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1 HARDWARE DETAILS
High level hardware details are summarized in Table 1. An image

of the complete setup is shown in Figure 1.

Mouse. We modified the mouse to connect the left and right

mouse buttons along with common ground to the click-to-photon

logging tool (event monitor), which was connected over USB to the

same PC that ran the FirstPersonScience software.

Display. The experimental monitor supports 60, 120, 240 and

360 Hz variable refresh rate (VRR), which was enabled during our

experiments.

GPU configuration. We enabled variable refresh rate in our GPU

and followed the configuration in Table 2 to minimize latency.

2 CLICK-TO-PHOTON LATENCY
MONITORING

To characterize end-to-end system latency, we developed a hard-

ware tool to measure click-to-photon latencies. This tool detects

the click event via direct wiring to a modified mouse, while using

an amplified photodetector aimed at a location in the vertical center

of the screen to measure average arrival time of photon events. An

Arduino captures both mouse and display transition time stamps

and sends the recorded time-event pairs to a desktop PC over a USB

virtual COM port (VCP) as seen in Figure 2.

Our software development process focused on minimizing the

latency present in the application in addition to selecting hardware
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Table 1: Hardware used in experiment setup. Display is Vari-
able Refresh Rate (VRR) which allows careful control of re-
fresh rate.

Component Specification

CPU Intel Core i7-9700K

GPU NVIDIA RTX 2080 Ti

RAM 32GB DDR4 4600

Mouse Logitech G203

Display 25 inch 1080p VRR

Serial Card PCIe RS232 Card

Table 2: 3D settings in GPU for our experiment.

Setting Name Value

Maximum pre-rendered frames 1

Power management mode Prefer maximum performance

Preferred refresh rate Highest available

Threaded optimization Off

Triple buffering Off

Figure 1: The hardware setup used including the mouse, dis-
play, desktop PC and Click-to-Photon logger (Section 2).

components that gave us greatest control over the latency. While

we were able to greatly reduce the latency of our application over

what is naively achieved with traditional GPU-based rendering ap-

proaches, the majority of savings came from intelligently selecting
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Figure 2: Mouse to photon logger configuration

Figure 3: We artificially add latency to cause the average la-
tency experienced to be the same, though the distribution of
latencies was necessarily different. The measured averages
are in themain submission. Note that there can be other fac-
tors that affect the input+render latency and actual latencies
tend to vary more than shown in our simplified figure.

when to swap buffers, and ensuring the Windows 10 OS and graph-

ics drivers were configured appropriately. Figure 3 shows how we

normalized latency across different refresh rate settings.

3 ADDITIONAL RESULTS
Repeated measures ANOVA were conducted using JASP version

0.9.1, and violations of sphericity were subjected to Greenhouse-

Geisser correction. The detailed results of ANOVA are presented in

Tables 3 and 4.

In addition to the results presented in the main document, we

also examined the effect of motion type on subjects task comple-

tion time. Aligned with our expectations, and as discussed above,

we observed a significant effect of motion type for both experi-

ments(F(4.00, 28.00)=81.16, p<0.001, η2
p
=0.88 for 1-hit and F(2.00,

10.00)=64.95, p<0.001, η2
p
=0.93 for track). There were statistically

significant interactions between latency and motion type (F(8.00,

56.00)=10.18, p<0.001, η2
p
=0.59 for 1-hit and F(4.00, 20.00)=20.30,

p<0.001, η2
p
=0.80 for track). The interaction between refresh rate

andmotion typewas found significant for track (F(6.00, 30.00)=2.98,

p=0.021,η2
p
=0.373) but it did not reach significance for 1-hit (F(12.00,

Table 3: Results of ANOVA for the 1-hit experiment

Sum of df Mean Square F p η2
Squares

Frame Rate 0.300 3 0.100 0.934 0.442 0.118

Residual 2.251 21 0.107

Latency 20.044 2 10.022 49.674 < .001 0.876

Residual 2.825 14 0.202

Motion Type 197.544 4 49.386 81.165 < .001 0.921

Residual 17.037 28 0.608

Frame Rate * Latency 1.251 6 0.208 1.235 0.308 0.150

Residual 7.090 42 0.169

Frame Rate * Motion Type 0.359 12 0.030 0.741 0.707 0.096

Residual 3.388 84 0.040

Latency * Motion Type 3.919 8 0.490 10.181 < .001 0.593

Residual 2.694 56 0.048

Frame Rate * Latency * 0.855 24 0.036 0.998 0.471 0.125

Motion Type

Residual 5.992 168 0.036

Table 4: Results of ANOVA for the track experiment

Sum of df Mean Square F p η2
Squares

Frame Rate 1.047 3 0.349 4.592 0.018 0.479

Residual 1.140 15 0.076

Latency 9.295 2 4.648 59.280 < .001 0.922

Residual 0.784 10 0.078

Motion Type 31.197 2 15.599 64.947 < .001 0.929

Residual 2.402 10 0.240

Frame Rate * Latency 0.316 6 0.053 1.233 0.317 0.198

Residual 1.283 30 0.043

Frame Rate * Motion Type 0.231 6 0.039 2.980 0.021 0.373

Residual 0.388 30 0.013

Latency * Motion Type 1.040 4 0.260 20.300 < .001 0.802

Residual 0.256 20 0.013

Frame Rate * Latency * 0.120 12 0.010 0.895 0.557 0.152

Motion Type

Residual 0.668 60 0.011

84.00)=0.741, p=0.71, η2
p
=0.096). Our results show that the refresh

rate and latency effects, if present, were more pronounced for un-

predictable target motions (namely Stray and Jump) than simplistic

(Static and Straight). In some cases, a latency advantage of a few

tens of milliseconds can be turned into a competitive advantage

on the order of seconds depending on weapon type and motion

strategy. Thus we accept our hypothesis that latency and refresh

rate effects are more pronounced when target motion is compli-

cated and unpredictable, where timely and accurate visual feedback

become more critical for aiming.
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