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Abstract. In this work, we attempt the segmentation of cardiac structures
in late gadolinium-enhanced (LGE) magnetic resonance images (MRI) us-
ing only minimal supervision in a two-step approach. In the first step, we
register a small set of five LGE cardiac magnetic resonance (CMR) images
with ground truth labels to a set of 40 target LGE CMR images without
annotation. Each manually annotated ground truth provides labels of the
myocardium and the left ventricle (LV) and right ventricle (RV) cavities,
which are used as atlases. After multi-atlas label fusion by majority voting,
we possess noisy labels for each of the targeted LGE images. A second set
of manual labels exists for 30 patients of the target LGE CMR images, but
are annotated on different MRI sequences (bSSFP and T2-weighted). Again,
we use multi-atlas label fusion with a consistency constraint to further refine
our noisy labels if additional annotations in other modalities are available for
a given patient. In the second step, we train a deep convolutional network
for semantic segmentation on the target data while using data augmentation
techniques to avoid over-fitting to the noisy labels. After inference and simple
post-processing, we achieve our final segmentation for the targeted LGE
CMR images, resulting in an average Dice of 0.890, 0.780, and 0.844 for LV
cavity, LV myocardium, and RV cavity, respectively.
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1 Introduction

Segmentation of cardiac structures in magnetic resonance images (MRI) has potential
uses for many clinical applications. In particular for cardiac magnetic resonance (CMR)
images, late gadolinium-enhanced (LGE) imaging is useful to visualize and detect
myocardial infarction (MI). Another common CMR sequence is T2-weighted imaging
which highlights acute injury and ischemic regions. Additionally, balanced-steady state
free precession (bSSFP) cine sequences can be utilized to analyze the cardiac motion of
the heart [1I2]. Each CMR sequence is typically acquired independently, and they can
exhibit significant spatial deformations among each other even when stemming from
the same patient. Nevertheless, segmentation of different anatomies from LGE could
still benefit from the combination with the other two sequences (T2 and bSSFP) and
their annotations. An example of different CMR sequences utilized in this work can
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be seen in Fig. [I} LGE enhances infarcted tissues in the myocardium and therefore is
an important sequence to focus on for the detection and quantification of myocardial
infarction. The infarcted myocardium tissue appears with a distinctively brighter inten-
sity than the surrounding healthy regions. In particular, LGE images are important to
estimate the extent of the infarct in comparison to the myocardium [I]. However, man-
ual delineation of the myocardium is time-consuming and error-prone. Therefore, auto-
mated and robust methods for providing a segmentation of the cardiac anatomy around
the left ventricle (LV) are needed to support the analysis of myocardial infarction.
Modern semantic segmentation methods utilizing deep learning have significantly im-
proved the performance in various medical imaging applications [3/4U5I6]. At the same
time, deep learning methods typically require large amounts of annotated data in order
to train sufficiently robust and accurate models depending on the difficulty of the task.
However, in many use cases, the availability of such annotated cases may be limited for
a specific targeted image modality or sequence. For CMR applications containing mul-
tiple sequences, annotations for the same anatomy of interest might be available for se-
quences other than the target one of the same patient. In this work, we attempt the seg-
mentation of cardiac structures in LGE cardiac magnetic resonance (CMR) images uti-
lizing classical methods from multi-atlas label fusion in order to provide “noisy” pseudo
labels to be used for training deep convolutional neural network segmentation models.

(c) G

Fig. 1: Sagittal view of different cardiac magnetic resonance (CMR) image sequences
of the same patient’s heart. Images (a-c) show balanced-steady state free precession
(bSSFP), T2-weighted, and late gadolinium-enhanced (LGE) images with overlays of the
corresponding manual ground truth (g.t.) annotations [patient 2 of the challenge dataset].

2 Method

Our method can be described in two steps. In the first step, we register a small set,
e.g. 5, LGE CMR with ground truth labels (“atlases”) to a set of target LGE CMR,
images without annotation. Each ground truth atlas provides manually annotated
labels of the myocardium, and the left and right ventricle cavities. After multi-atlas
label fusion by majority voting, we possess noisy labels for each of the targeted
LGE images. A second set of manual labels exists for some of the patients of the



Cardiac Segmentation of LGE MRI with Noisy Labels 3

targeted LGE CMR images, but are annotated on different MRI sequences (bSSFP
and T2-weighted). Again, we use multi-atlas label fusion with a consistency constraint
to further refine our noisy labels if additional annotations in other sequences are
available for that patient. In the second step, we train a deep convolutional network for
semantic segmentation on the target data while using data augmentation techniques
to avoid over-fitting to the noisy labels. After inference and simple post-processing,
we arrive at our final label for the targeted LGE CMR images.

2.1 Multi-Atlas Label Fusion of CMR

Many methods of multi-atlas label fusion exist [7]. In this work, we use a well-
established non-rigid registration framework based on a B-spline deformation model
[8] using the implementation provided by [9]. The registration is driven by a similarity
measurement S based on intensities from LGE, T2, and bSSFP images. We perform
two sets of registrations

1. Inter-patient and intra-modality registration, i.e. the registration of LGE with anno-
tations to the targeted LGE images of different patients.

2. Intra-patient and inter-modality registration, i.e. the registration of bSSFP /T2 with
annotations to the targeted LGE images of the same patient.

In both cases, an initial affine registration is performed followed by non-rigid reg-
istration between the source image F' (providing annotation, i.e. the “atlas”) and
the targeted reference image R. A coarse-to-fine registration scheme is used in order
to first capture large deformations between the images, followed by more detailed
refinements. The deformation is modeled with a 3D cubic B-spline model using a
lattice of control points {¢} and spacings between the control points of J,, d,, and ¢,
along the z-, y-, and z-axis of the image, respectively. Hence, the deformation T(x)
of a voxel x=(z,y,z) to the domain {2 of the target image can be formulated as

T . .
'ﬂ@=g;ﬁg;ﬂWﬁ%%—ﬁx&k%—@x@ﬁ. 1)
Here, 32 represents the cubic B-Spline function. By maximizing an overall objective
function

@ (Ip7Is(T)7{¢}) = (1_05_6) xS —ax Csmooth(T) - ﬁ X Cinconsistency(T), (2)

we can find the optimal deformation field between source and targeted images. Here,
the similarity measure S is constrained by two penalties Csmooth and Cinconsistency
which aim to enforce physically plausible deformations. The contribution of each
penalty term can be controlled with the weights « and f, respectively. We use
normalized mutual information (NMI) [10] which is commonly used in inter-modality
registrations [II] as our driving similarity measure

_ H(R)+H(F(T)) 5
ARF(T)

Here, H(R) and H(F(T)) are the two marginal entropies, and H(R,F(T)) is the
joint entropy. In [9], a Parzen Window (PW) approach [12] is utilized to fill the joint
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histogram necessary in order to compute the NMI between the images efficiently.
To encourage realistic deformations, we utilize bending energy which controls the
“smoothness” of the deformation field across the image domain 2:

1 PT(x)|® |0°T(x)| |0°T(x)|?
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In an ideal registration, the optimized transformations from F to R (forward) and
R to F (backward) are the inverse of each other. i.e. Ttorward = Tgalckward and
TbaCkward:TfTaiward [13]. The used implementation by [I4] follows the approach by
[13] using compositions of Teorward and Thackward i order to include a penalty term

that encourages inverse consistency of both transformations:

Cinconsistency = Z ||Tforward (Tbackward ((E)) H2 + Z ”Tbackward (Tforward (m)) H2 (5)
xze xzes?

At each level of the registration, both the image and control point grid resolutions are
doubled compared to the previous level. We find suitable registration parameters for
both type 1) and type 2) registrations using visual inspection of the transformed image
and ground truth atlases. For type 1) registrations, multiple atlases are available to
be registered with each target image. We perform a simple majority voting in order
to generate our “noisy” segmentation label Y for each target image X.

2.2 Label Consistency with Same Patient Atlases

Because of anatomical consistency between different sequences of the same patient,
we employ inter-modality registration to obtain noisy labels for LGE images in type
2) registrations. Two sets of segmentations, denoted by Abggg p and }A/]@QGE, can be
obtained from the registrations: bSSFP to LGE, and T2 to LGE. In order to make
sure our noisy labels are accurate enough, we only employ the consistent region
?})Lsgg p YI%GE where both segmentations agree. In the non-consistent regions, we
still use the noisy label from type 1) registrations. In type 1) registrations, we use
symmetric registration with bending energy factor a=0.001 and inconsistency factor
B=0.001. We use five resolution levels and the maximal number of iteration per level
is 300. The final grid spacing along z, y and z are the same with five voxels. In type
2) registrations, we use six levels and the maximal number of iteration per level is

4000. The final grid spacing along x, y and z are the same with one voxel.

2.3 Deep Learning based Segmentation with Noisy Labels

In the second step, we train different deep convolutional networks for semantic seg-
mentation on the target data while using data augmentation techniques (rotation,
scaling, adding noise, etc.) to avoid over-fitting to the noisy labels.
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Given all pairs of images X and pseudo labels f/, we re-sample them to 1
mm? isotropic resolution and train an ensemble & of n fully convolutional neural
networks to segment the given foreground classes, with P(X)=£(X) standing for the
softmazx output probability maps for the different classes in the image. Our network
architectures follow the encoder-decoder network proposed in [15], named AH-Net,
and [5] based on the popular 3D U-Net architecture [3] with residual connections [16],
named SegResNet. For training and implementing these neural networks, we used
the NVIDIA Clara Train SDKE| and NVIDIA Tesla V100 GPU with 16 GB memory.
As in [15], we initialize AH-Net from ImageNet pretrained weights using a ResNet-18
encoder branch, utilizing anisotropic (3x3x 1) kernels in the encoder path in order
to make use of pretrained weights from 2D computer vision tasks. While the initial
weights are learned from 2D, all convolutions are still applied in a full 3D fashion
throughout the network, allowing it to efficiently learn 3D features from the image. In
order to encourage view differences in our ensemble models, we initialize the weights in
all three major 3D image planes, i.e. 3x3x 1, 3x1x3, and 1x3x3, corresponding to
axial, sagittal, and coronal planes of the images. This approach results in three distinct
AH-Net models to be used in our ensemble £. The Dice loss [4] has been established
as the objective function of choice for medical image segmentation tasks. Its properties
make it suitable for the unbalanced class labels common in 3D medical images:
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Here, y; is the predicted probability from our network f and g; is the label from
our “noisy” label map Y at voxel i. For simplicity we show the Dice loss for one
foreground class in Eq. [} In practice, we minimize the average Dice loss across the
different foreground classes. After inference and simple post-processing, we arrive at
our final label set for the targeted LGE CMR images. We resize the ensemble models’
prediction maps to the original image resolution using trilinear interpolation, fuse
each probability map using an median operator in order to reduce outliers. Then,
the label index is assigned using the argmaz operator:

£Dice =1- (6)

Y (X)=argmax( median( {&y(X),....£,(X)} ) ) (7)

Finally, we apply 3D largest connected component analysis on the foreground in
order to remove isolated outliers.

3 Experiments & Results

3.1 Challenge Data

The challenge organizers provided the anonymized imaging data of 45 patients with
cardiomyopathy who underwent CMR imaging at the Shanghai Renji hospital, China,
with institutional ethics approval. For each patient, three CMR sequences (LGE,

! https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk


https://devblogs.nvidia.com/annotate-adapt-model-medical-imaging-clara-train-sdk

6 Holger Roth et al.

T2, and bSSF) are provided as multi-slice images in the ventricular short-axis views
acquired at breath-hold. Slice-by-slice manual annotations of the right and left ven-
tricular, and ventricular myocardium have been generated as gold-standard using
ITK—SNAPE| for training of the mdoels and for evaluation the segmentation results.
The manual segmentation took about 20 minutes/case as stated by the challenge
organizers. We also use ITK-SNAP for all the visualizations shown in this paper. For
more details, see the challenge Websiteﬂ The available training and test data have
the following characteristics:

Training data: Test data:
— Patient 1-5: . .
e LGE CMR (image + manual label) Patient 6-45:

for validation e LGE CMR (only image)

e T2-weighted CMR (image + man-
ual label)
e bSSFP CMR (image + manual

label)
— Patient 6-35:
e T2-weighted CMR (image + man-
ual label)
e bSSFP CMR (image + manual

label)
— Patient 36-45:
e T2-weighted CMR (only image)
e bSSFP CMR (only image)

As one can see, only five ground truth annotations are available in the targeted LGE
images. However, 30 images have gold standard annotations available in different
image modalities, i.e. bSSFP and T2. We use all available annotations for type 1) and
type 2) multi-atlas label fusion approaches described in Section [2} After “noisy” label
generation for all testing LGE images, we train our deep neural network ensemble to
produce the final prediction labels for 40 LGE images in the test set. The five manually
annotated LGE cases are used as the validation set during deep neural network training
in order to find the best model parameters and avoid overfitting completely to the
noisy labels. Throughout the challenge, the authors are blinded to the ground truth
of the test set during model development and evaluation. Our evaluation scores on
the test set are summarized in Table [I} A comparison of the available ground truth
annotation in a validation LGE dataset and our model’s prediction is shown in Fig.

4 Discussion & Conclusion

In this work, we combined classical methods of multi-atlas label fusion with deep
learning. We utilized the ability of multi-atlas label fusion to generate labels for
new images using only a small set of labeled images of the targeted image modality

2 http://www.itksnap.org
3 https://zmiclab.github.io/mscmrsegl9/data.html
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Table 1: Evaluation scores on 40 LGE test images as provided by the challenge organizers.
Both overlap and surface distance-based metrics are shown. LV and RV denote the left
and right ventricle, respectively.

| Metric [LV Cavity[LV Myocardium[RV Cavity[Average‘
Dice 0.890 0.780 0.844 0.838
Jaccard 0.805 0.642 0.735 0.727
Surface distance [mm] 2.13 2.32 2.80 241
Hausdorff distance [mm] 11.6 16.3 18.1 15.3

¥

(b) g.. (c) g.t. 3D (d) rd. (e) pred. 3D

Fig. 2: Comparison of the available ground truth annotation (b) and (c) in a validation
LGE dataset and our model’s prediction (d) and (e) [patient 2 of the challenge dataset].

as atlases, although resulting in less accurate (or “noisy”) labels when compared
to manual segmentation. Furthermore, we enhanced the noisy labels by merging
more atlas-based label fusion results if annotations of the same patient’s anatomy
are available in different image modalities. Here, they came from different MRI
sequences, but they could potentially stem from even more different modalities like
CT, using multi-modality similarity measures to drive the registrations. After training
a round of deep convolutional neural networks on the “noisy” labels, we can see a
clear visual improvement over multi-atlas label fusion result. This points to the fact
that neural networks can still learn correlations of the data and the desired labels
even when training labels are not as accurate as ground truth supervision labels
[T7]. The networks are able to compensate for some of the non-systematic errors
in the “noisy” labels and hence improve the overall segmentation. We are blinded
to the test set ground truth annotations and cannot quantify these improvements
but visually, the improvements are noticeable as shown in Fig. [3| In conclusion, we
achieved the automatic segmentation of cardiac structures in LGE magnetic resonance
images by combing classical methods from multi-atlas label fusion and modern deep
learning-based segmentation, resulting in visually compelling segmentation results.
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