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Abstract

Accurately labeled real-world training data can be
scarce, and hence recent works adapt, modify or gener-
ate images to boost target datasets. However, retaining
relevant details from input data in the generated images
is challenging and failure could be critical to the perfor-
mance on the final task. In this work, we synthesize person-
specific eye images that satisfy a given semantic segmen-
tation mask (content), while following the style of a spec-
ified person from only a few reference images. We intro-
duce two approaches, (a) one used to win the OpenEDS
Synthetic Eye Generation Challenge at ICCV 2019, and
(b) a principled approach to solving the problem involv-
ing simultaneous injection of style and content informa-
tion at multiple scales. Our implementation is available at
https://github.com/mcbuehler/Seg2Eye.

1. Introduction

Recent generative models are capable of synthesizing re-
alistic images by using adversarial methods. However, re-
alism is not the only requirement for computer vision re-
search, as content and style can play important roles for
specific tasks, such as regression tasks which require high
accuracy, e.g. hand joints regression and eye gaze estima-
tion. In this paper, we study the task of generating realis-
tic near-eye images while preserving the content defined by
a semantic segmentation mask, and style defined by a few
images from a target person. We propose two methods to
tackle this task. Our first method uses image refinement and
is the winning solution of the OpenEDS Synthetic Eye Gen-
eration Challenge 20191, and our second method is a novel
architecture for ensuring preservation of desired content and
style. However, due to optimizing for a very specific error
metric, the generated images show blurry regions. There-
fore, we propose another more principled method for image
synthesis that produces realistic high-quality images that
still satisfy both content and style, and furthermore allows

1https://research.fb.com/programs/openeds-challenge

Figure 1: Walking the style latent space in our proposed
method, Seg2Eye. We extract latent style codes from two
people and show the decodings of their linear interpolation.

for an interpolation between styles. This method, Seg2Eye
(Style and Semantic Segmentation preserving GAN), uses
content-preserving spatially adaptive normalization blocks
(SPADE) [16] alongside style-preserving adaptive instance
normalization layers (AdaIN) [7, 8, 10], to inject both con-
tent and style information at different feature map scales. It
is simple yet highly effective when applied in conjunction
with a style consistency loss. In addition, style injection in
Seg2Eye is performed from latent embeddings of multiple
reference style images from the target person. This allows
for control as well as a sampling from the learned latent
space for synthesizing entirely new people (see Figure 1).

2. Related Work
Gaze Estimation. Recent works in gaze estimation mod-
ify existing synthetic or real eye images through domain
randomization [15], style transfer [20, 19, 12] and gaze re-
direction [3, 22, 23, 6, 14] to yield data for training more ro-
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bust and accurate models. However, the style transfer meth-
ods can be poor in preserving content (i.e. eye shape), and
re-direction methods can struggle with extrapolating from
gaze directions available during training.

Image Translation. Prior art in image translation often
train domain-specific models for cross-domain style trans-
fer [9, 21], use Adaptive Instance Normalization (AdaIN) to
allow real-time control of visual style [13, 7], and more re-
cently inject style [10] or content information (via SPADE
blocks [16]) at multiple feature map scales. Our pro-
posed Seg2Eye approach combines the power of AdaIN and
SPADE blocks for control of the style and content of gener-
ated eye images respectively.

3. Dataset
The provided dataset for the challenge, OpenEDS [4], is

a collection of near infra-red eye images from 152 people
captured by a virtual-reality headset (similar to [11]) and
includes segmentation map annotations for pupil, iris and
sclera regions for a subset of 12, 759 images and corneal
topography data for 143 of the 152 participants. The unla-
beled dataset has two subsets: a “generative” subset with
252, 690 images, and a “sequence” dataset with 91, 200
frames (from 1.5 seconds videos collected at 200Hz).

4. Method
In this section, we describe how we won the OpenEDS

challenge, and our suggested approach to generating realis-
tic eye images while preserving both content and style.

4.1. Eye Segmentation and Similarity Ranking

The OpenEDS dataset exhibits two modes, which we as-
sume to come from left vs. right eyes. Feeding a left image
in order to generate a synthetic image of the right eye im-
pacts performance due to sources of high error (glints, black
regions from the head mount) not being apparent in seg-
mentation maps nor consistently in the unlabeled images.
Hence, there is a need to carefully select images that come
from the same mode. In addition, the more similar the se-
lected unlabeled image is to the target image, the easier it is
for the network to produce high-quality output.

In order to find unlabeled images that are similar to a
segmentation mask, we train a DeepLab v3+ network [1, 2]
to predict pseudo-labels (segmentation masks) on the unla-
beled dataset and compare them to the target segmentation
mask. We use mean squared error as similarity measure.
The unlabeled images are then ranked by the similarity of
their predicted segmentation mask with the target segmen-
tation mask. We found the matching to perform better when
coloring the segmentation masks by the mean value of the
respective region across all persons in the training set.

The output of this step is a ranked list of unlabeled im-
ages of the same person for each segmentation mask. This
ranking is later used to either modify a similar image to sat-
isfy a test segmentation mask (Section 4.2), or generate a
new image (Section 4.3).

4.2. Refiner Network

Learning a Residual Map. The refinerRΘ is a DeepLab
v3+ network [2] with modified inputs and a different loss
function. It learns a residual map from the target segmen-
tation map MT , a similar reference image I from the same
mode and its pseudo-label MI . The predicted residual map
is added to the reference image I in order to produce the
final output image Î . We train the refiner end-to-end with
mean L2 error as the optimization objective.

T̂ = I +RΘ(MT ,MI , I) (1)

4.3. Seg2Eye Network

While the refinement approach (Section 4.2) wins the
challenge the images produced are not comparable in vi-
sual fidelity to the near IR eye images in the dataset (Figure
3). Furthermore, the previous approach is unable to synthe-
size new styles (or person identities). Hence, we propose
a generative adversarial network approach, which learns la-
tent style embeddings of unlabeled images and merges them
in order to produce photo-realistic outputs.

The basis of our method is a mixture between Gau-
GAN [16] and StyleGAN [10]. GauGAN is a recently pro-
posed generative adversarial network (GAN) with strong
segmentation mask (content) consistency, whereas Style-
GAN learns a suitable latent representation of style and in-
jects it via AdaIN [7].

Stylizing the Output. Figure 2c illustrates the informa-
tion flow from the encoder to the generator. We cal-
culate the latent style code by sampling a set of im-
ages I(1), I(2), ..., I(k) (k ∈ N) from a specified target
person and embed them via an encoder network s(i) =
Estyle(I

(i)). The style codes are aggregated by taking the
element-wise maximum: si = max

1≤j≤k
s

(j)
i .

This is inspired by the set-based face recognition litera-
ture [17, 18], where variations in appearance and head pose
in the real world and consequent loss of information can be
mitigated by merging information from multiple images of
the same person. Our style encoder uses spectral instance
normalization in order to preserve style information [7, 13].
The aggregated style code is used to calculate the parame-
ters of AdaIN in the generator blocks. In this way, we can
create a realistic eye image of a person with just a few un-
labeled eye images and perform latent walks in style space.
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Figure 2: Seg2Eye architecture. (a) describes our novel SPADE+Style Block, which combines Adaptive Instance Normal-
ization (AdaIN) and Spatially Adaptive Normalization (SPADE) to allow for simultaneous style and content injection into
the generator at multiple scales. (b) shows how the SPADE+Style Block is used in our ResBlocks, and (c) shows the overall
architecture. The generator takes a downsampled segmentation mask and a latent style code as input and produces a syn-
thetic image. The style code is calculated from several style images. We illustrate losses for style consistency, but omit the
discriminator losses for brevity.

Content Preservation. In order to produce images fol-
lowing the input segmentation mask, our generators repeat-
edly apply spatially adaptive normalization (SPADE) [16].
In comparison to batch or instance norm, where the adaptive
parameters modify channels of feature maps as a whole, the
SPADE layer learns a scale and offset for each element in
the feature map based on the reference segmentation mask.

Generator Architecture. Our generator model is an ex-
tension of GauGAN [16], a model that applies spatially
adaptive normalization (SPADE) to generate synthetic im-
ages given a semantic segmentation mask. We modify the
SPADE block to inject both content and style. Our com-
bined normalization, the SPADE+Style Block, takes three
inputs: a semantic segmentation map M , a style vector s
and the actual feature maps X . The input feature maps X
take two different paths and are merged again by addition
before leaving the block. One path is an AdaIN [7] layer
where the parameters are computed from a style vector. The
AdaIN layer applies a learned affine transform to adjust the
dimensionality of the style vector to the correct number of
channels. The other path is a SPADE block as described by
[16], but we apply spectral instance norm instead of syn-
chronized batch norm. The output is divided by two, which
we found to stabilize the training. In short, we compute
SPADE+STYLE(X) = (SPADE(X) + AdaIN(X))/2.

Following GauGAN, our generator starts from a small
segmentation map and then doubles feature map resolution
in a series of SPADE+Style ResBlocks. Each SPADE+Style
ResBlock consists of two SPADE+Style Blocks and a
residual connection. Figure 2 shows the elements of a
SPADE+Style (a) Block and (b) ResBlock.

Training. We train Seg2Eye on paired labeled samples
from the training subset of OpenEDS, and sample style im-
ages from the top 200 images from the similarity ranking

stage (Section 4.1). Further implementation information
can be found in our supplementary materials.

4.3.1 Objective Function

Discriminator Losses. The adversarial loss LGAN fol-
lows GauGAN [16] and thus takes as input the concatena-
tion of the semantic segmentation mask and the generated
image. We also apply an L1 consistency loss on the dis-
criminator feature maps. Concretely, let F (i)

D (·) extract the
feature map of the discriminator layer i and let I and Î be
the real and generated image. Our feature map consistency
loss is computed as the sum of the intermediate feature map
consistency terms. Let m be the number of feature maps in
the discriminator. We compute the loss as

LDF = Σm
i=2||F

(i)
D (Î)− F (i)

D (I)||1 (2)

Pixel-Matching Loss. As we have paired training sam-
ples, we apply a simple L2 consistency loss on the gener-
ated vs. target image: LL2||Î − I||2.

Style Consistency Loss. We compute the style consis-
tency loss by passing the generated image Î through the
style encoder Estyle. Let s be the aggregated style vectors
as described above and ŝ = Estyle(Î) be the style vector
for the generated image Î . We compute the latent style
code consistency loss as Lstyle = ||s − ŝ||2. In addition,
we compute a consistency loss on the Gram matrix of the
feature maps of the encoder.

Let F (i)
E (·) extract the i-th feature map of the encoder

Estyle. We calculate the encoder Gram matrix consistency
loss as

LGram = Σm
i=2||Gr(F

(i)
E (Î))−Gr(F (i)

E (I))||1 (3)

where m is the number of feature maps in the encoder and
Gr(·) is the function to compute the Gram matrix [5].



Figure 3: Qualitative outputs of the Refiner Network. The
left three columns show the input reference image, pseudo-
label and target label. The three columns on the right show
the learned residual map, the final predicted image and the
target image. We see that the modified regions are blurry
due to optimizing for the L2 score.

Full Training Objective. The full training objective for
the generator G (given a discriminator D) is written as:

LG =λGANLGAN + λDF
LDF

+ λL2LL2

+ λstyleLstyle + λGramLGram

(4)

with λGAN = λDFM
= 10, λL2 = 15, λstyle = 0.5 and

λGram = 104.

5. Results
The per-image objective function of the OpenEDS

Synthetic Eye Generation Challenge2 is given as:
1

HW

√
ΣH

i ΣW
j (Îij − Iij)2. For this challenge, we de-

veloped multiple models, two of which we present in this
paper. Section 5.1 describes the results that optimizes for
the target metric and wins the challenge and Section 5.2
talks about an alternative solution to the problem.

5.1. Refiner Network

Our refinement model (cf. Section 4.2) achieved the low-
est score of all teams at 25.23. The scores of the second
(PAU) and third teams (tomcarrot) were 27.69 and 33.79,
respectively. The baseline provided by the challenge orga-
nizers was 59.25. Although the refiner network could win
the challenge, we found that its generated images contain
blurry regions and ghosting effects (see Figure 3). We be-
lieve that the reason for these effects lie in the L2 optimiza-
tion objective, which encourages “washed out” regions.

5.2. Seg2Eye

The original GauGAN architecture starts from just a sin-
gle downsampled style image, whose style is supposed to be
preserved. When directly applied to the OpenEDS dataset,
we found that all output images followed the same style,
i.e., a complete lack of style preservation. We introduced
our novel SPADE+Style blocks to incorporate style infor-
mation via AdaIN, specifically allowing for the merging of
style information from several images via a style encoder

2http://evalai.cloudcv.org/web/challenges/
challenge-page/354/evaluation

Figure 4: Qualitative outputs of Seg2Eye. From left to right
are (1) one of the style image inputs, (2) target segmentation
mask input, (3) generated image, and (4) target real image
taken from the validation set. The generated image closely
follows the segmentation mask and input style.

and max-reduction. We found that this improves model
performance in terms of both L2 score and visual quality.
However, without any additional encouragement, the net-
work did not learn a consistent latent style space that al-
lowed for interpolation in the style latent space. For this
reason, we added a style consistency loss on both the latent
code and the Gram matrix of the encoder feature maps. In
this scenario, style was applied considerably better and we
could perform latent space walks as shown in Figure 1

The final Seg2Eye approach does not achieve the low-
est score of all approaches, but produces realistic images
of high-perceptual quality. Figure 4 illustrates some exam-
ple in- and outputs. It can be seen that visual fidelity is
vastly improved compared to the Refiner Network. Addi-
tionally, Figure 1 shows a style interpolation between two
people, demonstrating that a good understanding of style
has been met. We also believe that this is more in line with
the expected final usage of such a method in generating vast
amounts of training data in a controlled manner.

6. Conclusion

In this paper, we described both the winning approach
to the OpenEDS Synthetic Eye Generation Challenge and
a principled approach to generating person-specific eyes
given a semantic segmentation map. Our method, Seg2Eye,
is inspired by [10] and suggests a modification to spatially
adaptive normalization as introduced by [16] that leads to a
a more consistent application of style.

In future work, one should explore different ways to
combine the content and style information in the Seg2Eye
generator, or combine style information from multiple style
images. Furthermore, to truly take advantage of Seg2Eye,
an interpretable latent space of eye shapes should be learned
such that plausible and high fidelity IR images of eyes can
be created from entirely unseen people.
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