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Abstract. We propose a 4D convolutional neural network (CNN) for
the segmentation of retrospective ECG-gated cardiac CT, a series of
single-channel volumetric data over time. While only a small subset of
volumes in the temporal sequence is annotated, we define a sparse loss
function on available labels to allow the network to leverage unlabeled
images during training and generate a fully segmented sequence. We in-
vestigate the accuracy of the proposed 4D network to predict temporally
consistent segmentations and compare with traditional 3D segmentation
approaches. We demonstrate the feasibility of the 4D CNN and establish
its performance on cardiac 4D CCTA"'.

1 Introduction

Cardiovascular disease is responsible for 18 million deaths annually, making it
one of the leading causes of mortality globally [13]. Coronary computed to-
mography angiography (CCTA) uses contrast-enhanced CT to evaluate cardiac
muscle morphology, function, and vascular patency. Two measurements derived
from CCTA with significant diagnostic and prognostic importance are the Left
Ventricular Ejection Fraction (LVEF) and Left Ventricular Wall Thickness. Both
measurements require the segmentation of the left ventricular muscle, with the
former requiring temporal segmentation over the cardiac cycle. The American
College of Radiology (ACR) has highlighted the importance of these measure-
ments by listing them among the most important initial ‘use cases’ of artificial
intelligence as applied to radiology [1]. A segmentation model of the left ven-
tricular muscle and cavity over the cardiac cycle, especially the end-systole and
end-diastole time points, would allow for automated determination of both mea-
surements from 4D CCTA studies. The clinical utility of such a model is highly
relevant as it reduces study reading time and improves the consistency of mea-
surements, thereby potentially preventing missed pathology in cases where the
measurements may not have otherwise been performed.

Modern 4D CCTA images are acquired over the entire cardiac cycle, including
end-systole and end-diastole. A typical 4D scan includes 20 3D volumes reflecting
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the cardiac anatomy at equally-spaced time points within a 240 ms time interval.
This allows for enough temporal resolution to study the heart’s function. In order
to limit the amount of effort required to annotate these images, we restrict the
annotation to only certain frames, an example of which is shown in Fig. 2.

While convolutional neural networks (CNNs) have demonstrated state-of-
the-art performance across a variety of segmentation tasks [8], the adoption of
4D CNNs for 4D medical imaging (3D + time — e.g., CT or ultrasound) has
been limited due to the high computational complexity and lack of manually
segmented data. The cost of annotating volumetric imaging is significant, mak-
ing 4D labeling prohibitively expensive. Nevertheless, the temporal dimension
offers valuable information that is otherwise lost when treating each volume
independently.

In this work, we propose a 4D CNN for the segmentation of the left ventricle
(LV) and left ventricular myocardium (LVM) from 4D CCTA images, enabling
the computation of the aforementioned cardiac measurements. To reduce anno-
tation costs, our 4D dataset is sparsely labeled across the temporal dimension —
only a fraction of volumes in the sequence are labeled. This enables us to leverage
a 4D CNN with a sparse loss function, allowing our algorithm to take advantage
of unlabeled images which would otherwise be discarded in a 3D model. The
network jointly segments the sequence of volumes, implicitly learning temporal
correlations and imposing a soft temporal smoothness constraint. We describe
the 4D convolution layer generalization in Section 3.1 and introduce a sparse
Dice loss function as well as a temporal consistency regularization in Section 3.2.
We demonstrate the feasibility of a 4D CNN and compare its performance to a
traditional 3D CNN in Section 4.

2 Related work

Deep learning has achieved state-of-the-art segmentation performance in 2D nat-
ural images [2] and 2D [8] & 3D medical images [6,7]. To leverage the temporal
dependency and account for segmentation continuity, recurrent neural networks
(RNNs) have been adopted for videos [11] and 2D+T cardiac MRI datasets [16].
3D CNNs have also been applied spatio-temporally and proven effective in seg-
mentation of videos [9,10] and 2D+T cardiac MRIs [15].

For sequences of volumetric imaging, such as 3D+T CT or ultrasound, 4D
CNNs are a natural extension. Wang et al. [12] proposed a CNN for 4D light-field
material recognition incorporating separable 4D convolutions to reduce compu-
tational complexity. Clark et al. [3] adopted a 4D CNN for the de-noising of
low-dose CT, where three independent 3D convolutions (with fixed cyclic time
delay) were used to simulate 4D convolutions.

To date, 4D CNNs for semantic segmentation have not been explored in
similar depth to 2D and 3D CNNs, in part due to their high computational
requirements and lack of available annotations. In this work, we demonstrate
the feasibility and advantageousness of a true 4D CNN.
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Fig. 1. 4D network architecture: input is a single channel (grayscale) 4D CT crop,
followed by initial 3x3x3x3 4D convolution with 8 filters. Each green building block
is a ResNet-like block with GroupNorm normalization. The output has three channels
followed by a softmax: background, left ventricle, and myocardium. For a detailed
description of the building blocks see Table 1.

3 Methods

Our 4D segmentation network architecture follows an encoder-decoder semantic
segmentation strategy, typical for 2D and 3D images. Throughout the network,
we use 4D convolutions with a kernel size of 3x3x3x3, where the last dimension
corresponds to time. The network architecture follows the one proposed in [7],
where only the main decoder branch is used and modified to fit 4D images within
GPU memory limits. The input size of the network is 1x1x96x96x64x16 (corre-
sponding to a batch size of 1, input channel 1, and a spatial crop of 96x96x64
with 16 frames). We randomly crop this 4D array from the input data during
training. No other form of augmentation is employed in this study.

Each building block of the network consists of two convolutions with group
normalization [14] and ReLU, followed by identity skip-connections similar to
ResNet [5] blocks. A sequence of the building blocks is applied sequentially at
different spatial levels. In the encoder part of the network, we downscale the spa-
tial dimension after each level and double the feature dimension. We use strided
convolutions (stride of 2) for downsizing, and all convolutions are 3x3x3x3. We
use one block at level 0 (initial size), two blocks at level 1, and four blocks at
level 2. At the smallest scale, the input image crop is downsized by a factor of
4 (to 24x24x16x4), which provides a balance between network depth and GPU
memory limits. For the encoder branch, we leverage a similar structure with a
single block per each spatial level. To upsample, we use 4D nearest-neighbor in-
terpolation after 1x1x1x1 convolution. Finally, we use additive skip-connections
between the corresponding levels. The details of network structure are shown in
Table 1 and in Fig. 1.

3.1 4D convolutions

While 4D convolutional layers are not available in common deep-learning frame-
works (such as TensorFlow® of PyTorch*), they can be represented as a sum

3 https://www.tensorflow.org
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Table 1. Network structure, where GN stands for group normalization (with group
size of 8), Conv - 3x3x3x3 convolution, AddId - addition of identity/skip connection.
Repeat column shows the number of repetitions of the block. The output, after softmax,
has 3 channels (background and 2 foreground classes)

Name Ops Repeat | Output size

Input 1x96x96x64x16
InitConv Conv 3x3x3x3 8x96x96x64x16
EncoderBlock0 | GN,ReLLU,Conv,GN,ReLLU,Conv, AddId 8x96x96x64x16
EncoderDownl Conv 3x3x3x3 stride 2 16x48x48x32x8
EncoderBlockl | GN,ReLU,Conv,GN,ReLU,Conv, Addld  x2 16x48x48x32x8
EncoderDown2 Conv 3x3x3x3 stride 2 32x24x24x16x4
EncoderBlock2 | GN,ReLU,Conv,GN,ReLU,Conv, Addld x4 |32x24x24x16x4
DecoderUpl Convl, UpNearest, +EncoderBlock1 16x48x48x32x8
DecoderBlockl | GN,ReLU,Conv,GN,ReLLU,Conv, AddIld 16x48x48x32x8
DecoderUp0 Convl, UpNearest, +EncoderBlock0 8x96x96x64x16
DecoderBlock0 | GN,ReLU,Conv,GN,ReLU,Conv, AddId 8x96x96x64x16
DecoderEnd Conv 1x1x1x1, Softmax 3x96x96x64x16

over a sequence of 3D convolutions along the fourth (temporal) dimension. For
efficiency, we rearranged the loop to avoid repeated 3D convolutions by imple-
menting 4D convolution as a custom TensorFlow layer. This strategy allows for
a true (non-separable) 4D convolution. A common approach to maintain the
same image dimension is to zero-pad prior to a convolution. We were concerned
that such an approach may introduce boundary effect for the very first and last
frames (when padding with zeros). We have experimented with several padding
strategies for the 4th dimension only, including zero padding, mirror reflection,
and replication but did not observe any noticeable performance differences, thus
we decided to use conventional zero padding.

3.2 Loss

Our training dataset is sparsely labeled along the temporal dimension since la-
beling medical images in 4D (and even in 3D) is complex and time-consuming.
Therefore, we have defined a sparse loss function that is applied only to the
labeled time-frames and includes a regularization term to ensure temporal con-
sistency between frames.

The proposed loss function is therefore composed of two terms,

K-2
L = Z D(pzruevpzpred) + Z ||pz:rre1d - p;red||2 (1)
i€labeled =0

where D is a soft dice loss [6] applied only to labeled time points (3D images)
Dtrue t0 match the corresponding outputs ppred:

. 2% Zptrue * Ppred (2>
Zp%ruc + Zpgred +e

D(ptrueappred) =1
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K is the number of frames (K=16 in our case, since we use the 96x96x64x16
crop size). The second term in (1) is a first-order derivative over time to enforce
similarity between frames. Re-weighting the contributions between the loss terms
did not show consistent difference, so we kept the equal contributions.

3.3 Optimization

Similar to [7], we apply the Adam optimizer with an initial learning rate of
ap = le—3 and progressively decrease it according to the following schedule
a=ay(l- n/N,])O'g, where 7 is an epoch counter, and N, is the total number
of training epochs.

We use a batch size of 1 and sample input sequences randomly (ensuring
that each training sequence is drawn once per epoch). From each 4D sequence,
we apply a random crop of size 96x96x64x16 centered on a foreground (with
a probability of 0.6), otherwise centered on a background voxel. Thus, at each
iteration, a different number of ground truth labels is available, depending on
the location of the crop window (16) of the time dimension.

3.4 Dataset

Our dataset consists of 61 4D CCTA sequences, each of 512x512x(40-108)x20
size (512x512 axial size, with 40-108 slices of variable thickness and 20 time
points). The spatial image resolution is (0.24-0.46)x(0.24-0.46)x2mm. All images
were acquired at Massachusetts General Hospital, Boston, USA, using a 128-
slice dual-source multi-detector CT with retrospective ECG gating and tube
current modulation. Sequences were reconstructed from multiple R-R° intervals,
measured via electrocardiogram.

All images were resampled to an isotropic spatial resolution of 1xlxlmm,
retaining the temporal resolution. After re-sampling, the 4D image sizes vary
between 112x122x80x20 and 238x238x158x20 voxels. We apply a random data
split, with 49 4D images used for training and 12 4D images for validation.

The number of annotated frames in each sequence varies widely, ranging from
only 2 out 20 (i.e. end-systole and end-diastole) to 9 (every second time point).
Overall, 247 time-points have been annotated throughout the dataset, which
represents approximately 20% of all frames. We include studies with differing
numbers of annotated frames in both training and validation splits to maximize
temporal coverage during both training and validation.

As a second form of validation, we compare our model’s segmentation results
with clinical findings. One such clinical finding is the ejection fraction measure
which typically is being judged as reduced when less than 55% [4].

4 Results

We implemented our 4D network in Tensorflow and trained it on an NVIDIA
Tesla P100 SXM2 GPU with 16GB memory based on the NVIDIA Clara Train

5 R corresponds to the peak of the QRS complex in the ECG wave.
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Fig. 2. A typical segmentation example of our 4D network in axial, sagittal and coro-
nal views of a single 3D frame. Notice that the predicted results look better and much
smoother than manual annotations in sagittal and coronal cross sections. Manual la-
beling was done by a trained clinician slice-by-slice, which results in noisy out-of-plane
ground-truth labels. The 4D segmentation network is able to average out these errors
when learning such noisy data examples.

SDK®. Data is normalized to [-1,1] using a fixed scaling from input CT range
[-1024,1024]. We train for 500 epochs and use the model at the end of training
for evaluations.

For comparison, we also implemented a 3D network largely following the
same architecture as in Fig. 1, except that all convolutions are 3D and include a
greater number of layers with one additional down-sampling level (the end of the
encoder being of size 12x12x8) as GPU memory requirements permit deeper ar-
chitecture in the 3D case. For the 3D network, we use a crop of size 96x96x64 and
train it only on labeled 3D frames. The 3D network learns to predict segmenta-
tion without any temporal constraint considerations. We acknowledge that such
a 3D network is trained on less number of images (only the annotate frames), and
weakly-supervised 3D segmentation might be a candidate for better comparison.
Segmentation performance: We evaluate both networks on the validation set,
using only the labeled frames, in terms of average Dice score. In addition, we
assess the temporal continuity of the produced results. A temporal smoothness
metric, we compute the L2 norm of the first-order time derivative of segmentation
labels, as well as the average surface distance between the consecutive frames.
Intuitively, accurate segmentation results must respect the temporal continuity
of the heart motion, and are expected to be smoother in the time domain.

The evaluation results are shown in Table 2. In terms of the dice score alone,
the proposed 4D network demonstrated only comparable results, with one of the

5 https: //devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk


https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk

4D CNN for semantic segmentation of cardiac volumetric sequences 7

Table 2. Performance evaluation of the 4D semantic segmentation network. LVM - left
ventricular myocardium and LV - left ventricle. We also measure temporal smoothness
in the result using the L2 norm of temporal derivative of the predictions and average
surface distance between the consecutive frames. The proposed 4D network produces
temporally smoother results with comparable dice scores.

Dice Smoothness
Arch LVM| LV | L2 | Surf
3D network | 0.85 [0.91|1.28 | 0.74
4D network | 0.85 [0.90|1.05| 0.59

structures (LV cavity) 1% better dice of the 3D network. One reason for this
might be that 4D network is not as deep as its 3D counterpart and the dice
score is estimated frame by frame; frame-by-frame Dice score may not be the
most representative accuracy measure of temporal sequence segmentations as it
does not account for consistency across frames.

Visually, the 4D CNN segmentation results have superior temporal consis-

tency, where the label changes more “fluidly” between time-frames. Our smooth-
ness metric confirms this observation, with the proposed 4D network achieving
lower smoothness loss than its 3D counterpart (see Table 2). We also observe
that in many cases, 4D CNN results look better than the ground truth (See
Fig. 2). The manual annotations are done slice-by-slice, which results in jittery
out-of-plane annotation profiles; this especially visible in sagittal and coronal
views. The proposed 4D segmentation network is able to average out these er-
rors while learning from the overall dataset and produce coherent results both
spatially and temporally. In future work, manual relabeling of some cases in all
2D planes consistently (in spatial and time dimensions) could result in a clearer
advantage of our 4D approach.
Ejection fraction: We computed the ejection fraction for 12 cases (10 with normal
and 2 with reduced ejection fraction) based on the ratio of minimum and maxi-
mum LV cavity volume throughout the cardiac cycle as predicted by our models.
For both, 3D and 4D models, we achieve a 100% sensitivity and specificity in
detecting reduced ejection fraction when compared to the findings reported in
the clinical reports (provided by radiologists).

5 Conclusion

We proposed a 4D convolutional neural network for semantic segmentation of the
left ventricle (LV) and left ventricular myocardium (LVM) from 4D CCTA stud-
ies. The network is fully convolutional and jointly segments a temporal sequence
of volumetric images from CCTA.

We utilize a sparse Dice loss function and a temporal consistency regular-
ization to handle the problem of sparse temporal annotation. We have demon-
strated the feasibility and advantageousness of a true 4D CNN compared to 3D
CNNs, where the first shows improvement in segmentation temporal consistency.
The model’s result showed promise in being useful for automatically quantifying
clinically measures, such as ejection fraction.
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