# Supplement for Latency of 30 ms Matters More Than Refresh Rate Above 60 Hz for First Person Targeting Tasks

Josef Spjut\* NVIDIA

Jonghyun Kim NVIDIA Ben Boudaoud NVIDIA

Alexander Majercik NVIDIA

David Luebke NVIDIA

#### **ACM Reference Format:**

Josef Spjut, Ben Boudaoud, Kamran Binaee, Jonghyun Kim, Alexander Majercik, Morgan McGuire, David Luebke, and Joohwan Kim. 2019. Supplement for Latency of 30 ms Matters More Than Refresh Rate Above 60 Hz for First Person Targeting Tasks. In *SIGGRAPH Asia 2019 Technical Briefs (SA '19 Technical Briefs), November 17–20, 2019, Brisbane, QLD, Australia.* ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3355088.3365170

## **1 HARDWARE DETAILS**

High level hardware details are summarized in Table 1. An image of the complete setup is shown in Figure 1.

*Mouse*. We modified the mouse to connect the left and right mouse buttons along with common ground to the click-to-photon logging tool (event monitor), which was connected over USB to the same PC that ran the FirstPersonScience software.

*Display.* The experimental monitor supports 60, 120, 240 and 360 Hz variable refresh rate (VRR), which was enabled during our experiments.

*GPU configuration.* We enabled variable refresh rate in our GPU and followed the configuration in Table 2 to minimize latency.

## 2 CLICK-TO-PHOTON LATENCY MONITORING

To characterize end-to-end system latency, we developed a hardware tool to measure click-to-photon latencies. This tool detects the click event via direct wiring to a modified mouse, while using an amplified photodetector aimed at a location in the vertical center of the screen to measure average arrival time of photon events. An Arduino captures both mouse and display transition time stamps and sends the recorded time-event pairs to a desktop PC over a USB virtual COM port (VCP) as seen in Figure 2.

Our software development process focused on minimizing the latency present in the application in addition to selecting hardware

SA '19 Technical Briefs, November 17-20, 2019, Brisbane, QLD, Australia

© 2019 Association for Computing Machinery.

Kamran Binaee<sup>†</sup> NVIDIA

Morgan McGuire NVIDIA

Joohwan Kim\* NVIDIA

Table 1: Hardware used in experiment setup. Display is Variable Refresh Rate (VRR) which allows careful control of refresh rate.

| Component   | Specification       |
|-------------|---------------------|
| CPU         | Intel Core i7-9700K |
| GPU         | NVIDIA RTX 2080 Ti  |
| RAM         | 32GB DDR4 4600      |
| Mouse       | Logitech G203       |
| Display     | 25 inch 1080p VRR   |
| Serial Card | PCIe RS232 Card     |

#### Table 2: 3D settings in GPU for our experiment.

| Setting Name                | Value                      |  |  |  |
|-----------------------------|----------------------------|--|--|--|
| Maximum pre-rendered frames | 1                          |  |  |  |
| Power management mode       | Prefer maximum performance |  |  |  |
| Preferred refresh rate      | Highest available          |  |  |  |
| Threaded optimization       | Off                        |  |  |  |
| Triple buffering            | Off                        |  |  |  |



Figure 1: The hardware setup used including the mouse, display, desktop PC and Click-to-Photon logger (Section 2).

components that gave us greatest control over the latency. While we were able to greatly reduce the latency of our application over what is naively achieved with traditional GPU-based rendering approaches, the majority of savings came from intelligently selecting

<sup>\*</sup>Joint First Authors

<sup>&</sup>lt;sup>†</sup>Also with Rochester Institute of Technology.

This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in *SIGGRAPH Asia* 2019 Technical Briefs (SA '19 Technical Briefs), November 17–20, 2019, Brisbane, QLD, Australia, https://doi.org/10.1145/3355088.3365170.



Figure 2: Mouse to photon logger configuration



Figure 3: We artificially add latency to cause the average latency experienced to be the same, though the distribution of latencies was necessarily different. The measured averages are in the main submission. Note that there can be other factors that affect the input+render latency and actual latencies tend to vary more than shown in our simplified figure.

when to swap buffers, and ensuring the Windows 10 OS and graphics drivers were configured appropriately. Figure 3 shows how we normalized latency across different refresh rate settings.

### **3 ADDITIONAL RESULTS**

Repeated measures ANOVA were conducted using JASP version 0.9.1, and violations of sphericity were subjected to Greenhouse-Geisser correction. The detailed results of ANOVA are presented in Tables 3 and 4.

In addition to the results presented in the main document, we also examined the effect of motion type on subjects task completion time. Aligned with our expectations, and as discussed above, we observed a significant effect of motion type for both experiments (F(4.00, 28.00)=81.16, p<0.001,  $\eta_p^2$ =0.88 for 1-HIT and F(2.00, 10.00)=64.95, p<0.001,  $\eta_p^2$ =0.93 for TRACK). There were statistically significant interactions between latency and motion type (F(8.00, 56.00)=10.18, p<0.001,  $\eta_p^2$ =0.59 for 1-HIT and F(4.00, 20.00)=20.30, p<0.001,  $\eta_p^2$ =0.80 for TRACK). The interaction between refresh rate and motion type was found significant for TRACK (F(6.00, 30.00)=2.98, p=0.021,  $\eta_p^2$ =0.373) but it did not reach significance for 1-HIT (F(12.00, 10.00))

Table 3: Results of ANOVA for the 1-HIT experiment

|                          | Sum of  | df  | Mean Square | F      | р      | $\eta^2$ |
|--------------------------|---------|-----|-------------|--------|--------|----------|
|                          | Squares |     |             |        |        |          |
| Frame Rate               | 0.300   | 3   | 0.100       | 0.934  | 0.442  | 0.118    |
| Residual                 | 2.251   | 21  | 0.107       |        |        |          |
| Latency                  | 20.044  | 2   | 10.022      | 49.674 | < .001 | 0.876    |
| Residual                 | 2.825   | 14  | 0.202       |        |        |          |
| Motion Type              | 197.544 | 4   | 49.386      | 81.165 | < .001 | 0.921    |
| Residual                 | 17.037  | 28  | 0.608       |        |        |          |
| Frame Rate * Latency     | 1.251   | 6   | 0.208       | 1.235  | 0.308  | 0.150    |
| Residual                 | 7.090   | 42  | 0.169       |        |        |          |
| Frame Rate * Motion Type | 0.359   | 12  | 0.030       | 0.741  | 0.707  | 0.096    |
| Residual                 | 3.388   | 84  | 0.040       |        |        |          |
| Latency * Motion Type    | 3.919   | 8   | 0.490       | 10.181 | < .001 | 0.593    |
| Residual                 | 2.694   | 56  | 0.048       |        |        |          |
| Frame Rate * Latency *   | 0.855   | 24  | 0.036       | 0.998  | 0.471  | 0.125    |
| Motion Type              |         |     |             |        |        |          |
| Residual                 | 5.992   | 168 | 0.036       |        |        |          |
|                          |         |     |             |        |        |          |

Table 4: Results of ANOVA for the TRACK experiment

|                          | Sum of  | df | Mean Square | F      | р      | $\eta^2$ |
|--------------------------|---------|----|-------------|--------|--------|----------|
|                          | Squares |    |             |        |        |          |
| Frame Rate               | 1.047   | 3  | 0.349       | 4.592  | 0.018  | 0.479    |
| Residual                 | 1.140   | 15 | 0.076       |        |        |          |
| Latency                  | 9.295   | 2  | 4.648       | 59.280 | < .001 | 0.922    |
| Residual                 | 0.784   | 10 | 0.078       |        |        |          |
| Motion Type              | 31.197  | 2  | 15.599      | 64.947 | < .001 | 0.929    |
| Residual                 | 2.402   | 10 | 0.240       |        |        |          |
| Frame Rate * Latency     | 0.316   | 6  | 0.053       | 1.233  | 0.317  | 0.198    |
| Residual                 | 1.283   | 30 | 0.043       |        |        |          |
| Frame Rate * Motion Type | 0.231   | 6  | 0.039       | 2.980  | 0.021  | 0.373    |
| Residual                 | 0.388   | 30 | 0.013       |        |        |          |
| Latency * Motion Type    | 1.040   | 4  | 0.260       | 20.300 | < .001 | 0.802    |
| Residual                 | 0.256   | 20 | 0.013       |        |        |          |
| Frame Rate * Latency *   | 0.120   | 12 | 0.010       | 0.895  | 0.557  | 0.152    |
| Motion Type              |         |    |             |        |        |          |
| Residual                 | 0.668   | 60 | 0.011       |        |        |          |
|                          |         |    |             |        |        |          |

84.00)=0.741, p=0.71,  $\eta_p^2$ =0.096). Our results show that the refresh rate and latency effects, if present, were more pronounced for unpredictable target motions (namely *Stray* and *Jump*) than simplistic (*Static* and *Straight*). In some cases, a latency advantage of a few tens of milliseconds can be turned into a competitive advantage on the order of seconds depending on weapon type and motion strategy. Thus we accept our hypothesis that latency and refresh rate effects are more pronounced when target motion is complicated and unpredictable, where timely and accurate visual feedback become more critical for aiming.