
A Fine-Grained GALS SoC with Pausible
Adaptive Clocking in 16 nm FinFET

Matthew Fojtik, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney, Stephen G. Tell,
Brian Zimmer, Tezaswi Raja, Kevin Zhou, William J. Dally, Brucek Khailany

NVIDIA Corporation
{mfojtik, benk, aklinefelter, npinckney, stell, bzimmer, traja, kevinz, bdally, bkhailany}@nvidia.com

Abstract—Modern SoCs suffer from power supply noise that
can require significant additional timing margin, reducing per-
formance and energy efficiency. Globally asynchronous, locally
synchronous (GALS) systems can mitigate the impact of power
supply noise, as well as simplify system design by removing
the need for global timing closure. This work presents a 4 mm2

distributed accelerator engine with 19 independent clock domains
implemented in a 16 nm process. Local adaptive clock generators
dynamically tolerate and mitigate power supply noise, resulting
in a 10% improvement in performance at the same voltage
compared to a globally-clocked baseline. Pausible bisynchronous
FIFOs enable low-latency global communication across an on-
chip network via error-free clock domain crossings. The SoC
functions robustly across a wide range of voltages, frequencies,
and workloads, demonstrating the practical applicability of fine-
grained GALS techniques for modern SoC design.

I. INTRODUCTION

Demand for increased computational performance has mo-
tivated the implementation of large, reticle-limited SoCs that
feature billions of transistors over many hundreds of square
millimeters of silicon [1]. Many sources of unwanted variation,
such as voltage noise, temperature differentials, and spatial
process gradients, are exacerbated in these massive systems,
making their design and implementation a significant engineer-
ing challenge. Current systems often address these difficulties
by increasing clock frequency margin, which guards against
worst-case variation at the cost of reduced performance and
energy efficiency.

Fine-grained globally asynchronous, locally synchronous
(GALS) design has been proposed to mitigate the effects
of variation [2], [3]. In this approach, a design is broken
into many small, synchronous clock domains, each of which
operates on an independent clock. Because each domain is
asynchronous relative to the others, their clocks can be tuned
independently, so timing margin can be reduced as each do-
main can operate at a frequency best suited to local conditions.
GALS clocking has also been shown to reduce peak switching
current by spreading switching energy in time [4].

Timing margin in GALS systems can be further reduced
with the use of adaptive clocking. Adaptive clocks do not
operate at a frequency derived from a fixed reference. Instead,
adaptive clocking circuits generate clocks with a frequency that
varies over time, speeding up or slowing down in response

This research was, in part, funded by the U.S. Government, under the
DARPA CRAFT program. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S. Government.
Distribution Statement ”A” (Approved for Public Release, Distribution Un-
limited).

Global Clock Distribution

Synchronous 
Interpartition

PathsIntrapartition Paths

Clock Trimmers and 
Local Clock Trees

Global Clock Generation

(a)

Asynchronous 
Interpartition

Paths

Local Clock Generation 
and Distribution

(b)

Fig. 1. Fine-grained GALS designs simplify design by eliminating the need
for global timing closure. In traditional designs (a), a single clock is distributed
to multiple place-and-route partitions, resulting in synchronous interpartition
timing paths. In fine-grained GALS designs (b), all interpartition paths are
asynchronous and no global clock distribution is required.

to changes in local operating conditions [5]. While adaptive
clocks can mitigate fixed or slowly-changing variation effects,
such as process, temperature, and aging, their primary benefit
is their ability to respond to rapid changes in local supply
voltage. By quickly reducing clock frequency in response to
a voltage noise event, adaptive clock circuits allow digital
logic to maintain timing guarantees with less static margin [6].
Fine-grained GALS systems can implement an independent
adaptive clock for each synchronous clock domain, enabling
local frequency responses to local voltage noise events. Recent
analysis has found that replacing coarse-grained clock domains
with fine-grained GALS adaptive clocks in simulation can
reduce expected power consumption by up to 15% due to
improved noise tracking [7] and reduce voltage noise margin
by up to 83% [8].



The fine-grained GALS approach has the added benefit of
eliminating the need for the laborious process of global timing
closure (see Figure 1). In designs with large, synchronous
clock domains, all paths within these large domains must be
analyzed for setup time and hold time violations. This task
is made even more challenging because physical design is
typically performed on partitions much smaller than these
clock domains, so any netlist or layout adjustments can im-
pact multiple partitions simultaneously, and any changes may
therefore require a respin of multiple partitions through place-
and-route. By restricting synchronous timing paths to those
within the small GALS domains, which need not exceed the
size of place-and-route partitions, the task of timing closure
at higher levels of hierarchy is eliminated entirely, decreasing
design cost and reducing time to market.

This paper presents an 87 M-transistor SoC designed to
demonstrate the benefits of the fine-grained adaptive GALS
clocking scheme. 19 independent clock domains contain local
adaptive clock circuits that generate clocks for their internally-
synchronous digital logic. Each clock domain corresponds to a
single place-and-route partition, allowing the system to be as-
sembled without global timing closure. The system features the
first silicon implementation of pausible bisynchronous FIFOs,
an implementation of pausible clocking that easily integrates
into standard design flows to achieve low-latency asynchronous
communication between clock domains [9]. Measurement and
noise-generation circuitry allow the effects of voltage noise to
be adjusted and quantified.

Taken together, this fully-functional silicon implementation
is a strong technical demonstration of the feasibility and
benefits of GALS design.

II. BACKGROUND

Fine-grained GALS system design should mitigate the ef-
fects of supply voltage noise while minimizing system over-
heads. This section describes the problem of power supply
noise, the applicability of adaptive clocking to address it, and
the utility of pausible clocking to achieve low-latency interface
crossing in a GALS design.

A. Power Supply Noise
A central purpose of fine-grained GALS design is to mitigate

the effects of power supply noise. An ideal SoC would deliver
a zero-impedance supply throughout the chip, but real systems
have parasitic resistance, inductance, and capacitance that can
cause supply voltage to fluctuate both locally and globally as
current demand varies over time. This power supply noise is
split into two classifications, resistive IR drop and resonant
di/dt droop.

IR drop refers to the reduction in power supply voltage due
to resistances encountered along the power delivery network,
and it can vary both spatially and temporally. A measured
example of IR drop is shown in Figure 2. Activating digital
logic only in the shaded portion of the floorplan causes a larger
static IR drop of up to 30 mV in that region, compared to
smaller perturbations further away from the current load. The
magnitude of local IR drop is determined by the power density
of the digital logic and the resistance between the regulator
supply and the standard cells.

Resonant supply noise, or di/dt droop, is voltage noise
caused by rapid changes in current through the parasitic LC

Fig. 2. Testchip with with spatially varying activity. Activating the shaded
portion of the logic induces a non-uniform IR drop.

Fig. 3. A sudden decrease in load current induces first droop di/dt noise.
An adaptive clock generator adjusts its frequency to compensate.

oscillators in the power delivery network. The most difficult
LC-induced droop to address is the so-called “first droop,”
which is primarily determined by the values of on-die bypass
capacitance and package inductance, causing rapid voltage
changes at nanosecond timescales.

The blue line in Figure 3 is a measurement of an ex-
treme example of first droop, caused by the sudden halting
of a maximum-activity workload on a die with deliberately
weakened package power delivery. This rapid decrease in
load current causes a voltage spike, followed by a damped
oscillation at the parasitic first droop resonant frequency. The
worst-case voltage droop is nearly 50% of the nominal voltage
in this worst-case scenario.

B. Adaptive Clocking
Conventional digital circuits typically use fixed-frequency

clocks, often employing phase-locked loops (PLLs) to multiply
external references into the gigahertz range. These clock
sources are designed to synthesize a tightly-controlled wave-
form with good frequency stability and low jitter. Although



this type of clock generator can robustly output a stable clock
in the presence of voltage noise, the delay of the digital logic
using that clock is still highly sensitive to supply voltage, so
voltage noise creates a mismatch between the clock rate and
the speed of the logic being clocked. Typically, this mismatch
is dealt with by employing safety margins, adding a guardband
to ensure that the circuitry will work correctly even under
worst-case voltage droop. For example, a digital circuit using
a fixed clock and operating under the supply noise shown in
Figure 3 would require a slow enough clock to safely operate at
0.4 V, even though the average voltage is much higher. These
margins reduce performance and energy efficiency, since the
circuit is operating more slowly than the unperturbed supply
voltage would allow.

To reduce timing margin, several clock generation and dis-
tribution techniques have been proposed that adapt to changing
supply voltage by detecting droop events and slowing or gating
clocks in response [10]–[16]. These circuits treat frequency
changes during droop events as infrequent deviations from
an otherwise stable target frequency. Many existing droop
detection techniques produce signals that must be synchronized
before they are acted on. This synchronization latency limits
the effectiveness of such schemes [16]. In contrast, a simple,
low-overhead adaptive clock generator can be designed by
assembling a ring oscillator with delay elements operating on
the same power supply as the logic being clocked [17], [18].
Such adaptive clock generators do not lock to an external
reference, even during typical noise-free operation. Instead,
the clock frequency automatically adjusts to voltage and tem-
perature changes as the logic speeds or slows, without the
need for complicated droop detection circuitry and without any
synchronization delay. This avoids the need for complicated
PLLs or droop-detection circuitry, allowing for lightweight
implementations that can be included in small clock domains
with minimal overhead. Figure 3 shows one of these adaptive
clocks (divided by 16 for measurement purposes) automatically
adjusting frequency in response to supply noise.

C. Pausible Bisynchronous FIFOs
A key challenge introduced by the use of fine-grained GALS

with adaptive clocking is the difficulty of reliable, low-latency
communication between asynchronous clock domains. Tra-
ditional “brute-force” (BF) synchronizers pass asynchronous
signals through several synchronizing flip-flops (FFs) in series,
reducing the probability of metastability to infinitesimal levels
but imposing a multi-cycle latency penalty for each clock
domain crossing. An alternative approach known as pausible
clocking combines adaptive clocking with fast synchroniza-
tion [19]–[21]. By adding a condition to the generation of
each clock edge, a pausible clock generator only produces
the next clock edge when it is safe to do so, guaranteeing
a metastability-free transaction (see Figure 4). A mutual-
exclusion (mutex) circuit ensures that the synchronized output
cannot toggle simultaneously with the rising clock edge. In
the rare case that the asynchronous input and the previous
clock edge arrive simultaneously, the clock pauses while
the metastability resolves, but regardless of the direction of
resolution, the circuit will eventually resume safe operation
with no data loss.

The pausible clock generator can be integrated into a
pausible bisynchronous FIFO as shown in Figure 5. This

R1

R2

G1

G2

Mutex

T/2 Delay Line

D

E

Q

C

Latch
D

E

Q

C

Latch Synchronized 
Output

CC

Clock
Output

Asynchronous
Input

Fig. 4. The pausible adaptive clock generator integrates the adaptive clock
generator with synchronizer circuitry.

FIFO Memory
(Flip-Flop Array)

Place-and-Route Partition and 
Clock Domain Boundary

Read Address

Read Data

Write Pointer
Logic

Write 
Address

Write Data

Valid

Ready
Read Pointer

Logic

Valid

Ready

Pausible 
Adaptive

Clock Generator

Rd AckWr Inc

Pausible 
Adaptive

Clock Generator

Rd IncWr Ack

Receiving
Partition Clock

Sending
Partition Clock

Wr Inc
Rd Ack

Wr Ack
Rd Inc

Fig. 5. Pausible bisynchronous FIFOs allow for error-free, low latency clock
domain crossings.

circuit is similar to a standard BF bisynchronous FIFO and
requires no asynchronous circuit elements beyond those al-
ready described, allowing straightforward integration with ex-
isting toolflows [9]. Asynchronous increment and acknowledge
lines are used to synchronize FIFO pointer updates between
the sending and receiving clock domains. This low-overhead
synchronization technique imposes minimal area and latency
overhead compared to a synchronous FIFO while allowing
fully asynchronous GALS operation.

III. PROTOTYPE SOC
To demonstrate the efficacy of fine-grained GALS, a proto-

type SoC was designed that allows direct measured compar-
ison between different clocking and synchronization modes.
The design, a programmable machine learning accelerator,
consists of a spatial array of processing elements (PEs), a
global buffer split into two physical partitions, and a RISC-V
microcontroller [22], all connected by a mesh network-on-
chip (NoC). The accelerator architecture is described in detail
in [23]. The design makes extensive use of latency-insensitive
communication at partition interfaces, in which ready/valid
signals are bundled with message data and functional correct-
ness is ensured regardless of communication latencies. Latency
insensitivity allows the seamless insertion of additional GALS
clock domains that have nondeterministic latencies at interface
crossings. Each of the 19 synthesized partitions corresponds to
an independent clock domain and can generate a local adaptive
clock, allowing the system to operate in a GALS fashion



Fig. 6. Annotated die plot of the 16 nm testchip.

using pausible synchronizers to communicate with neighboring
partitions. Test and measurement circuitry enables quantitative
comparison of the clocking and synchronization options.

The 87 M-transistor design was fabricated in TSMC 16 nm
FinFET technology; an annotated die plot is shown in Figure 6.
Clocking and synchronization logic is located centrally in each
partition, with timing slack measurement circuits placed in
the lower right corner of each PE. The total area overhead
of per-partition clock generators and pausible FIFOs is 3.6%.
A second 16 nm testchip with the same synchronization and
clocking scheme was used to obtain some of the measurement
results presented in Section IV.

A. Clock Generator
The adaptive clock generator integrates a tunable replica

delay line with the necessary asynchronous circuitry to imple-
ment the pausible clock generator described in Section II-C.
The tunable delay line must track overall system performance,
which may depend on a combination of gate-dominated and
interconnect-dominated paths [5]. Accordingly, the delay line
was designed to closely match the voltage-frequency rela-
tionship from a previous chip in the same process to enable
accurate power supply noise tracking. The delay of the path
can be tuned via programmable codes to adjust the frequency
higher or lower at a particular operating condition.

The entire pausible clock generator shown in Figure 4,
including mutexes, feedback, and C-element, was hardened
in the clock generator macro. These gates were placed in a
regular grid, and their timing was verified using post-layout
extracted SPICE. Custom layout permitted tighter timings
on the critical feedback loop, while avoiding the need to
codify the complex timing constraints required to synthesize
similar logic. The circuit was provisioned to support up to 16
independent unidirectional latency-instensitive interfaces for
each clock domain. Prior analysis shows that each interface
requires independent synchronization of three increment and
three acknowledge signals to achieve full throughput [9], so a
total of 96 independent asynchronous lines are fed into the

Fig. 8. Layout of the pausible adaptive clock generator.

AND tree ahead of the C-element. Note that because the
synchronized signals are not the data words themselves, but
instead pointer update signals, each independent interface can
transfer an arbitrarily wide data word per cycle, and so the
technique does not limit the total bandwidth that can cross
each interface.

A behavioral schematic of the clock generator is shown
in Figure 7. For the sake of simplicity, buffer trees used to
properly distribute signals with large fanouts are not shown.
The pausible synchronization logic must be replicated many
times because each pausible clock generator must handle syn-
chronization between all neighboring clock domains, and each
neighboring domain requires the synchronization of multiple
increment and acknowledge signals. Additional configuration
bits allow the clock generator to be disabled and reset to
a known state or cleanly halted and resumed by external
test logic. The delay of the replica path can be changed by
programming control bits that adjust the strength of the internal
drive cells, allowing each clock generator to be tuned to match
the frequency of the actual critical paths in the clock domain.
The pausible synchronization path can be bypassed entirely,
allowing brute-force synchronization to be employed at the
interfaces instead.

Figure 8 shows the layout of the 51.8 µm×33.4 µm clock
generator. The replica delay path consumes a majority of the
macro area.

B. Clocking and Synchronization Modes

The testchip supports both experimental and legacy operat-
ing modes to allow for direct comparisons in the same system.
The adaptive clock generator in the lower-right partition can
be used as a global clock that is distributed in a conventional
manner to each partition via large repeaters and routing on
upper metal layers. Each partition can use its own local clock
or this global clock, with the selection made via a mux at
the root of each local clock tree. The insertion delay of each
partition can be artificially increased via a programmable delay
line, simulating the effects of larger partition sizes. In addition
to pausible synchronization, the inter-partition interfaces also
support alternative synchronization using brute-force FFs of
either two stages (common in academia) or three stages
(common in industry), allowing direct comparison between
synchronizer modes.



R1

R2

G1

G2

Mutex

T/2 Delay Line

D

E

Q

C

Latch
D

E

Q

C

Latch Synchronized 
Outputs

CCLockup
Bypass

Asynchronous
Inputs

Replicated
96 Times

96 96

96

Clock
Output

Disable 
Pausing

EN EN

EN
R1

R2

G1

G2

MutexHalt 
Clock

EN

Fig. 7. Behavioral schematic of the pausible adaptive clock generator.

C. Timing Constraints and Design Flow

Each partition was run through a conventional synchronous
place-and-route flow using standard timing constraints and
tools. Pausible bisynchronous FIFOs were added to all inter-
partition interfaces, and the FIFO logic was split across parti-
tions such that each partition clock never leaves its respective
partition as shown in Figure 5.

When operating in GALS mode, the only inter-partition
timing paths that must be constrained for correctness are
the paths from the read address to the read data that both
start and end on the receiving side of the FIFOs but pass
through the transmitting side. At the top level, these paths
are automatically analyzed as typical single-cycle flop-to-flop
paths without requiring additional constraints. At the partition
level, interface timing constraints were added to ensure these
paths would be fast enough to meet single-cycle timing when
composed at the top level.

The asynchronous increment and acknowledge signals were
also constrained at the partition level. Although their timing
does not impact correctness, it does impact interface latency,
so should be minimized. The clock generator macro’s timing
model included worst case arrival times, both early and late,
of its synchronized output signals.

Top-level timing was also closed for the globally clocked
comparison mode. The tunable insertion delays at the root
of each partition clock tree were used to counteract clock
skew and align the partition clocks. If this globally-clocked
legacy mode was not implemented for comparison purposes,
the additional complexity of top-level clock distribution and
skew alignment could be avoided entirely.

D. Noise Generators

To provoke worst-case noise events, the logic in the PEs
can be repurposed as a controllable voltage noise generator by
running scan shift at gigahertz speeds and feeding the logic
with repeating programmable 64-bit patterns. The number of
0-to-1 and 1-to-0 transitions in the 64-bit pattern sets the activ-
ity factor of the logic and thus the average power consumption
of each partition. The clock gate enables in the PE partitions

Critical Path 
Replica 
Delay

Decode and Histogram

...

Clock

Fig. 9. Schematic of a time-to-digital converter.

can also be overridden by a programmable, repeating 128-
bit pattern to create periods of high and low activity at fine
time scales, allowing the construction of artificial di/dt droop
events.

E. TDC-based slack measurement

Time-to-digital converters (TDCs) were included in the
lower-right corner of each PE. These TDCs measure the
amount of setup time slack each cycle for a 1-cycle path
in the TDC as shown in Figure 9 [24]. This information is
stored in a small memory to be read out at the completion
of a test, allowing the measurement of local time-series data
corresponding to cycle-by-cycle operating conditions in each
partition.

F. Packaging

The test chip was assembled in a flip-chip package with
power and ground C4 bumps in a standard checkerboard
pattern above the core logic area. To emulate the power
delivery to logic in a large SoC, only power and ground balls
directly below the die were used to provide power to the
package. For a test chip of this size, the package power delivery
would have been substantially over-provisioned by using all
available resources outside the footprint of the die but within
the package footprint.



0.6 0.7 0.8 0.9 1.0 1.1 1.2
Voltage (V)

400

500

600

700

800

900

1000

1100
Fr

eq
ue

nc
y 

(M
Hz

)

+5.8%

+5.4%

+5.2%

+4.9%

+4.7%

+4.5%

+4.3%

+4.2%

+4.2%
+4.1%

+4.1%
+4.1%

+4.1%

-6.3%

-5.8%

-5.4%

-5.0%

-4.8%

-4.5%

-4.4%

-4.2%
-4.0%

-3.9%
-3.7%

-3.6%
-3.5%

800

825

850

Inter-chip Variation

800

825

850

Intra-chip Variation

Fig. 10. Variation in average adaptive clock frequencies. The upper-left
inset shows inter-chip variation at 0.9 V; each data point is the average of
all partition frequencies for one die. The lower-right inset shows intra-chip
variation at 0.9 V; each data point represents one partition within the same
die. The tuning code of the adaptive clock delay path was reduced to a lower
setting to improve measurement accuracy, so the frequencies shown are lower
than those of the system under nominal conditions.

IV. MEASUREMENT RESULTS

This section summarizes the measurement results from the
testchips. Average frequencies of adaptive clocks were mea-
sured via on-chip frequency counters that record the number
of system clock edges over a time window determined by a
fixed reference clock used for this frequency measurement.

Time-series supply voltage measurements of VDD and
GND were collected using an oscilloscope to probe the chip
supply inputs, relative to the board GND. The difference
between VDD and GND, as seen by the chip, is used when
reporting on voltage noise.

The noise generators were configured to switch between
periods of low activity, in which all the PE clock gates were
disabled, and high activity, in which all the PE clock gates
were enabled and the logic was driven with a 20% data activity
factor. Spatial variation in static IR drop was measured by
characterizing the per-partition voltage-frequency relationship
under minimal load. The reduction in average frequency at
high load could then be correlated to a local average voltage
change as observed by each clock generator.

A. Adaptive Clocks and Process Variation
Frequency variation between and within individual dice

motivates the need for per-partition clocking. Figure 10 shows
measured clock frequencies of all per-partition generated
clocks across 36 dice. The delay line configuration was set
to a consistent value for each clock domain, so variation in
frequency is mostly a result of process variation in the standard
cells that make up the replica delay paths. At low voltages,
frequency variation of ±12.1% across all dice was observed.
As shown in the insets, most of the variation is due to inter-
chip variation, though small variations (typically 1–2%) within
individual dice are also observed.

Even when adaptive clocks are employed, their effectiveness
depends on fine-tuning their replica paths to match critical
paths for each clock domain. This replica path tracking also

Chip 0 Chip 1 Chip 2 Chip 3
0

1

2

3

4

5

Tu
ni

ng
 C

od
e 

Of
fs

et

Fig. 11. Variation in replica path tracking across four different chips. Each
data point represents the best achievable tuning code for one partition.

varies with process. Figure 11 shows the best achievable
tuning code relative to the worst-case baseline for the adaptive
clock replica paths of the PEs of four different chips when
running the same workload. By tuning each adaptive clock
independently, rather than using a single tuning code for all
clock domains, some partitions can see up to five tuning
codes of improvement, which corresponds to a frequency
improvement of roughly 4%.

B. Pausible FIFOs

Figure 12 shows measured latencies of the pausible inter-
faces compared to those of the brute-force synchronizers. As
the latency of the pausible interface varies depending on data
arrival times, measurements were averaged over millions of
transactions and multiple hops of the network. The pausible
bisynchronous FIFO achieves an average latency reduction of
2.02 cycles compared to three-stage brute-force synchroniza-
tion. While a definitive stress test is beyond the capability
of the experimental system, the pausible FIFOs functioned
reliably under test, with no functional issues observed over
days of continuous traffic and months of intermittent testing.
Pausible clocking can theoretically cause degradation in aver-
age frequency due to repeated clock pauses, but pause events
remained rare enough in the measured system that no reduction
in average frequency could be measured within the limits
of on-chip instrumentation (roughly 0.1% precision), even
when driving all pausible links at their maximum throughput.
The use of pausible FIFOs can therefore improve system
performance by reducing network latency without reducing
clock rates. Figure 13 shows measured cycle counts from
benchmark programs that were executed on the RISC-V core
but stored in memory in the PE furthest from the processor.
The reduced latency associated with instruction cache fills
resulted in a performance improvement of up to 15.5%. The
measured latency is comparable to prior published results of
pausible synchronizers [25], [26].

To reliably guard against timing errors, pausible clocking
circuits must be able to propagate a halted clock to inter-
face leaf nodes with less than one cycle of delay, limiting
the amount of insertion delay allowed in the synchronous
area [25]–[27]. Even the longest insertion delays in the testchip
implementation were well below this limit due to the small
clock domain sizes, but the insertion delays of each parti-
tion can be artificially increased to determine the amount of



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Latency (cycles)

Pausible

Pausible + T/4 insertion delay

Two-stage Brute Force

Three-stage Brute Force

0.91

1.16

2.06

2.93

Fig. 12. Measured latency of asynchronous interfaces.

median multiply vvadd dhrystone
0.8

0.9

1.0

No
rm

al
ize

d 
Ru

nt
im

e Pausible BF 2-stage BF 3-stage

Fig. 13. Impact of synchronization on performance.

remaining margin. Figure 14 shows that roughly a quarter-
cycle of insertion delay can be added to the clock tree of
one clock domain before provoking pausible synchronizer
failures. Since permissible insertion delay is a function of clock
period, operating at slower clock rates allows the interface to
function with larger insertion delays. The system presented
here targets energy-efficient operation at moderate clock rates
(1–1.5 GHz at nominal voltage), and so synthesized clock trees
were used to minimize clock tree power. Production designs
targeting higher performance and frequency often employ
structured trees or clock meshes that reduce both skew and
latency, ameliorating the insertion-delay limitations of pausible
clocking associated with higher-frequency operation.

Insertion delay also impacts latency over the interface,
as a larger insertion delay increases the time required for
signals that have been safely synchronized to be clocked in
the receiving flip-flop. Figure 12 shows the latency impact of
an additional quarter-cycle of insertion delay on the pausible
interface. Issues with large insertion delays reinforce the im-
portance of using small clock domains to achieve low-latency
pausible synchronization.

C. Improved Local Noise Tracking
In order to quantify the benefit of fine grained GALS

adaptive clocking over global adaptive clocking, the noise gen-
erators were configured to generate identical noise workloads
and the TDCs were used to measure per-cycle setup time slack.
Since voltage noise is highly dependent on the clocking mode,
as described in the next section, all but one partition was
driven by the adaptive global clock, and the one partition under
test measured its slack when using its own local GALS clock
versus the global clock.

In order to exploit the improved tracking of local noise in
GALS mode, a non-uniform noise generator workload was

1000 1250 1500 1750 2000 2250 2500
Clock Period (ps)

0

200

400

600

M
ax

im
um

 A
dd

iti
on

al
In

se
rti

on
 D

el
ay

 (p
s)

tins, max
T
4

Fig. 14. Maximum insertion delay as a function of frequency.

Fig. 15. Setup time slack for various clocking modes, under identical voltage
noise

chosen that consumes more power on the left side of the SoC
than the right, by only exercising the left two columns of
PEs. Slack measurements were taken from the top-left PE,
the furthest observable partition from the global clock source.

Figure 15 shows the amount of setup time slack in inverter
delays. At higher VDD, more noise is generated, which in-
creases the spread between fine grained GALS and global
clocking. The use of the local adaptive clock resulted in a best
case improvement of 10 inverter delays of setup time slack over
the global adaptive clock, and was within 2 inverter delays of
the noise-free case.

D. Worst-Case Noise Mitigation with Adaptive Clocks
Not only do adaptive clocks respond to worst-case noise

events, they can also mitigate these events by reducing their
magnitude. First, adaptive clocks act as negative feedback,
dampening di/dt oscillations. Second, local adaptive clocks
drift out of phase, limiting the extent to which large di/dt
events can occur simultaneously across the die.

Figure 16a shows the di/dt noise resulting from a sudden
increase in circuit activity under global adaptive clocking. As
VDD begins to droop, the clock generator automatically slows



(a) (b)

Fig. 16. Damping of VDD noise with adaptive clocking after a (a) sudden
increase in current and (b) sudden decrease in current.

Fig. 17. Package resonant frequency excited by power virus workload.

the clock frequency, which in turn reduces the magnitude of the
sudden increase in current, damping the resonant oscillation
that would have otherwise been seen in the LC network
and eliminating the voltage spike following the initial droop.
Figure 16b shows the inverse behavior, in which activity is
suddenly decreased. In this experiment, logic is partially clock
gated to achieve the step decrease in current. The response
of the clock generator cannot therefore provide as strong of a
negative feedback response, as the clock is no longer supplying
all of the digital logic in the die. Accordingly, the response is
less damped than in Figure 16a, and a droop, albeit a reduced
one, follows the initial voltage spike. This shows that when
it is active, the adaptive clock circuitry is effective at quickly
damping resonant oscillations from di/dt events.

Local adaptive clocking can also mitigate worst-case noise
events by greatly reducing the likelihood of simultaneous
noise events across the system. Worst-case di/dt noise can
be generated by switching between periods of low and high
activity at the first droop frequency, exciting the parasitic
package resonance as shown in Figure 17. When running
this noise virus workload in a globally clocked system for
longer timescales (shown in Figure 18), the magnitude of
noise increases over time until it reaches a maximum droop of
336 mV below nominal.

By virtue of its asynchronous execution, fine-grained GALS
clocking reduces the magnitude of this worst-case resonant
droop. Figure 19 shows the same noise virus executed on the

Fig. 18. Effects of a noise virus executed with a global clock.

Fig. 19. Effects of a noise virus executed with fine-grained GALS clocks.

system using per-partition adaptive clocking. As the partition
clocks drift out of sync, each PE ends up working on a different
part of the workload at different times. This reduces the noise
magnitude compared to the globally-clocked case in which
sustained maximum noise is generated. The adaptive clocks
reduce the worst-case measured droop by 64 mV.

Figure 20 shows the measured margin reduction achieved
from this effect as translated into an improvement in average
frequency. The TDCs were used to detect setup time errors
during the noise virus workload, and maximum error-free
frequency was measured for the two clocking modes as well
as a noise-free baseline. In this extremely noisy environment, a
10% frequency benefit is obtained by reducing the total amount
of VDD noise due to this workload-spreading effect.

V. CONCLUSION

Fine-grained GALS design is a compelling solution to the
many design challenges faced in deeply scaled process nodes.
This work presents a fully-featured accelerator SoC with fine-
grained clock domains in 16 nm FinFET. Per-partition adaptive



Fig. 20. Frequency improvements from fine-grained GALS clocking.

clocks simplify physical design while both tolerating and mit-
igating power supply noise, allowing significant reductions in
timing margin to improve performance and energy efficiency.
Pausible bisynchronous FIFOs achieve error-free asynchronous
boundary crossings with a multi-cycle latency reduction. This
system provides a template for fine-grained GALS design in
modern SoC implementations.

REFERENCES
[1] J. Choquette et al., “Volta: Performance and programmability,” IEEE

Micro, vol. 38, no. 2, pp. 42–52, Mar. 2018.
[2] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,”

Ph.D. dissertation, Stanford University, Oct. 1984.
[3] C. L. Seitz, Introduction to VLSI systems. Reading, MA: Addison-

Wesley, 1980, ch. 7.
[4] X. Fan et al., “GALS design for spectral peak attenuation of switching

current,” in Proc. IEEE International Symposium on Asynchronous
Circuits and Systems, May 2013, pp. 83–90.

[5] T. D. Burd et al., “A dynamic voltage scaled microprocessor system,”
IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1571–1580,
Nov. 2000.

[6] Y. Zhou et al., “Modeling and measurement of noise aware clocking in
power supply noise analysis,” in Proc. IEEE Conference on Electrical
Performance of Electronic Packaging and Systems, Oct. 2014, pp. 7–10.

[7] D. A. Kamakshi et al., “Modeling and analysis of power supply noise
tolerance with fine-grained GALS adaptive clocks,” in Proc. IEEE
International Symposium on Asynchronous Circuits and Systems, May
2016, pp. 75–82.

[8] L. Machado et al., “Voltage noise analysis with ring oscillator clocks,”
in IEEE Computer Society Annual Symposium on VLSI, July 2017, pp.
1–6.

[9] B. Keller et al., “A pausible bisynchronous FIFO for GALS systems,”
in Proc. IEEE International Symposium on Asynchronous Circuits and
Systems, May 2015, pp. 1–8.

[10] A. Grenat et al., “Adaptive clocking system for improved power
efficiency in a 28nm x86-64 microprocessor,” in IEEE International

[10] A. Grenat et al., “Adaptive clocking system for improved power
efficiency in a 28nm x86-64 microprocessor,” in IEEE International
Solid State Circuits Conference Digest of Technical Papers, Feb. 2014,
pp. 106–107.

[11] K. A. Bowman et al., “A 22 nm all-digital dynamically adaptive clock
distribution for supply voltage droop tolerance,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 4, pp. 907–916, Jan. 2013.

[12] M. S. Floyd et al., “Adaptive clocking in the POWER9 processor for
voltage droop protection,” in IEEE International Solid State Circuits
Conference Digest of Technical Papers, Feb. 2017, pp. 444–445.

[13] T. Singh et al., “Zen: A next-generation high-performance x86 core,” in
IEEE International Solid State Circuits Conference Digest of Technical
Papers, Feb. 2017, pp. 52–53.

[14] H. Mair et al., “A 10nm FinFET 2.8 GHz tri-gear deca-core CPU
complex with optimized power-delivery network for mobile SoC perfor-
mance,” in IEEE International Solid State Circuits Conference Digest
of Technical Papers, Feb. 2017, pp. 56–57.

[15] C. Vezyrtzis et al., “Droop mitigation using critical-path sensors and an
on-chip distributed power supply estimation engine in the z14 enterprise
processor,” in IEEE International Solid State Circuits Conference Digest
of Technical Papers, Feb. 2018, pp. 300–302.

[16] P. N. Whatmough et al., “Analysis of adaptive clocking technique
for resonant supply voltage noise mitigation,” in Proc. International
Symposium on Low Power Electronics and Design, July 2015, pp. 128–
133.

[17] B. Keller et al., “A RISC-V processor SoC with integrated power
management at submicrosecond timescales in 28 nm FD-SOI,” IEEE
Journal of Solid-State Circuits, vol. 52, no. 7, pp. 1863–1875, July
2017.

[18] J. Cortadella et al., “Ring oscillator clocks and margins,” in Proc. IEEE
International Symposium on Asynchronous Circuits and Systems, May
2016, pp. 19–26.

[19] K. Yun and R. Donohue, “Pausible clocking: a first step toward
heterogeneous systems,” in Proc. IEEE International Conference on
Computer Design, Oct. 1996, pp. 118–123.

[20] E. Tuncer et al., “Enabling adaptability through elastic clocks,” in Proc.
ACM/IEEE Design Automation Conference, July 2009, pp. 8–10.

[21] R. Mullins and S. Moore, “Demystifying data-driven and pausible
clocking schemes,” in Proc. IEEE International Symposium on Asyn-
chronous Circuits and Systems, Mar. 2007, pp. 175–185.

[22] K. Asanović et al., “The Rocket Chip Generator,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17,
Apr. 2016.

[23] B. Khailany et al., “A modular digital VLSI flow for high-productivity
SoC design,” in Proc. ACM/IEEE Design Automation Conference, June
2018.

[24] C. R. Lefurgy et al., “Active management of timing guardband to save
energy in POWER7,” in Proc. International Symposium on Microarchi-
tecture, Dec. 2011, pp. 1–11.

[25] R. Dobkin et al., “Data synchronization issues in GALS SoCs,” in Proc.
IEEE International Symposium on Asynchronous Circuits and Systems,
Apr. 2004, pp. 170–179.

[26] X. Fan et al., “Performance analysis of GALS datalink based on pausi-
ble clocking,” in Proc. IEEE International Symposium on Asynchronous
Circuits and Systems, May 2012, pp. 126–133.

[27] A. E. Sjogren and C. J. Myers, “Interfacing synchronous and asyn-
chronous modules within a high-speed pipeline,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 8, no. 5, pp. 573–583,
Oct. 2000.


