since
more complex models require more traversal steps.

Though our method cannot compete with the speed of the hardware ray/triangle
intersector [19], GARP shows the potential for future hardware development. We
presented a fast algorithm for a nonplanar primitive, which might be helpful for
certain problems. Such possible future research directions include rendering
of height fields, subdivision surfaces [3], collision detection [10], displacement
mapping [16], and other effects. There are also multiple CPU-based ray tracing
systems that would benefit from GARP, though we did not yet implement the
algorithm in such systems.

8.4 CODE
 1 RT_PROGRAM void intersectPatch(int prim_idx) {

 2 // ray is rtDeclareVariable(Ray, ray, rtCurrentRay,) in OptiX

 3 // patchdata is optix::rtBuffer

 4 const PatchData& patch = patchdata[prim_idx];

 5 const float3* q = patch.coefficients();

 6 // 4 corners + "normal" qn

 7 float3 q00 = q[0], q10 = q[1], q11 = q[2], q01 = q[3];

 8 float3 e10 = q10 - q00; // q01 ----------- q11

 9 float3 e11 = q11 - q10; // | |

10 float3 e00 = q01 - q00; // | e00 e11 | we precompute

11 float3 qn = q[4]; // | e10 | qn = cross(q10-q00,

12 q00 -= ray.origin; // q00 ----------- q10 q01-q11)

13 q10 -= ray.origin;

14 float a = dot(cross(q00, ray.direction), e00); // the equation is

15 float c = dot(qn, ray.direction); // a + b u + c u^2

16 float b = dot(cross(q10, ray.direction), e11); // first compute

 COOL PATCHES: A GEOMETRIC APPROACH TO RAy/BILINEAR PATCH INTERSECTIONS

106

17 b -= a + c; // a+b+c and then b

18 float det = b*b - 4*a*c;

19 if (det < 0) return; // see the right part of Figure 5

20 det = sqrt(det); // we -use_fast_math in CUDA_NVRTC_OPTIONS

21 float u1, u2; // two roots(u parameter)

22 float t = ray.tmax, u, v; // need solution for the smallest t > 0

23 if (c == 0) { // if c == 0, it is a trapezoid

24 u1 = -a/b; u2 = -1; // and there is only one root

25 } else { // (c != 0 in Stanford models)

26 u1 = (-b - copysignf(det, b))/2; // numerically "stable" root

27 u2 = a/u1; // Viete's formula for u1*u2

28 u1 /= c;

29 }

30 if (0 <= u1 && u1 <= 1) { // is it inside the patch?

31 float3 pa = lerp(q00, q10, u1); // point on edge e10 (Fig. 4)

32 float3 pb = lerp(e00, e11, u1); // it is, actually, pb - pa

33 float3 n = cross(ray.direction, pb);

34 det = dot(n, n);

35 n = cross(n, pa);

36 float t1 = dot(n, pb);

37 float v1 = dot(n, ray.direction); // no need to check t1 < t

38 if (t1 > 0 && 0 <= v1 && v1 <= det) { // if t1 > ray.tmax,

39 t = t1/det; u = u1; v = v1/det; // it will be rejected

40 } // in rtPotentialIntersection

41 }

42 if (0 <= u2 && u2 <= 1) { // it is slightly different,

43 float3 pa = lerp(q00, q10, u2); // since u1 might be good

44 float3 pb = lerp(e00, e11, u2); // and we need 0 < t2 < t1

45 float3 n = cross(ray.direction, pb);

46 det = dot(n, n);

47 n = cross(n, pa);

48 float t2 = dot(n, pb)/det;

49 float v2 = dot(n, ray.direction);

50 if (0 <= v2 && v2 <= det && t > t2 && t2 > 0) {

51 t = t2; u = u2; v = v2/det;

52 }

53 }

54 if (rtPotentialIntersection(t)) {

55 // Fill the intersection structure irec.

56 // Normal(s) for the closest hit will be normalized in a shader.

57 float3 du = lerp(e10, q11 - q01, v);

58 float3 dv = lerp(e00, e11, u);

59 irec.geometric_normal = cross(du, dv);

60 #if defined(SHADING_NORMALS)

61 const float3* vn = patch.vertex_normals;

62 irec.shading_normal = lerp(lerp(vn[0],vn[1],u),

63 lerp(vn[3],vn[2],u),v);

RAY TRACING GEMS

107

64 #else

65 irec.shading_normal = irec.geometric_normal;

66 #endif

67 irec.texcoord = make_float3(u, v, 0);

68 irec.id = prim_idx;

69 rtReportIntersection(0u);

70 }

71 }

ACKNOWLEDGMENTS

We used the Blender rendering package [4] and instant field-aligned meshes
system [12] for mesh quadrangulation. We deeply appreciate the possibility to do
research with the Stanford 3D scanning repository models and with ones provided
by Fang at al. [9]. These systems and models are used under a creative commons
attribution license.

The authors would also like to thank the anonymous referees and the book editors
for their valuable comments and helpful suggestions.

REFERENCES

 [1] Abert, O., Geimer, M., and Muller, S. Direct and Fast Ray Tracing of NURBS Surfaces. In IEEE
Symposium on Interactive Ray Tracing (2006), 161–168.

 [2] Benthin, C., Wald, I., and Slusallek, P. Techniques for Interactive Ray Tracing of Bézier Surfaces.
Journal of Graphics Tools 11, 2 (2006), 1–16.

 [3] Benthin, C., Woop, S., Nießner, M., Selgrad, K., and Wald, I. Efficient Ray Tracing of Subdivision
Surfaces Using Tessellation Caching. In Proceedings of High- Performance Graphics (2015),
pp. 5–12.

 [4] Blender Online Community. Blender—a 3D Modelling and Rendering Package. Blender Foundation,
Blender Institute, Amsterdam, 2018.

 [5] Blinn, J. Jim Blinn’s Corner: A Trip Down the Graphics Pipeline. Morgan Kaufmann Publishers Inc.,
1996.

 [6] Boubekeur, T., and Alexa, M. Phong Tessellation. ACM Transactions on Graphics 27, 5 (2008),
141:1–141:5.

 [7] Brainerd, W., Foley, T., Kraemer, M., Moreton, H., and Nießner, M. Efficient GPU Rendering of
Subdivision Surfaces Using Adaptive Quadtrees. ACM Transactions on Graphics 35, 4 (2016),
113:1–113:12.

 COOL PATCHES: A GEOMETRIC APPROACH TO RAy/BILINEAR PATCH INTERSECTIONS

108

 [8] Duff, T., Burgess, J., Christensen, P., Hery, C., Kensler, A., Liani, M., and Villemin, R. Building an
Orthonormal Basis, Revisited. Journal of Computer Graphics Techniques 6, 1 (March 2017), 1–8.

 [9] Fang, X., Bao, H., Tong, y., Desbrun, M., and Huang, J. Quadrangulation Through Morse-
Parameterization Hybridization. ACM Transactions on Graphics 37, 4 (2018), 92:1–92:15.

 [10] Fournier, A., and Buchanan, J. Chebyshev Polynomials for Boxing and Intersections of
Parametric Curves and Surfaces. Computer Graphics Forum 13, 3 (1994), 127–142.

 [11] Hanrahan, P. Ray-Triangle and Ray-Quadrilateral Intersections in Homogeneous Coordinates,
http://graphics.stanford.edu/courses/cs348b-04/rayhomo.pdf, 1989.

 [12] Jakob, W., Tarini, M., Panozzo, D., and Sorkine-Hornung, O. Instant Field-Aligned Meshes. ACM
Transactions on Graphics 34, 6 (Nov. 2015), 189:1–189:15.

 [13] Kajiya, J. T. Ray Tracing Parametric Patches. Computer Graphics (SIGGRAPH) 16, 3 (July 1982), 245–254.

 [14] Kensler, A., and Shirley, P. Optimizing Ray-Triangle Intersection via Automated Search. IEEE
Symposium on Interactive Ray Tracing (2006), 33–38.

 [15] Lagae, A., and Dutré, P. An Efficient Ray-Quadrilateral Intersection Test. Journal of Graphics Tools
10, 4 (2005), 23–32.

 [16] Lier, A., Martinek, M., Stamminger, M., and Selgrad, K. A High-Resolution Compression Scheme
for Ray Tracing Subdivision Surfaces with Displacement. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 1, 2 (2018), 33:1–33:17.

 [17] Loop, C., Schaefer, S., Ni, T., and Castaño, I. Approximating Subdivision Surfaces with Gregory
Patches for Hardware Tessellation. ACM Transactions on Graphics 28, 5 (2009), 151:1–151:9.

 [18] Mao, Z., Ma, L., and Zhao, M. G1 Continuity Triangular Patches Interpolation Based on PN
Triangles. In International Conference on Computational Science (2005), pp. 846–849.

 [19] NVIDIA. NVIDIA RTX™ platform, https://developer.nvidia.com/rtx, 2018.

 [20] Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D.,
McGuire, M., Morley, K., Robison, A., and Stich, M. OptiX: A General Purpose Ray Tracing Engine.
ACM Transactions on Graphics 29, 4 (2010), 66:1–66:13.

 [21] Peters, J. Smooth Free-Form Surfaces over Irregular Meshes Generalizing Quadratic Splines. In
International Symposium on Free-form Curves and Free-form Surfaces (1993), pp. 347–361.

 [22] Phong, B. T. Illumination for Computer-Generated Images. PhD thesis, The University of Utah, 1973.

 [23] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. Numerical Recipes 3rd Edition:
The Art of Scientific Computing, 3 ed. Cambridge University Press, 2007.

 [24] Ramsey, S. D., Potter, K., and Hansen, C. D. Ray Bilinear Patch Intersections. Journal of Graphics,
GPU, & Game Tools 9, 3 (2004), 41–47.

RAY TRACING GEMS

http://graphics.stanford.edu/courses/cs348b-04/rayhomo.pdf
https://developer.nvidia.com/rtx

109

 [25] Stoll, C., Gumhold, S., and Seidel, H.-P. Incremental Raycasting of Piecewise Quadratic Surfaces
on the GPU. In IEEE Symposium on Interactive Ray Tracing (2006), pp. 141–150.

 [26] Vlachos, A., Peters, J., Boyd, C., and Mitchell, J. L. Curved PN Triangles. In Symposium on
Interactive 3D Graphics (2001), pp. 159–166.

 [27] Walter, B., Bala, K., Kulkarni, M. N., and Pingali, K. Fast Agglomerative Clustering for Rendering.
IEEE Symposium on Interactive Ray Tracing (2008), 81–86.

 [28] Wong, S., and Cendes, Z. C1 Quadratic Interpolation over Arbitrary Point Sets. IEEE Computer
Graphics and Applications 7, 11 (1987), 8–16.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits any noncommercial use, sharing, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if you modified the licensed material. you do
not have permission under this license to share adapted material derived from this chapter or parts of it.

The images or other third party material in this chapter are included in the chapter's Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder.

 COOL PATCHES: A GEOMETRIC APPROACH TO RAy/BILINEAR PATCH INTERSECTIONS

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 8: Cool Patches: A Geometric Approach to Ray/Bilinear Patch Intersections
	8.1	 Introduction and Prior Art
	8.1.1	 Performance Measurements
	8.1.2	 Mesh Quadrangulation

	8.2	 GARP Details
	8.3	 Discussion of Results
	8.4	 Code

