
High-Performance Graphics (2019) Short Paper
T. Foley and M. Steinberger (Editors)

Temporally Dense Ray Tracing

P. Andersson, J. Nilsson, M. Salvi, J. Spjut, and T. Akenine-Möller

NVIDIA

Abstract
We present a technique for real-time ray tracing with the goal of reaching 240 frames per second or more. The core idea is to
trade spatial resolution for faster temporal updates in such a way that the display and human visual system aid in integrating
high-quality images. We use a combination of frameless and interleaved rendering concepts together with ideas from temporal
antialiasing algorithms and novel building blocks—the major one being adaptive selection of pixel orderings within tiles, which
reduces spatiotemporal aliasing significantly. The image quality is verified with a user study. Our work can be used for esports
or any kind of rendering where higher frame rates are needed.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Ray Tracing

1. Introduction

Ray tracing has become the dominant visibility algorithm in film
and is growing in use for real-time applications thanks to the in-
troduction of the Microsoft DXR and Vulkan ray tracing APIs, and
NVIDIA RTX with GPU-hardware acceleration. While ray tracing
is becoming more accessible to real-time applications, more perfor-
mance is needed, particularly to hit the high refresh rates desired for
performance-critical applications. One such application is esports,
or competitive video games, which pit highly skilled profession-
als against each other and require the athletes to compete both in
response time and strategy. In these competitive scenarios, every
bit of advantage has the potential to determine which team wins
or loses. The latency reduction provided by higher refresh rate dis-
plays (e.g., 16.7 ms at 60 Hz becomes 4.2 ms at 240 Hz) has been
shown to provide a corresponding competitive advantage in certain
esports-related tasks [KSM∗19].

Given these potential advantages of higher frame rates and
emerging availability of high performance real-time ray tracing,
it is natural to want use ray tracing to spread samples across
time and enable a higher frequency of final frames, without in-
creasing the total number of samples. Frameless rendering is a
technique where each ray or sample are given their own unique
time [BFMZ94, DWWL05]. While frameless rendering is good at
providing continuous updates of the world simulation, it requires
running the world simulation for each sample taken, which in prac-
tice is a high cost. Therefore, a more moderate solution is to use
an approach like interleaved sampling [KH01] to cover the spa-
tial sampling desired over some number of frames, each of which
has samples located at pseudo-random positions. These samples
should then be combined using accumulation buffering [HA90] to
produce final frames. Spatiotemporal upsampling of only shading,
while still using full resolution visibility and material information,
can also be used to reduce shading cost [HEMS10]. Temporal an-

Static 60 Hz 120 Hz 240 Hz

Figure 1: Static edge as antialiased over time with a jittered single
sample per pixel. Photographs taken with 16.67 ms exposure time.

tialiasing (TAA) [Kar14] uses subpixel offsets and accumulation
over many frames and has been widely adopted in video games.
TAA uses a variety of heuristics [PSK∗16], often tuned per applica-
tion, to reduce the blurring, ghosting, and other artifacts commonly
seen. Checkerboard rendering is another related method where 50%
of the pixels are rendered each frame, and reprojection and averag-
ing are used to produce the final frame [EM16].

Our work builds on all the methods mentioned above. In addi-
tion, we adapt the algorithms to ray tracing at 240 Hz and present
a fundamental insight about how the sampling enumeration inside
tiles can reduce edge aliasing substantially if done well and in the
right order. Our results include an increase in performance by a
factor of approximately 3.5× with increased quality, compared to
TAA, and with the possibility to meet the 240 FPS goal, instead of
running at 60 FPS, or slightly above.

2. The Visual Power of 240 Hz

It is challenging to convey what 240 Hz displays offer in terms
of advantages for rendering via still pictures or using 60 frames
per second (FPS) videos. We present two exceptions. Figure 1 at-
tempts to illustrate the integration effect in the human visual sys-
tem. Four images, each rendered with one sample per pixel (SPP)
from the standard 4× MSAA pattern, are shown after each other

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

P. Andersson et al. / Temporally Dense Ray Tracing

full frame outputray traced buffers

motion vectors

previous full frame

static dynamic

new

old

moving
window
average
moving
window
average

copy

reproject
& clamp

1 1
1 1

1 1
1 1

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3
0 1
2 3

0 1
2 3
0 1
2 3

0 1
2 3
0 1
2 3

0 1
2 3
0 1
2 3

0
2 3
0
2 3

0
2 3

0
2 3

0
2 3

0
2 3

01

1 0 1
2 3

1

1

1

1

1
2 30

2 3
0
2 3

0
2 3

0
2 3

0
2 3

0
2 3

01

1 0 1
2 3

1

1

1

1

1
2 30

2 3
0
2 3

0
2 3

0
2 3

0
2 3

0
2 3

01

1 0 1
2 3

1

1

1

1

1
2 30 1

2 3
0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

Figure 3: Our frame generation pipeline. We first render a subframe of lower resolution than the final output, while simultaneously retrieving
motion vectors for the corresponding pixels. This subframe together with the previously rendered subframes are then used to composite the
final frame. For each pixel in the final frame, we determine if its content is static or dynamic, and whether or not it corresponds to one of
the pixels that were just ray traced (new/old). Based on that, as indicated by the center box, different composition methods are used, possibly
using the previous frame as input. Black numbers in buffers indicate values that are updated during this frame, while gray numbers indicate
information retained from previous frames. Finally, the current frame is copied to the previous frame’s buffer.

60 Hz 120 Hz 240 Hz

Figure 2: Motion blur reduction with 240 Hz, at 960 pixel per sec-
ond motion. Images courtesy of Blur Busters [Rej13].

in succession. The higher the display rate, the more we see the
combined, antialised effect of all four images. Even though our
images were taken with a camera, humans experience a similar
effect. The other exception, shown in Figure 2, illustrates that
faster refresh rates reduce the perceived motion blur, which is
well known [DER∗10, Swe07]. This is an effect that can be cap-
tured using a high-speed camera and seen on websites, such as
www.testufo.com.

The best way to convey our results is to look at image sequences
on a 240 Hz display. Simply averaging four subsequent images
of a scene with motion will create a blurred image, which is the
opposite effect that a high frame rate display can generate (Fig-
ure 2). Therefore, we encourage the reader to go to our website
www.240hz.org, which is custom made for this work, and fol-
low the instructions to experience our findings. It is not possible to
see the effects that we report on a monitor with less than 240 Hz.
In Section 2 on that website, we show four different cases where
a 240 Hz display delivers a substantially better visual experience.
Section 3 motivates and illustrates our algorithm details, while Sec-
tion 4 shows a number of scenes rendered using our approach.

3. Our Approach

Temporally dense sampling, i.e., increasing the frame rate, can
be afforded if we reduce the spatial sampling rate. Without

loss of generality, we restrict ourselves to tracing one sam-
ple per 2× 2 pixels per frame. It is possible to trace n sam-
ples in each w× h tile instead, but that is left for future work.

0 1
2 3
0 1
2 3

0 1
2 3
0 1
2 3

In the figure to the right, one could imagine tracing
one sample per red (0) pixel first, followed by one
sample per green (1) pixel in the subsequent frame,
and so on, resulting in a complete frame, i.e., one
sample per pixel, after four iterations. Note that the
pixel ordering does not necessarily need to follow the one in the
figure. Each tile could also have its own ordering—something we
explore in later sections. The collection of all pixels with the same
ordering number is called a subframe. Each subframe itself does not
contain sufficient information to reconstruct a full resolution frame
of desired quality. Therefore, we complement the current subframe
with pixels from prior subframes, as well as the previous full reso-
lution frame, when we composite a full resolution frame. Superfi-
cially, this is a trivial extension to checkerboard rendering [EM16],
but it will be shown that pixel ordering should not be done naïvely,
and that is key to the success of this approach.

This section describes our frame generation pipeline, which is
outlined in Figure 3. Ray tracing of subframes and motion vector
generation are presented in Section 3.1, while Section 3.2 explains
how the subframes and motion vectors are used to generate the full
resolution output frame.

3.1. Ray Tracing and Motion Vector Generation

By sparsely sampling the scene, the number of traced rays and
shaded hit points is reduced, thus enabling higher frame rates. For a
target frame with resolution W ×H, we dispatch only W

2 ×
H
2 rays

per subframe. Next, we describe how subframes are ray traced and
motion vectors generated.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

www.testufo.com
www.240hz.org

P. Andersson et al. / Temporally Dense Ray Tracing

0

3

1

2

0

1

2

3

bowtiehourglass dynamicstatic

Figure 4: Left: pixel orderings, called the hourglass and bowtie
patterns, within a 2× 2 pixel tile. Right: per-pixel sampling pat-
terns in pixels with static content and dynamic content.

t = 0
t = 1

Figure 5: A green circle moves to the right and a point on the circle
is seen in the reflective plane. Instead of computing the motion vec-
tor using the primary ray’s hit points, we use the reflected vector
(blue), which significantly aids reprojection-based algorithms.

3.1.1. Tracing Subframes

Our algorithm does not dictate a specific method for shading sam-
ples. We choose to use Whitted ray tracing [Whi80], as it enables
us to include accurate reflections and shadows. Our implementa-
tion adopts a recent formulation of ray differentials [AMNA∗19]
for texture filtering.

The pixel orderings and sampling patterns that we use are shown
in Figure 4. Each 2×2 tile chooses either an hourglass or a bowtie
pattern, which are different pixel orderings within the tile. This
choice is based on the motion in the tile. There are 4! = 24 pos-
sible pixel orderings in total, which can be reduced to three basic
shapes, namely, a square, a bowtie, and an hourglass. The square
did not exhibit any additional benefit over the other two, so we did
not use it. Choosing pixel ordering correctly in a tile has a signif-
icant impact on the perceived quality of the final frame sequence.
How the choice is made, and the implications it has, is further de-
scribed in Section 3.2.3. As it is based on motion, the selection of
per-tile pixel ordering is determined in the final frame generation
and passed to the subsequent ray tracing pass. We only make this
decision once every four frames in order to always complete a full
frame before updating the per-tile patterns. The per-pixel sampling
patterns to the right in Figure 4 are the ones we use when the scene
is static versus dynamic. This will be discussed in detail in Sec-
tion 3.2.

3.1.2. Motion Vectors for Reflections

Temporal antialiasing (TAA) [Kar14, PSK∗16] reprojects and
reuses color samples from the previous frame by using motion vec-
tors (MVs) to track the movement of features anchored to the sur-
face of three-dimensional objects. For mirrors, we compute the re-
flected motion vector as shown in Figure 5, which can be used for
any TAA-based algorithm. While the proposed solution is simple
and limited, in the sense that it assumes that the mirror has not
moved since the previous frame, it does improve the reprojection
results significantly in many cases. There are other methods that

TA
A

TA
A

w
ith

m
ir

ro
re

d
m

ot
io

n
ve

ct
or

s

Figure 6: These images show post-TAA reflections for non-reflected
(left) and reflected (right) motion vectors. The top part (black and
white) of the images are equal while the reflection is considerably
better with reflected motion vectors.

aim at solving this problem, but a thorough comparison is out of
scope of this work. Figure 6, and our website, show the impact of
reflected motion vectors with the standard TAA [Kar14] algorithm.
We have limited the number of mirrors we can bounce off before
computing motion vectors to one. This number could be increased
by using, e.g., a chain of Householder matrices, although at a higher
cost.

3.2. Final Frame Generation

The final full resolution frame is composited using the most recent
subframe and motion vectors, as well as information from prior
subframes and the previous full resolution frame. The box at the
center of Figure 3 illustrates how the color of each pixel depends on
whether its content is deemed to be in motion (static/dynamic), and
whether it is part of the most recently rendered subframe (new/old).

3.2.1. Dynamic Pixels

A pixel’s content is considered dynamic if the longest screen space
motion vector, m, within a 3×3 pixel region is nonzero [PSK∗16].
The size of this footprint improves detection of fast motion in areas
of the image with multiple moving geometries.

While new dynamic samples are directly stored in the frame-
buffer, as shown in Figure 3, old and dynamic color samples are
reprojected and color clamped, in a similar fashion to standard
TAA [Kar14]. In particular, the longest motion vector, m, is used
to find where the pixel was in the previous frame, and we resample
its value from there via a bilinear filter. We then use variance sam-
pling [PSK∗16] to compute an axis-aligned bounding box in color
space to which we clamp the reprojected pixel.

It is worth noting that extending TAA’s reprojection and clamp-
ing to our setting is not straightforward. One can, for example, use
all immediate neighbors in the variance sampling, which means that
old pixel information would be used. Another possibility would be
to do variance sampling with samples from a 3×3 area in the most
recent subframe, but this also reduces the quality of the final frame.
These two alternatives are illustrated to the left in Figure 7. Another
solution is to construct the box out of the current pixel’s immedi-
ate neighbors included in the most recent subframe, which is the
method we use. Illustrations of this are shown to the right in Fig-
ure 7. Note that, in the examples shown in this figure, the most re-
cent samples (marked green in the figure) are positioned regularly

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

P. Andersson et al. / Temporally Dense Ray Tracing

Figure 7: These figures show variants of neighborhood positions
(marked #) used during variance sampling of a pixel (marked •).
Green pixels are retrieved from the most recent subframe. The left
figure shows the situation where all immediate neighbors are used,
while the next shows the case where samples are taken from a 3×3
area in the most recent subframe. We use the three patterns to the
right, i.e., the ones using the most recent and immediate neighbors.

on the frame for clarity. This is not necessarily the case when we
allow for different per-tile pixel orderings. The principle of using
only the most recent and immediate neighbors, however, remains.
A comparison between the results generated with the three methods
is shown on our website.

Furthermore, note that we do not temporally accumulate color
samples using an exponential moving average as in TAA, since this
tends to generate ghosting effects in pixels with dynamic content,
which are disturbing even at 240 FPS. To reduce the aliasing of
pixels whose content is static, we instead use a moving window
averaging approach, described next.

3.2.2. Static Pixels

The color of a static pixel is computed by averaging up to four sam-
ples, depending on how long it has been static, effectively resulting
in 4× supersampling antialiasing (SSAA). We use a fixed jitter pat-
tern with four samples, as seen in the static pattern to the right in
Figure 4. Similar to the tile patterns, the jitter remains the same for
four frames, i.e., until each pixel in a tile has been ray traced.

Whenever the camera viewpoint changes or we detect temporal
change, we reset averaging in the pixel and instead use the repro-
jection method discussed in the previous section. As long as aver-
aging is turned off, so is the jitter of our primary rays, and we will
then only sample pixel centers to avoid noisy edges in the image.
Here, the flexibility of ray tracing enables us to change sampling
pattern on a per-pixel basis. As mentioned above, we defer motion
vector computations until the next hit point when we hit mirrors. If
not, one would incorrectly average samples in, e.g., static mirrors
reflecting a moving object.

Temporal change in a pixel includes altered lighting, shadows,
indirect illumination, camera motion, transparency, etc., and should
possibly inhibit accumulation. For example, one can use the flow
methods of Leimkühler et al. [LSR17] to handle many situations.
We see this as an open problem, orthogonal to the main task of
our research. In our current implementation, we simply use motion
vectors as indicators of temporal change.

3.2.3. Adaptive Pixel Ordering Selection

As briefly mentioned in Section 3.1.1, we have discovered that the
choice of each tile’s pixel ordering, hourglass or bowtie (Figure 4),
is critical to how we perceive the resulting image sequences. In

Figure 8: From left to right, for a horizontally moving feature:
full frame rendering (spatially dense), rendering with hourglass,
hourglass with reprojection and clamp, rendering with bowtie, and
bowtie with reprojection and clamp. Note how the rightmost image
is most similar to the ground truth image to the very left.

particular, choosing the correct ordering will greatly reduce spa-
tiotemporal aliasing, such as flickering or crawling pixels. This is
exemplified in Figure 8, where a horizontally moving feature is ren-
dered spatially sparse and temporally dense, with the hourglass and
bowtie patterns, next to their reprojected and clamped counterparts.
In this case, the two pixel long extrusions of the hourglass pat-
tern reprojects to an edge that is aligned at the granularity of a tile,
which is undesirable. The bowtie pattern exhibits a more favorable
and perceptually pleasing result at this particular velocity. We can
see that there is a strong dependency between the best pattern se-
lection, and on motion direction and speed.

The goal of this section is to find a function, g, which determines
each tile’s pixel ordering type for the next four frames using some
per-tile input. While we believe g to be a function of the tile’s mo-
tion, m = (mx,my), and pixel neighborhood contents, P, such as
edges, we limit our version of the function, denoted ĝ, to only con-
sider the tile’s motion, such that

ĝ(m)≈ g(m,P) ∈ {hourglass, bowtie}. (1)

We choose the tile’s motion to be the same motion as was used to
determine whether the tile’s contents were static or dynamic, i.e.,
the longest motion vector in a 3× 3 area around the tile’s location
in the MV buffer.

Our function, ĝ, first computes the length, `, of the motion vector,
and proceeds by removing its integer part, yielding

` f = `−b`c , `= ‖m‖. (2)

We remove the integer part because basing the decision on the ab-
solute motion itself was found to be insufficient. Next, our function
determines the motion’s angle, α, relative to the x-axis, as

α = atan2(my,mx). (3)

With ` f and α introduced, we will now change the signature of
ĝ(m) to ĝ(` f ,α), as those are the two parameters that influence the
decision. For strictly horizontal motion, i.e., α ∈ {0,π}, we empir-
ically found that

ĝ(` f ,α) =

{
hourglass if ` f ∈ (0.25,0.75),
bowtie otherwise,

(4)

yielded the desired results. This method effectively segments the
scene into different regions, and to base the pixel ordering decision
on those is favorable. An example can be seen in Figure 9 and on
our website. When the camera is moving and the hourglass pat-
tern is used in all tiles, the beer taps on the bar flicker, but not the
glasses and bottles on the shelves. If the bowtie pattern was used

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

P. Andersson et al. / Temporally Dense Ray Tracing

Figure 9: An example of the scene segmentation during strictly hor-
izontal motion, where a yellow pixel indicates that its tile is ren-
dered with the hourglass pattern, while a blue pixel indicates that
its tile is rendered with the bowtie pattern.

instead, the situation would be reversed. As we make the decision
based on the fractional part of the motion, we are able to correctly
choose per-tile orderings in both regions, as well as for the chairs in
the foreground. Similar to the case when we had strictly horizon-
tal motion, we found that with strictly vertical motion, i.e., when
α ∈ {− π

2 ,
π

2}, we should instead have

ĝ(` f ,α) =

{
hourglass if ` f ∈ [0,0.25]∪ [0.75,1],
bowtie otherwise.

(5)

Given the results above, the question arises how to choose pattern
when the motion is neither strictly horizontal nor strictly vertical.
One option is to base the selection on only the dominant motion di-
rection. That selection method, i.e., the function graph correspond-
ing to ĝ(` f ,α), is visualized to the left in Figure 10. For all meth-
ods depicted there, we only show the function graph in the interval
α ∈ [0, π

2], and use symmetry to cover the remainder of possible
motion directions. We found that this first approach, i.e., to base
the choice of solution on the dominant motion direction, did not
yield satisfactory results. Instead, we tried using smoother transi-
tions between the two solutions over α ∈ [0, π

2].

The two illustrations in the middle of Figure 10 both show con-
tinuous transitions between the two solutions at α = 0 (Equation 4)
and α = π

2 (Equation 5). There are many other possible, continuous
transitions, but these two are the simplest. For α ∈ [0, π

4 −γ], where
γ = π

40 , the middle-left transition was preferable, while the middle-
right transition provided the best results for α∈ [π

4 +γ, π

2]. Between
those intervals, i.e., for α ∈ (π

4 − γ, π

4 + γ), neither transition was
satisfactory—both resulted in significant aliasing in different parts
of the scene. To combat this, we remove some of the structure in
the image by randomizing the pattern choice in that interval. This
reduces the flickering artifacts and crawlies. The constant γ = π

40
was found empirically. Putting the above together yields the pixel
ordering decision function ĝ(` f ,α) that we use. The corresponding
function graph is shown in the right figure in Figure 10.

On our website (Section 3), we include comparisons of the three
rightmost decision functions in Figure 10 for three different camera
animations. The first camera has a motion direction 0 < α≤ π

4 − γ,
the second has a motion direction π

4 − γ < α < γ+ π

4 , and the third
has a motion direction π

4 +γ≤ α < π

2 . With the first camera, we see
that the middle-left function yields the most satisfactory results,
while the results with the third camera suggests that the middle-
right function provides the best experience. In the case of the sec-
ond camera, the best results are those stemming from randomiz-
ing the pattern selection. These examples support our decision of
using the rightmost pixel ordering decision function illustrated in

Figure 10. Section 3 on our website also demonstrates the adap-
tive pattern selection for arbitrary motion. Note that many of the
methods above were found using much trial and error, and we have
reported the best performing techniques we could produce. More
research is needed in this field to optimize the pattern selection.

4. Results

Note that we have deliberately chosen not to include any images
here, since our images need to be viewed in succession, and at
240 FPS, on a 240 Hz display to experience the intended qual-
ity. Therefore, we refer to www.240hz.org, where we provide
cropped image sequences to allow for a replay speed of 240 FPS.
All our images were rendered at 1920× 1080 pixels on an Acer
Predator XB272 monitor, with one shadow ray per light source and
up to three recursive reflections, using an NVIDIA RTX 2080 Ti.
We have used three scenes, namely, BISTRO (interior), CERBERUS,
and LIVINGROOM. BISTRO has 1M triangles and 15 static light
sources, CERBERUS has 192k triangles, including one animated
robot, as well as three static light sources, and LIVINGROOM has
581k triangles and three static light sources. Furthermore, in all our
visualizations, we have activated vertical synchronization (v-sync).
Otherwise, if the rendering speed exceeds the display refresh rate,
the perceptual integration of frames is disturbed and the perceived
quality therefore reduced.

In Section 4 on our website, we show results for the scenes
above. For all results, we show vanilla rendering, with and with-
out TAA, at n FPS, and our spatially sparse temporally dense ren-
dering at 4× n FPS. The rationale for this is that our method ren-
ders a frame about 3.5× faster than vanilla rendering with TAA.
Note that, while we reduce the ray tracing cost to roughly a quar-
ter, the per-frame cost of our filtering is similar to that of TAA.
Furthermore, when attempting to render at 240 FPS, possible CPU
bottlenecks become more prominent. In such cases, we cannot ex-
pect a 3.5× speedup with our method. However, there are certainly
more performance enhancements to be made in our implementa-
tion, so these numbers could potentially be improved. Other non-
trivial CPU and GPU work associated with, e.g., the workings of a
game engine, is outside the scope of our work.

The BISTRO scene has, perhaps, the most spectacular results.
At 60 FPS, our method looks almost broken, but at 240 FPS, our
rendered images are integrated into a perceptually satisfactory ex-
perience. We urge the reader to look at the beer taps and the bar
counter. This scene is ray traced at about 310 FPS. In the LIV-
INGROOM scene (290 FPS), we see a large reduction in aliasing
with our method and TAA, compared to the vanilla rendering. This
can be seen, for example, on the table. As the robot in CERBERUS

(260 FPS) runs, we see some flickering in the highlights for the
vanilla rendering. This is reduced both with TAA and with our
method, though with TAA, the highlights tend to disappear com-
pletely. In CERBERUS, the reflected motion vectors (enabled for
our method) gives a positive effect in the form of a clearer reflec-
tion. This scene also demonstrates the blur that arises without any
special handling of dynamic shadows cast on static objects.

As a medium failure case, we have found that rapidly moving,
thin features are often hard to render well. To demonstrate this, we

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

www.240hz.org

P. Andersson et al. / Temporally Dense Ray Tracing

0

0.5

1.0

π/2π/40
α 0

0.5

1.0

π/2π/40
α 0

0.5

1.0

π/2π/40
α 0

0.5

1.0

π/2π/40
α

Figure 10: Four different alternatives for the per-tile pixel ordering decision function, ĝ(` f ,α), based on the fractional part, ` f , of the
motion length, and the motion direction, α. Yellow color indicates that the hourglass pattern should be chosen, blue color indicates the
bowtie pattern, and green indicates that the choice between the two is random. We use the rightmost alternative.

have rendered HAIRBALL (290 FPS). The results can be found on
our website. TAA generates substantially more blur than both other
methods and thin geometry may sometimes even disappear. One
case where aliasing is not reduced at all is shown in the bowtie ver-
sus hourglass comparison (Section 3 on our website). For the clos-
est chair at the bottom, the top curved edge has retained aliasing.
This is, however, a problem for all methods we compared. Another
problem that is sometimes visible is what we call advancing fronts.
When an edge of an object belongs to a region classified as, say,
bowtie and the background of that edge belongs to hourglass, a tile
with an edge may be classified as hourglass and when the classifi-
cation switches to bowtie, it is too late. This may manifest itself as
aliasing on the front of a moving edge.

In a small user study with 35 subjects (33 men, two women), and
an age span from 27 to 73 years, we showed three renderings next
to each other. A high quality (256 SPP) rendering of BISTRO at
240 FPS was shown in the middle. For each subject, we randomly
placed a rendering with 1 SPP at 60 FPS on either the left or right
side, and our technique at 240 FPS, on the other side. We excluded
TAA in the user study since we wanted to focus our evaluation
on the perceptual difference between 60 Hz and 240 Hz, and not
on the amount of blur. When asked to identify the rendering that
best resembled the ground truth, 94% selected our technique, which
indicates a strong preference toward our method.

Another remarkable result is shown in the last link on our web-
site. There, we compare our method, at 240 FPS, to 60 and 240 FPS
vanilla rendering. In our opinion, our method is very close to vanilla
rendering at 240 FPS, which acts as a ground truth image in this
case. Recall that our method traces only 25% of the full frame’s
pixels each frame.

A general comment is that our method, due to its spatially sparse
rendering, cannot produce fully temporally coherent image se-
quences. However, the images are produced at a much higher pace,
highlights tend to stay in the images, and textures remain sharp.
TAA runs at a lower rate, provides blurry texturing and edges, and
even ghosting. What is best is subjective, but if higher frame rates
are needed in order to compete in esports, as mentioned in the in-
troduction, our method would likely be a better choice. The inte-
gration of frames at 240 Hz is exploited by our algorithm, as we
have shown both for edge antialiasing and for improved clamping.
We believe our work shows promise, with many avenues for future
work, including improved pattern selection, better sampling pat-

terns, code optimization, theoretical explanations, and generalized
motion vector computations.

References
[AMNA∗19] AKENINE-MÖLLER T., NILSSON J., ANDERSSON M.,

BARRÉ-BRISEBOIS C., TOTH R., KARRAS T.: Texture Level of De-
tail Strategies for Real-Time Ray Tracing. In Ray Tracing Gems, Haines
E., Akenine-Möller T., (Eds.). Apress, 2019, ch. 20. 3

[BFMZ94] BISHOP G., FUCHS H., MCMILLAN L., ZAGIER E. J. S.:
Frameless Rendering: Double Buffering Considered Harmful. In Pro-
ceedings of SIGGRAPH (1994), pp. 175–176. 1

[DER∗10] DIDYK P., EISEMANN E., RITSCHEL T., MYSZKOWSKI K.,
SEIDEL H.-P.: Perceptually-motivated Real-time Temporal Upsampling
of 3D Content for High-refresh-rate Displays. Computer Graphics Fo-
rum 29, 2 (2010), 713–722. 2

[DWWL05] DAYAL A., WOOLLEY C., WATSON B., LUEBKE D.:
Adaptive Frameless Rendering. In Eurographics Symposium on Ren-
dering (2005), pp. 265–275. 1

[EM16] EL MANSOURI J.: Rendering Tom Clancy’s Rainbow Six |
Siege. Game Developers Conference, 2016. 1, 2

[HA90] HAEBERLI P., AKELEY K.: The Accumulation Buffer: Hard-
ware Support for High-quality Rendering. In Proceedings of SIGGRAPH
(1990), pp. 309–318. 1

[HEMS10] HERZOG R., EISEMANN E., MYSZKOWSKI K., SEIDEL H.-
P.: Spatio-Temporal upsampling on the GPU. In ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games (February 2010). 1

[Kar14] KARIS B.: High Quality Temporal Supersampling. Advances in
Real-Time Rendering in Games, SIGGRAPH Courses, 2014. 1, 3

[KH01] KELLER A., HEIDRICH W.: Interleaved Sampling. In Euro-
graphics Workshop on Rendering Techniques (2001), pp. 269–276. 1

[KSM∗19] KIM J., SPJUT J., MCGUIRE M., MAJERCIK A.,
BOUDAOUD B., ALBERT R., LUEBKE D.: Esports Arms Race: Latency
and Refresh Rate for Competitive Gaming Tasks. In Vision Science So-
ciety (2019). 1

[LSR17] LEIMKÜHLER T., SEIDEL H.-P., RITSCHEL T.: Minimal
Warping: Planning Incremental Novel-view Synthesis. Computer
Graphics Forum 36, 4 (2017), 1–14. 4

[PSK∗16] PATNEY A., SALVI M., KIM J., KAPLANYAN A., WYMAN
C., BENTY N., LUEBKE D., LEFOHN A.: Towards Foveated Rendering
for Gaze-tracked Virtual Reality. ACM Transactions on Graphics 35,
6 (2016), 179:1–179:12. URL: http://doi.acm.org/10.1145/
2980179.2980246, doi:10.1145/2980179.2980246. 1, 3

[Rej13] REJHON M.: PHOTOS: 60Hz vs 120Hz vs ULMB, May 2013.
www.blurbusters.com/faq/60vs120vslb/. 2

[Swe07] SWEET B. T.: The Impact of Motion-Induced Blur on Out-the-
Window Visual System Performance. In IMAGE (2007). 2

[Whi80] WHITTED T.: An Improved Illumination Model for Shaded Dis-
play. Commununications of the ACM 23, 6 (1980), 343–349. 3

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

http://doi.acm.org/10.1145/2980179.2980246
http://doi.acm.org/10.1145/2980179.2980246
https://doi.org/10.1145/2980179.2980246
www.blurbusters.com/faq/60vs120vslb/

