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Appendix
Due to constraints on the space available in the main paper,
we were unable to include all the details there. Here we
provide additional implementation details pertaining to our
(a) data pre-processing pipeline and (b) the configuration of
our DT-ED network. We also show additional results of the
ablation study (Section 5.1 in the main paper) on the test
partition of the GazeCapture dataset and the performance
of FAZE for the within MPIIGaze leave-one-person out set-
ting. Finally, we show the sensitivity of FAZE to various
design configurations.

A. Implementation Details
We describe further details in how we pre-process the
datasets used, and the configuration of the DT-ED ar-
chitecture. A reference implementation of both can be
found as open-source software at https://github.
com/NVlabs/few_shot_gaze.

A.1. Data Pre-processing

We employ a normalization procedure based on [12], which
is a revision of [10], but with a few small changes. We uti-
lize state-of-the-art open-source implementations for face
detection1 [4] and facial landmarks detection2 [1], respec-
tively. We use the Surrey Face Model [6] as the reference
3D face model, and select 4 eye corners and 9 nose land-
marks as described by the Multi-PIE 68-points markup [2]
for PnP-based [8] head pose estimation. This is in contrast
to [10, 12] which instead use the 4 eye corners and 2 mouth
corners. This is motivated by our observation that the mouth
corner landmarks are not sufficiently static due to facial ex-
pression changes, and that the inherent ambiguity in deter-
mining head yaw with very few co-planar landmarks in 3D
leads to less reliable head pose estimation.

In our work, we utilize a single image as input which
contains both eyes. For this purpose, we select the mean
of the 2 inner eye corner landmarks in 3D as the origin of

*The first two authors contributed equally.
1
https://github.com/cydonia999/Tiny_Faces_in_Tensorflow

2
https://github.com/jiankangdeng/Face_Detection_Alignment

our normalized camera coordinate system. We use a focal
length of 1300mm for the normalized camera intrinsic pa-
rameters, and a distance of 600mm from the face to produce
image patches of size 256× 64 to use as input for training.

A.2. Configuration of Disentangling Transforming
Encoder-Decoder (DT-ED)

We use the DenseNet architecture to parameterize our
encoder-decoder network [5]. We configure the DenseNet
with a growth-rate of 32, 4 dense blocks (each with 4 com-
posite layers), and a compression factor of 1.0. We neither
use dropout nor 1×1 convolutional layers. We use instance
normalization [11] and leaky ReLU activation functions
(with α = 0.01) throughout the network as they proved to
improve performance for all architectures.

To project CNN features back from latent features z, we
apply a fully-connected layer to output values equivalent to
32 feature maps of width 8 and height 2. The DenseNet de-
coder that we use to modelD is identical in construction to a
usual DenseNet but uses deconvolutional layers (with stride
1) in the place of normal convolutions, and 3 × 3 decon-
volutions (with stride 2) instead of average pooling at the
transition layers. To be faithful to the original implemen-
tation, we do not apply bias layers to convolutions in our
DenseNet-based DT-ED. We initialize all layers’ weights
with MSRA initialization [3], while biases of the fully-
connected layers are initialized with zeros.

B. Additional Results

We provide additional results of the ablation study on
the test partition of the GazeCapture dataset and evaluate
the within-dataset performance of FAZE on the MPIIGaze
dataset.

B.1. Ablation Study on GazeCapture

In the main paper, we provide the results of the ablation
study on the MPIIGaze dataset (Fig. 4 in the main paper).
Our evaluation setting is a cross-dataset evaluation, where
we train on the training partition of the GazeCapture dataset
[7] and test on the test partition of the same dataset as well

https://github.com/NVlabs/few_shot_gaze
https://github.com/NVlabs/few_shot_gaze
https://github.com/cydonia999/Tiny_Faces_in_Tensorflow
https://github.com/jiankangdeng/Face_Detection_Alignment
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Figure 2: Gaze errors of FAZE for within-MPII leave-one-
person out training (blue); and training on GazeCapture’s
training partition and testing one MPIIGaze (orange).

as on MPIIGaze [13]. Here we show additional results for
the GazeCapture test partition (Fig. 1).

In Fig. 1a we observe the same trends for the Gaze-
Capture test dataset that we observed for MPIIGaze. Our
proposed DT-ED architecture learns latent representations
that are better suited for gaze estimation than those learned
by a naive encoder-decoder architecture. Additionally, for
few-shot personalization significant gains in accuracy are
obtained with meta-learning an adaptable network, as we
propose, versus naively fine-tuning a network designed
for person-independent gaze estimation (Fine-tuning versus
MAML). The latter approach also leads to over-fits at very
low k. Fig. 1b shows the value of our proposed loss terms
of embedding consistency and of computing gaze from the
latent representations while training DT-ED, for GazeCap-
ture. Finally, Fig. 1c shows the consistent improvements
obtained for the GazeCapture dataset by preserving inter-
person differences versus not doing so.

B.2. Within-MPIIGaze Performance

So far Liu et al. [9] report the best known accuracy of 4.67◦

with 9 calibration samples on MPIIGaze with their differ-

ential network architecture. They use the within MPIIGaze
leave-one-subject out evaluation protocol for their experi-
ments. To directly compare against their method, we eval-
uate the performance of our FAZE framework for this ex-
perimental protocol (Fig. 2). With 9 calibration samples
FAZE obtains a gaze error of 3.88, which is a 17% im-
provement over Liu et al.’s method. Note, also, that within-
MPIIGaze training performs worse than training with Gaze-
Capture (see Fig. 6 in the main paper). This is expected,
given the significantly larger diversity of subjects present in
the GazeCapture training subset (993) versus MPIIGaze (14
in a leave-one-out setting), which benefits both DT-ED and
MAML. This observation corroborates with similar ones
previously made in [7].

C. Sensitivity Analysis
We show the influence of various design parameters on the
overall performance of our algorithm. These analyses help
to determine the parameters’ optimal values.

C.1. Latent Gaze Code

Dimension Our latent gaze code has the dimensions of
3 × Fg . In order to empirically select the optimal value of
Fg , we evaluate the performance of FAZE for several dif-
ferent values of Fg = {16, 3, 2} shown in Fig. 3, while
keeping the dimensions of the appearance and head pose
codes fixed at 64 and 16 respectively. Empirically we find
Fg = 2 to be optimal for both datasets and hence select it
for our final implementation.

Normalization In general we find that is beneficial to nor-
malize our 3×Fg-sized latent gaze code to achieve the low-
est gaze errors. We experiment with various methods for
normalization, which involve computing an `2 norm along
a particular dimension and dividing all the observed values
for that dimension with the norm. We compute norms along
the Fg dimension resulting in 3 norms. Alternatively, one
can normalize along the 3 dimension, resulting in Fg norms.
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Figure 1: Ablation Study on GazeCapture (test): Impact of (a) learning the few-shot gaze estimator using MAML and using
the transforming encoder-decoder for feature learning; (b) different loss terms for training the transforming encoder-decoder;
and (c) comparison of the different variants of embedding consistency loss term.
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Figure 3: Performance of FAZE for different dimensions Fg

of the 3× Fg-dimensional latent gaze code.

We observe that normalizing along the Fg dimension, pro-
duces lower gaze errors for GazeCapture and equivalent
ones for MPIIGaze, versus the alternate approach (Fig. 4).
Hence, we use it for our final implementation.
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