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ABSTRACT

Efficient manipulation of sparse matrices is critical to a wide range
of HPC applications. Increasingly, GPUs are used to accelerate
these sparse matrix operations. We study one common operation,
Sparse Matrix Multi-Vector Multiplication (SpMM), and evaluate the
impact of the sparsity, distribution of non-zero elements, and tile-
traversal strategies on GPU implementations. Using these insights,
we determine that operating on these sparse matrices in a Densified
Compressed Sparse Row (DCSR) is well-suited to the parallel warp-
synchronous execution model of the GPU processing elements.

Preprocessing or storing the sparse matrix in the DCSR format,
however, often requires significantly more memory storage than
conventional Compressed Sparse Row (CSR) or Compressed Sparse
Column (CSC) formats. Given that SpMM kernels are often bot-
tlenecked on DRAM bandwidth, the increase in DRAM traffic to
access the larger DCSR formatted data structure can result in a
slowdown for many matrices.

We propose a near-memory transform engine to dynamically
create DCSR formatted tiles for the GPU processing elements from
the CSC formatted matrix in memory. This work enhances a GPU’s
last-level cache/memory controller unit to act as an efficient trans-
lator between the compute-optimized representation of data and its
corresponding storage/bandwidth-optimized format to accelerate
sparse workloads. Our approach achieves 2.26X better performance
on average compared to the vendor supplied optimized library for
sparse matrix operations, cuSPARSE.
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1 INTRODUCTION

Numerous important algorithms from various application domains
use linear algebra operations as their fundamental building blocks.
These applications belong not only to the traditional domains of
scientific and high-performance computing (HPC) [2, 3, 5, 14, 16,
20, 27, 36, 37], but also important enterprise domains, such as graph
analytics [25, 28, 33, 34], and emerging paradigms like deep neural
networks (DNNs) [18, 29]. More specifically, it is sparse linear alge-
bra that is central to these applications as the nature of the problem
domains often lead to input datasets that have few non-zero values
in them. In large graphs, for example, the adjacency matrix repre-
sentation is often naturally sparse because each vertex in the graph
is connected to only a small subset of the aggregate collection of
nodes in the graph. On the other hand, in DNNs, pruning of neural
connections is a major focus of energy and performance optimiza-
tion [11, 26] leading to sparse input tensors at various stages of the
pipeline.

In this paper, we focus on analyzing and optimizing Sparse Ma-
trix Multi-Vector Multiplication (SpMM), a prime representative of
sparse linear algebra kernels, and a frequent substrate for many im-
portant applications, on a Graphics Processing Unit (GPU) platform.
While the massive parallel execution facilities offered by GPUs are
a natural fit for the inherently parallel nature of matrix-matrix mul-
tiply, the efficient utilization of the GPU’s high bandwidth memory
interface is often the key to achieving high overall performance
for these memory bound workloads. Consequently, in our work,
we aim to optimize the memory traffic through a combination of
efficient algorithms that leverage tiling of the matrices to minimize
off-chip requests and a hardware mechanism that converts data
from a bandwidth-efficient format to a compute-efficient format
during execution.

Through our exploration of tiled-SpMM, we discover that the
nature of sparsity of the input sparse-matrix, ie., the distribution
of the non-zero values, actually determines the optimal tiling and
traversal strategy. With the help of an analytical model of the mem-
ory access patterns of different tiling approaches and traversal
orders, we arrive at a heuristic that helps us choose the optimal
algorithm based on the input matrix’s sparsity pattern. However,
tiling the sparse matrix, while beneficial from a parallelization point
of view, actually creates a new computation bottleneck. When a
sparse matrix is tiled into several vertical strips, several rows have
no non-zero elements in the tile, despite having a few non-zero
values in the untiled matrix. Using the conventional CSR format for
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sparse matrices in these cases leads to redundant memory traffic
for these rows that have been virtually emptied as a consequence
of tiling and wasted cycles in the compute pipeline. As a conse-
quence we leverage past work on a dense representation of a CSR
format, densified CSR (DCSR) [12], to optimize the memory traffic
and compute pipeline inefficiencies associated with tiling the sparse
matrix. However, the tiled-DCSR format has non-trivial storage
overhead due to the increased metadata (to track the empty rows).
To solve these disparate needs, where on the one hand the CSR and
CSC representations are good for storage and access bandwidth,
while the DCSR format is conducive for execution time, we design
a hardware unit placed in the GPU’s memory controller to perform
the conversion from the CSC format in the memory to the appro-
priate DCSR format for each tile of the sparse matrix, at runtime.
Essentially, the software calls an online format conversion API
that uses this hardware unit to deliver data to the compute units.
Over a large suite of sparse matrices, we find that our techniques
lead to significant improvements over the commercial cuSPARSE
library [23].

In summary, the two most significant contributions of this paper
are

o A detailed analysis of the impact of the nature of sparsity
of the input matrix on the efficiency of tiling and traversal
strategies for parallel SpMM on GPUs. This analysis is then
used to design a hybrid algorithm.

e A hardware mechanism that performs near-memory data
transformation to translate a storage and bandwidth effi-
cient format of a sparse matrix to a compute efficient format
tailored for the algorithm at hand. This technique can be rein-
terpreted in the context of other problems, and represents
a new and tractable application for near-data processing
paradigms.

2 BACKGROUND - SPMM ON GPUS

Sparse Matrix Multi-Vector Multiplication or SpMM is one of the
key kernels used in a wide range of applications [3, 5, 25, 27, 32, 37].
These applications include many scientific or numeric applications
such as blocked eigen solvers [2, 16] and non-negative matrix fac-
torization [14], graph processing such as graph centrality calcula-
tions [28] and all-pairs shortest path [33], and data science such as
pruned neural network [11, 26].

SpMM multiplies sparse matrix A by dense matrix B as shown
in Algorithm 1. The result C can be either sparse or dense, but in
many practical scenarios where at least 1 non-zero element exists
in each row, the result C is likely to be as dense as B.

Real sparse matrices are highly sparse, with density less than
10% and are typically stored using a compressed format. We target
these sparse matrices. While there have been many different kinds
of compressed formats proposed in the past, Compressed Sparse
Row or CSR has become the community standard.

CSR for a sparse matrix comprises three vectors, value, colidx,
and rowptr. Figure 1 shows a sparse matrix with three rows and
three columns and only five of the total nine elements having
non-zero values (denoted by a,b,c,x, and y). The CSR representa-
tion of the matrix is shown in the same figure. The value vector
contains all five of the non-zero elements in the matrix, and the
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Algorithm 1 Sparse Matrix Multi-Vector Multiplication (SpMM).
Input: CSR A[M][N], float B[N][K]
Output: float C[M][K]

1: fori=0toArows—1do

2. for j = A.rowptr[i] to A.rowptr[i + 1] — 1 do

3 fork=0to K —1do
4 Cli][k]+ = A.values[j] x B[A.colidx[j]][k]
5: end for
6 end for
7: end for
A
row 0 A b c value |[a|b|c| x|y
colidx |0 |1 |2 |1 |3
row 1 T //
row 2 X y row_ptr [0 |3 |3 |5
O «~
coll col2 col3 E g g

Figure 1: CSR format.
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Figure 2: Stall reasons of SpMM (NVPROF).

colidx vector stores the column index for the corresponding entry
in the value vector. Thus the value and colidx vectors each have as
many elements as the number of non-zero elements in the matrix.
The rowptr vector stores the indices that indicate the boundaries of
rows in the value and colidx vectors. So each element of the rowptr
corresponds to one row in the matrix and points to the start of the
contents of that row in the value and colidx vectors. If rowptr(i]
and rowptr[i+1] have the same index stored in them, it indicates
that row[i] is empty.

SpMM implementations on GPUs are very often bottlenecked
by memory accesses. This is illustrated in Figure 2 which shows
that the majority of the stall time in a GPU can be attributed to
fetching data from memory when executing SpMM. This can be
attributed to two reasons. First, the inherent indirections in the CSR
format necessitate multiple memory accesses to fetch each non-zero
element in the sparse matrix. Second, as evident from Algorithm 1,
which elements of B matrix are useful is dictated by the contents of
the colidx vector. Therefore accesses to elements of the dense matrix
are predicated on accesses to the elements of the CSR representation
of the sparse matrix. These two factors compound to increase the
demand for the memory subsystem during the execution of SpMM.
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A simple analytical model can be used to estimate the extent
of the memory-bound nature of an SpMM execution. The CSR
representation of a N X N sparse matrix A requires a total of 8 X
nnz+4X(N+1) bytes (nnz = number of non-zero elements) assuming
4 bytes for each element of the rowptr, colidx and value vectors.
Assuming a dense matrix of the same dimension as the sparse
matrix, accesses to the dense matrix and the output matrix generate
an additional 8N? byte of memory traffic. On the other hand, the
total floating point operation count is 2 X nnz X N as each non-
zero element in A needs to go through a multiplication with a
vector of elements in a row of B as well as an addition operation to

accumulate the result. Thus the bytes/FLOP for SpMM is given by

2
%&Aﬁ(m. Using typical values we found in the suite of

matrices we evaluated, N = 20K and 0.1% density of matrix A, we
find that SpMM has a byte/FLOP of 5.1 bytes/FLOP. Clearly, SpMM
is memory bandwidth bound.

3 WORKLOAD ANALYSIS

In this section, we analyze approaches for SpMM on modern GPUs
with special emphasis on tiling techniques that impact reuse and
computation efficiency. This analysis helps us establish the proper
baseline technique for SpMM on a GPU in terms of memory access
behavior and sheds light on the type of data transformation that
we can perform near memory to accelerate this workload.

3.1 Data Access Locality

Tiling is an obvious technique to distribute a data-parallel workload
like SpMM amongst the many compute cores on a GPU. Each SM
can be tasked to work on a slice of input sparse matrix and the input
dense matrix to produce a tile of the output matrix (or part thereof).
Matrix partitioning (a.k.a. tiling) and tile traversal order have a
direct impact on data access locality and performance. By being
aware of the tile access patterns, it is possible to allow a sub-matrix
to stay in the shared memory in a Streaming Multiprocessor (SM)
and/or in the cache hierarchy, enabling higher data reuse.

3.1.1 C-/B-/A-Stationary. Clearly, the three possible tiling strate-
gies are to keep a tile of the output matrix (C), or the input sparse
matrix (A), or the input dense matrix (B) in the shared memory to
maximize reuse. We refer to these as C-stationary, A-stationary and
B-stationary respectively.

C-stationary. The most intuitive approach, output (C) station-
ary, computes a tile or sub-matrix of output C in its entirety in
one SM. Matrix A is horizontally partitioned (horizontal strips) and
processed by a thread block. To calculate complete cells of C, the
thread block reads a vertical partition (vertical strip) of B. Threads
in a warp can be mapped across columns in the vertical strip of B
processing with a row in the horizontal strip of A (row-per-warp)
or rows in the horizontal strip of A processing with a column in the
vertical strip of B (row-per-thread). The row-per-warp approach
accumulates the partial sums in a thread local register and does
not need to perform a warp reduce operation or atomic updates to
a shared memory location to collect all partial contributions cal-
culated in each thread in the warp. However, since this technique
distributes the threads across the columns of B, the last column
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slice will be load imbalanced if the number of columns is not a mul-
tiple of 32 (the width of a warp). The row-per-thread approach can
solve this issue, but variation in the number of non-zero elements
(nnz) across rows imbalances the load for each thread. This type of
load imbalance generally is more common than the load-balancing
cause by the reminder columns of the row-per-warp approach.
Thus, row-per-warp is the technique of choice when performing
output-stationary tiling for SpMM.

The memory footprint of the input sparse matrix is generally
smaller than the input dense matrix. To maximize the potential
cache hit at the last level cache (LLC) of larger B strips, we iterate
over the strips of A, reusing the same B strip. C-stationary approach
minimizes the memory footprint of output dense matrix C and does
not incur atomic operations, while B cannot be reused except for
LLC hits.

B-stationary. In the B-stationary approach, a tile of B is loaded
into the shared memory only once. Sparse A matrix has to be
tiled, and tiles in a vertical strip of A are processed by a thread
block, while different thread blocks in other SMs can concurrently
compute partial sums for the same output C tile. Because of this
concurrency, the B-stationary technique requires atomic operations
to update C tiles. The size of the B tile is determined based on
the shared memory size. As discussed above, we employ row-per-
warp approach inside a thread block. The partial sums of C can be
cached at LLC, and to maximize the reuse in LLC, different SMs
execute a kernel for different tiles within a vertical strip of A and
calculate partial contributions of the same set of C tiles. However,
this technique is sensitive to the footprint of the output C matrix
and the atomic bandwidth in the LLC/memory to compute C.

A-stationary. The third alternative, sparse matrix (A) stationary,
stores a tile of A into the shared memory, multiplies its non-zero
elements by the elements in a horizontal strip of B, and stores
the partial contributions to a vertical strip of C. This option is
not common, because B and C have to be visited multiple times,
resulting in the largest number of memory accesses across all three
tiling techniques.

3.1.2  Memory Traffic Comparison. Table 1 compares the compul-
sory memory traffic of the three alternatives. We do not consider
data reuse in caches. We can see A-/B-/C-stationary just requires
a single fetch of matrix A/B/C, respectively, and has to visit other
matrices multiple times. Moreover, A and B stationary produce
partial contributions of C, thus requiring up to 2x access latency
for atomic operations. Since the input sparse matrix A has much
smaller memory footprint than dense B and C, A-stationary is not
efficient in bandwidth consumption. Thus, B- or C-stationary are
the positive candidates.

Table 1 also shows an analytical model of the amount of memory
traffic. In this model, d denotes the density of the input sparse ma-
trix, n the number of rows in the matrices and k the number of rows
in a tile. For simplicity, we assume all matrices have a dimension of
n X n. Typically, the memory traffic of B for B-stationary and C for
C-stationary are similar, especially when nnz/row and nnz/col are
greater than 1. Therefore, the memory traffic of C for B-stationary
and B for C-stationary is the key factor for the performance.

With the uniform non-zero distribution with density d, C-stationary
provides better performance than B-stationary because B-stationary
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Figure 3: Alternatives of tiling approach for SpMM: C-stationary(left), B-stationary(middle), A-stationary(right).

Table 1: Compulsory Memory Traffic Comparison.

A (small) B (large) C (large)
. Single fetch Multiple fetches Multiple updates matrix size = n X n, tile size = k X k,
A Stationary . n " N . .
size(A.csr) AnnzXn Mnnzrowssrip X f XN X 2 atomic bandwidth = 2X memory access,
. Multiple fetches Single fetch Multiple updates A.nnz = dn? < n?,
B Stationary . n n " . N
size(A.csr) X % Npnzeol X 1 Mnnzrowsip X § XN X2 Nnnzrow = Npnzeol ~ N (uniform distribution),
Multiple fetch i i n o~ {1-(1-adf}n.
C Stationary .u iple fetc is Multiple fetches Single update nnzrowsrip { ( )}
size(A.cst) X £ A.nnzXn Nnnzrow X N

suffers from the atomic bandwidth. However, in real matrices, their
non-zero distribution is skewed and not all tiles in a row contribute
to a C tile. This could more than amortize the cost of the atomic
update and brings performance benefits compared to C-stationary.
On the other hand, the skewness does not affect the performance
of C-stationary because regardless of the non-zero distribution the
necessary elements of B are fetched (n times) from the memory
as in Table 1 and they cannot be reduced based on the skewness
unlike the C tiles of C-stationary. We use a heuristic described later
to determine which algorithm to use based on our profiling result.

3.1.3  Tile traversal strategies. The analytical model does not con-
sider the effect of caches. We will discuss how to maximize cache
hits, assuming we employ B-stationary. There are two ways to
traverse the tiles on B, column-major traversal and row-major tra-
versal.

Row-major traversal launches kernels for B tiles that align in a
row, then proceeds to the next row. By traversing B in row major,
different SMs read the same vertical A strip, while touching different
output strips of C. This approach can possibly capture the locality
of A in LLC, however, touching entire C multiple times is rather
expensive.

On the other hand, column-major traversal traverses B tiles in
a column. This approach reads strips of A most frequently but
can utilize the locality of C to some extent by writing back to the
same tiles until all partial sums are accumulated. Because of the
difference in the memory footprint of A and C, the column-major
traversal usually gives better performance. Similarly, we have a
similar tradeoff of the traversal order of A and B in C-stationary.

There can be further opportunities for optimizations using 2D
or hierarchical tiling to maximize cache reuse in LLC. They are
orthogonal to our proposal and we do not discuss them in this

paper.

3.1.4  Non-Zero Distribution and Heuristics. Non-zero distribution
has considerable implications on the algorithm selection. For exam-
ple, denser sparse matrix benefits from data reuse from B-stationary,

while uniform non-zero distribution makes B-stationary less effi-
cient due to the atomic bandwidth.

In this section, we analytically assess the number of memory ac-
cess based on the analytical model in Table 1. We design a heuristic
which produces larger value when it estimates B-stationary to be
advantageous for an input matrix. We first discuss memory traffic of
output C. While npnzrow = Nynzcor holds in many cases, some ma-
trices have skewed (row-wise) non-zero distribution which results
in very small nppzrow. This is advantageous for C-stationary but
can be less efficient for B-stationary because npnzrow < Mpnzcol
will break the symmetricity of memory traffic of B for B-stationary
and C for C-stationary. On the other hand, a smaller nppnzrow,,,; -
reduces the number of atomic operations and is beneficial for B-
stationary.

The bandwidth of loading B matrix is mainly determined by
the density. Having larger density can increase the data reuse of
B-tiles for B-stationary. On contrary to C for C-stationary, B for
B-stationary is difficult to benefit from smaller n,,,,.,; because fig-
uring out empty columns and aligning B submatrices with skipped
columns are challenging with row-major data formats (i.e. CSR and
DCSR).

We also take the skewness of non-zero distribution into account.
Matrices with the skewed distribution tends to have numbers of
heavy row segments and empty row segements, which contributes
to higher locality. We use normalized entropy Hyorm, which can be
obtained by dividing Shannon’s entropy by Hartley’s entropy and
represents the randomness of the information. Hyporpm, is derived as
follows:

r.nnz r.nnz 1

Hnorm = —

og .
i Annz  ° Annz logA.nnz’
teA.tilesT€L.rows

where A.tiles denotes the set of tiles in A, ¢.rows the row segments
in tile t, and x.nnz nnz within x.

From the discussion above, we use the following Sparsity Skew-
ness Function (SSF) as the heuristic to determine the algorithm for
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Figure 4: Performance vs. SSF value. A dot is plotted for each
matrix in [9]. y > 1 means B-stationary performs better.

a given input sparse matrix

Nnnzrow/n A.nnz

SSF =
mean(nnnerWstrip /n)

(1 - Hnorm) . (2)

SSF is meant to provide a good baseline algorithm. As in recent
works (e.g. [12]), state-of-art kernels pick the algorithm based on
input matrix profiles. We profile approximately 4,000 matrices from
SuiteSparse Matrix Collection [9] and use the learned threshold
value SSF;j, of SSF to determine the algorithms. We fully scanned
all matrices to evaluate the heuristics. We believe these parameters
can be obtained through sampling to minimize profiling time, but
we leave it for future work.

Figure 4 shows our profiling result. In this plot, the x-axis shows
the value produced by SSF, and the y-axis shows the execution
time of C-stationary normalized to that of B-stationary, which
essentially says that B-stationary is better when the dot is above
one, otherwise C-stationary is better. Using the learned threshold
SSF;p, we vertically split the graph and when SSF is larger than
the threshold, we choose B-stationary, and otherwise, we choose
C-stationary. There are some points at the upper left and lower
right quadrants, where our heuristic misclassifies the matrices to
the suboptimal approach. However, they are small in number and
more than 93% are correctly categorized. Forthcoming results in
this paper use this heuristic as well.

3.2 Computation Efficiency

While tiling allows the utilization of the parallel resources in the
GPU and careful travel strategies can optimize reuse patterns, using
the naive sparse matrix format (CSR) for tiles of A adversely impacts
the computation and storage efficiency. Due to the limited shared
memory capacity, it is often desirable to traverse narrow vertical
strips of the sparse input matrix. Given a typical tile width of 64,
Figure 5 depicts the sparsity of the strips of sparse matrices as a
histogram of the non-zero row density in a strip. We observe that
the vast majority of rows in a strip of A (the input matrices are
from the SuiteSparse Matrix Collection [9]) are all zeros. Using CSR
to represent these sparse tiles with a majority of empty rows has
two pitfalls.

First, sparse strips have a lot of redundant information in the
row pointer. As pointed out above, 99% of rows in the strips are
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empty on average, resulting in having approximately 99 copies of
redundant row pointers for every single entry that has a useful
piece of information. For example, in Figure 6, while only rows 3, 9,
10, 12 have non-zero element(s), the CSR representation still needs
a full set of rowptr, one for each row. Naturally this introduces an
unwanted overhead in the memory access stream of A tiles. Second,
it will be difficult to keep the compute lanes busy, since processing
elements will spend a significant fraction of runtime trying to find
work (i.e. non-empty rows) in the highly sparse strips of A.

To alleviate this problem we utilize the Densified-CSR (DCSR)
format, introduced in previous work by Hong et al. [12]. In DCSR,
another level of indirection is added in the data structure by the
introduction of the rowidx vector. Each element of the rowidx
vector is an index of a row in the tile of A that has at least one non-
zero value. By paying the additional metadata cost for row indices to
specify the non-zero rows, DCSR can compress the empty rows as in
Figure 6 (right). When the tile is highly sparse as is the typical case
for vertically stripped CSR, introducing DCSR not only removes the
redundant entries in the rowptr vector and thus improves memory
behavior, but also boosts computation efficiency, as warps can be
devoted to work on rows that have non-zero values.

Figure 7 shows the percentage of inactive thread executions
reduced after introducing DCSR. Inactive shows the thread execu-
tions that did not execute any instruction because the thread was
predicated or inactive due to divergence. Large inactive executions
in Tiled CSR are caused by the empty rows, where we have one
active thread to skip over the row_ptr. We observe 90% reduction
of the inactive thread execution. The reduction of storage is even
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Figure 8: Metadata storage size of tiled DCSR normalized to
that of tiled CSR.

dramatic. Figure 8 shows the footprint of tiled CSR normalized
to DCSR. Tiled DCSR commonly has orders of magnitude smaller
footprint compared to tiled CSR. There are some exceptions for
matrices which have a large number of non-zero row segments in
their non-zero strips.

3.3 Metadata Storage of DCSR

Tiled DCSR increases computation efficiency and reduces metadata
storage for tiles. We could do this format transformation offline
and store the DCSR metadata in the GPU main memory. However,
in addition to non-trivial transformation cost [39], tiling inevitably
adds additional metadata regardless of the type of the tile format (i.e.
tiled-DCSR or tiled-CSR), because untiled (original) CSR is usually
the most storage efficient data format. Since SpMM is bandwidth
bottlenecked, this additional metadata does impact the performance
if they are read from the memory, although we have shown tiled
DCSR has a decent footprint compared to tiled CSR.

Figure 9 illustrates tiled DCSR footprint normalized to (original)
CSR. On average, tiled DCSR has 1.3-1.4X (2X at the maximum)
storage overhead for tiling, except for some tall skinny matrices
which have few non-zero strips and a small number of non-zero
rows. Importantly, as discussed above, the sparse input matrix A is
most frequently read out from the GPU main memory. Since SpMM
is bandwidth bottlenecked, this storage overhead is not negligible.

The storage overhead of the tiled data format is even higher
for matrices with scattered non-zero distribution (i.e. less skewed
data). However, under a situation where the storage overhead of
the tiled data format is tolerable, the tiled algorithm can offer better
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SM Tiled DCSR

XBar

conversion logic

Figure 10: Overall system flow.

performance due to its ability to reuse tiles in the shared memory,
especially when the density is relatively high.

This led us to the idea of online tiling and DCSR conversion,
which dynamically generates tiles and annotates for DCSR from
storage efficient untiled formats. In the following section, we present
a technique that enables the small memory footprint of the untiled
format with the compute / data-reuse performance and tiling capa-
bility of DCSR, without incurring preprocessing cost.

4 ONLINE DATA FORMAT CONVERSION

We introduce a technique of online data format conversion to
address the discrepancy of the storage-efficient data format and
the computation efficiency data format. While many of the near-
memory transaction optimization approaches have explored the
design space of efficient data compression schemes for relaxing
memory bandwidth targeting general memory traffic, our approach
converts the specific data format and annotates useful information
for efficient computation.

The execution flow of our system is depicted in Figure 10. The
data conversion unit is placed in a frame buffer (FB) partition and
accessed by an API call from a user program on a GPU. An example
API which requests a tile of A is shown in Figure 11. This API is an
intrinsic function converted by the compiler into a message sent to
the conversion unit along with the current frontier data (much like
a warp vector store instruction) and the pointers to the input CSC
and the output DCSR. The request is queued and processed in the
order of arrival, and kicks off the conversion unit. The conversion
unit fetches elements within a fixed number of rows starting from
row_start in a strip specified by strip_id, keeping track of the
current row frontier of CSC using col_frontier. Then, it returns
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1 /* Device Code */
2 int col_frontier[64] = {0};
3 DCSR tiled_dcsr;

s for (row_start = 0 ;

6 row_start < num_rows ;

7 row_start += DCSR_HEIGHT /*=64%/)

s {

9 GetDCSRTile(strip_id, row_start, col_frontier
10 csc.val, csc.row_idx, csc.col_ptr, //inputs
1 tiled_dcsr.val, tiled_dcsr.col_idx, //outputs
12 tiled_dcsr.row_ptr, tiled_dcsr.row_idx,

13 &nnzrows, &nnz);

15 /* Tiled DCSR kernel here */

6 )
Figure 11: Online conversion API
64 ...127 64 ... 127
CSR Ccsc

Figure 12: Column slicing approach of different baseline for-
mats (a) CSR (b) CSC.

a stream of converted tiled DCSR data which will eventually be
stored in the shared memory of the SM the request is sent from.

Since FB partitions do not communicate with each other, the
entire data required to produce a tile have to be partitioned and
stored into the same DRAM partition. We will discuss later in
Section 6 the effect of this restriction to load balancing and our
solutions.

4.1 Baseline Data Format

While widely-used CSR can be used as the baseline format for
the conversion, this will cause a lot of challenging problems. Two
approaches can be considered for the CSR-to-DCSR conversion:
stateless and stateful approach. The stateless approach does not hold
any state in the conversion logic. To construct a strip of columns c to
¢+ N, the conversion logic needs to scan for each row and find non-
zero entries such that colidx[i] € {c .. ¢ + N}, because the number
of non-zero entries in each row is different and the memory address
of an element in a specific column cannot be statically figured
out. Since a binary scan is O(log n), the overall complexity of one
conversion is at least O(nlog n). This incurs prohibitive bandwidth
cost and also hardware complexity.

The stateful approach remembers the previous frontiers of rows
to quickly find the next strip. In this case, the conversion logic has to
manage the jagged frontier of entire row entries as in Figure 12 (a),
and this requires large metadata storage. Moreover, this is only
useful when strips are sequentially accessed, and random access to
a strip is as costly as the stateless approach. This situation is likely
to happen because multiple SMs can work on different strips.
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Figure 13: Walk-through example of CSC-to-DCSR conver-
sion.

We propose to use CSC as the baseline data format. CSC is
aligned with respect to its columns, and thus extracting a vertical
strip from CSC is fairly easy compared to CSR. Conversion from
CSC to DCSR just has to walk down the columns starting from the
index in colptr as illustrated in Figure 12 (b). CSC is approximately
the same size as CSR for square matrices, but it does not require
additional metadata storage to efficiently build vertical strips unlike
the stateless approach of CSR. Random access to a vertical strip
can also be efficiently supported. For non-square matrices, CSC’s
col_ptr and CSR’s row_ptr can have different storage size, and
CSC becomes larger when the sparse matrix is wide. If this is com-
mon in a workload, a DCSC kernel can potentially be a host kernel
at SMs, performing CSR-to-DCSC conversion using the same en-
gine. Note that deserializing data from a serialized format for CSC is
almost equivalent to CSR in complexity. For example, widely-used
Matrix Market format [24] uses coordinate list (COO) format.

4.2 Microarchitecture

4.2.1 Walk-Through Example. Figure 13 shows a walk-through
example of the online CSC-to-DCSR conversion. () col_frontier
of each lane is initialized with col_ptr of CSC. col_frontier
points to the first element in each column of the strip (fat green
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Figure 14: CSC-to-DCSR conversion engine.

arrows in Figure 13). (@ Find lanes with smallest row_idx and copy
the element in the lanes to the output DCSR along with col_idx.
row_ptr and row_idx are updated to point the first entry of the
lanes. col_frontier of the lanes is incremented unless it reaches
col_ptr of the next column. (3 Repeat (2) until the lanes sweep all
the elements in the designated matrix field. () Return DCSR.

4.2.2  Architecture Overview. We build an example hardware that
converts a matrix from CSC form to N-column wide DCSR form
as shown in Figure 14. col_ptrs of N columns are stored in two
N-element wide arrays @. One array holds the original pointer val-
ues that show the range of elements in columns (boundary_ptr).
The other vector holds N column pointers (frontier_ptr), corre-
sponding elements of which form the col_frontier.

The first step is checking whether there are any elements in each
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(a) 2-Input Comparator Unit

column by comparing elements in frontier_ptr and boundary_ptr.
If the element in frontier_ptr is smaller than that in boundary_ptr,

we see that there is at least one remaining elements so we load its
coordinate and element @. If the element of frontier_ptr turns
to be the same as that of boundary_ptr, all elements in the column
are translated to elements in DCSR format. Second, the comparator
module takes N row coordinates, each of which is the frontier of a
column in CSC. This comparator module consists of multiple stages
of magnitude comparators with a minimum coordinate vector that
returns i) the minimum row coordinate value and ii) column indices
that include those minimum row coordinates ©. The outputs of the
comparator module are used for two processes. First, the column
indices of the minimum row coordinates update col_frontier by
increasing the corresponding column indices in frontier_ptr @
and generating requests for data of the updated indices @. Second,
those are used for generating a row of DCSR format by transferring
the minimum row coordinates as a row index, the number of the
minimum column coordinates as the increment of row pointer, and
the column indices of the minimum coordinates as column indices
in DCSR format @.

Figure 15 shows the details of the comparator and its hierarchical
organization. We extend 4-bit magnitude comparator to a 32-bit
magnitude comparator to simultaneously evaluate two integer-
type coordinate inputs. The 2-input comparator unit, shown in

(b) 4-Input Comparator Unit

Figure 15: Detailed hardware design for comparator unit.

Figure 15 (a), consists of a 32-bit magnitude comparator, a coor-
dinate bypass unit, and minimum coordinate vector bypass units
(hereinafter called minimum bypass units). The coordinate bypass
unit is a simple multiplexer that drives a minimum coordinate based
on the output of the magnitude comparator. The minimum bypass
unit generates a bit vector of the positions of the minimum co-
ordinates. For example, if COORy is smaller than COOR;, output
COORx will be COORy and min[1:0] will be 01;. A hierarchy of
the 2-input comparator unit builds an N-input comparator unit (©
in Figure 14). For example, 4-input comparator unit in Figure 15 (b)
takes four input coordinates. Each of the two 2-input comparator
units outputs a smaller coordinate from their two inputs and its
locations as a bit vector. The outputs are delivered to another 2-
input comparator unit, which provides the smallest coordinate and
its locations. If COORyj is the smallest, COOR, will be COOR3 and
min[3:0] will be 1000, If there are multiple minimum coordinates
(e.g., COOR( and COORy), the output bit vector will point all the
locations (COORz = COORy = COOR; and min[3:0] = 0101;).

So far, we have described the detailed method to build a com-
parator unit, one of the major components in our conversion unit.
We build each individual component of the conversion unit and
estimate its area and power consumption in Section 5.3. While we
build a fixed-purpose hardware accelerator for the conversion units,
there could be many possible implementations based on the demand
from applications, which could be extended from our study.

5 EXPERIMENTAL EVALUATION
5.1 Methodology

Dataset: We use real sparse matrices from SuiteSparse Matrix Col-
lection [9]. We filter out matrices with large dimension (> 44k rows)
to fit dense B and C matrix of the same dimension in the GPU main
memory. We also ignore the matrices with small dimension (< 4k
rows) to let every SM get at least a single subproblem. Note this
does not limit the generality; we test more than 3,500 different ma-
trices without any biases, and the tested matrix set have divergent
non-zero distribution and density. We further discuss techniques to
apply our idea to larger matrices that do not fit in the GPU’s main
memory in Section 6. The small matrices may be better processed
by CPUs because they cannot fully utilize GPU resources and also
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Figure 16: Heuristic vs. Speedup over cuSPARSE [23].

the dataset can possibly fit in CPU caches. We use 32-bit floating
point datatype for multiplication and assign random values if a ma-
trix does not have values (e.g. matrices which describe connectivity
of nodes).

HW/SW Baseline: We use a server-class NVIDIA GV100 GPU.
GV100 has 5,120 FP32 CUDA cores which operate at 1,530 MHz, up
to 96 KB shared memory / SM, 6,144 KB L2 cache, and 16 GB HBM2
main memory with 4,096-bit bus providing 870 GB/s bandwidth.
GV100 has die size of 815 mm?. We compile our CUDA software
using nvce in CUDAToolkit v9.0 with -O3 compile option. We use
B tile dimension of 64 x 64 to fully utilize the shared memory of
an SM. We compare the results and performance with cuSPARSE
v9.0 [23]. We verify our implementation can produce the same
output as cuSPARSE.

Bandwidth Simulation: Our proposed method enables a small
CSC memory footprint with the computation efficiency of DCSR.
We simulate the CSC bandwidth using our Tiled DCSR kernel on
the GPU by fetching random values from L2 cache using inline
assembly for the difference of the metadata footprint. By reading
from L2, we simulate the memory footprint of CSC and the Xbar
bandwidth requirement of tiled DCSR or untiled DCSR.

5.2 Performance

Figure 16 shows speedup over cuSPARSE and its correlation with
the heuristic value. In this evaluation, we assume a realistic situ-
ation where the input sparse matrices are provided either in (un-
tiled)CSR/DCSR or CSC format. We include untiled DCSR because
converting from CSR to (untiled) DCSR is straightforward and its
cost is not overwhelming, while it provides significant performance
improvement for highly sparse matrices (lower SSF value). The
orange dots plot speedup for the CSR/DCSR baseline (C-stationary).
We plot the better results from CSR and DCSR to show its upper-
bound for each matrix. We observe all of the matrices with lower
SSF value than SSF;h prefer DSCR. The blue dots plot speed up
based on our online conversion approach from CSC to (tiled) DCSR
(B-stationary). We observe it generally improves performance for
higher SSF value as expected in the analytical model (Section 3).
Moreover, it can provide performance benefit even for the matrices
with lower SSF value, although the speedup is not as high as untiled
DCSR (C-stationary). Thus, under a circumstance where we cannot
characterize the input beforehand, we can blindly use CSC format
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as the input and apply our method. This all-tiling approach will
provide 1.63X performance benefit compared to the baseline.

On the other hand, under a situation where we can select the
input format from CSR or CSC and the algorithm from C- or B-
stationary based on profiled SSF value, we can synergistically ben-
efit from both approaches (orange dots on the left and blue dots
on the right of Figure 16), achieving the best result (2.26). This
is very close to the optimal speedup of 2.30%, where we assume
we can perfectly classify matrices. Online tiling reduces the effect
of DCSR metadata (which is not included in our heuristic) and
makes it closer to the analytical model in Section 3, providing more
than 96% categorizing accuracy. We observe around 95% of input
matrices see performance improvement under our scheme.

We also evaluate the performance of tiled DCSR converted offline.
By introducing offline tiled-DCSR (B-stationary) in combination
with offline DCSR (C-stationary), we observe 2.03X speedup on
average, using the same SSF. This does not consider the offline
tiling cost of DCSR, thus providing optimistic results. This offline
conversion cost is not trivial and it often takes more time than the
main SpMM kernel. Our approach brings the tiling benefits without
incurring the offline tiling costs in terms of both processing time
and storage.

We notice that some matrices do not achieve performance bene-
fits from our proposal. There can be multiple causes that interact
to produce inefficiency. For example, there could be imbalances
of non-zero distribution across rows, which causes longer critical
latency for a group of threads in a warp. This row-level non-zero
skew can be addressed by merge based approach [21]. Also, too
many non-zero elements per row could be balanced by changing
how to allocate warps and threads per row (e.g. partial warps [22]).
These approaches are orthogonal to our proposal and can be applied
to both B- and C-stationary.

5.3 Area and Energy Consumption

We evaluate the additional area and energy consumption to inte-
grate our proposed mechanism described in Section 4.2.2, which
generates a 64 column wide DCSR matrix from a CSC matrix. We
build detailed circuit models of the comparator, buffer, and control
logic by using the standard cell library of TSMC 16 nm process tech-
nology [35]. The energy overhead is estimated based on the worst
case input output combination, which requires the highest energy.
We use CACTI [13] to estimate the performance and overhead for
the internal buffer memory. We place our data transformation unit
every HBM2 pseudo channels (64 pseudo channels in total).
Throughput demand. We first estimate the requested through-
put of our mechanism. Our goal is providing higher throughput
than data traffic from DRAM, thereby always providing better per-
formance than the baseline. The smallest throughput that our mech-
anism can provide is the case of generating only one element per one
DCSR row, which requires i) 8-byte input data (one index and one
single-precision floating-point value) or ii) 12-byte input data (one
index and one double-precision floating-point value). One pseudo
channel of HBM2 supports 13.6 GB/s throughput, which can deliver
8-byte data every 0.588 ns and 12-byte data every 0.882 ns. To match
these throughput, we build multiple stages of pipeline, the largest
latency of which is smaller than the cycle time of 0.588 ns. Our
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estimation shows that the longest latency in our pipeline is 0.339 ns,
which we observed from a stage of coordinate comparator.

Internal buffer demand for hiding the latency for supply-
ing per-column data. With integrating our multi-stage pipeline,
the throughput of our proposed logic can fit in the target through-
put. To enable the maximum throughput of conversion engine,
all 64 column entries need to be supplied on time, which takes i)
3.3 ns for figuring out which column entries are consumed and
needs to be delivered from memory (® and @ in Figure 14), and
ii) 15 ns for accessing DRAM (CL: Column address strobe latency,
the time delay between issuing DRAM command and delivering
data from DRAM). This high latency for supplying per-column data
significantly reduces overall throughput. To avoid this, we add a
prefetch buffer that is fast (less than 0.588 ns target latency) and
large enough to compensate for the long latency. To determine the
capacity of the prefetch buffer, we conduct a case study for the
highest per-column data demand, in which we consume one 8-byte
element (12 bytes in double-precision) from the same column entry
every 0.588 ns cycle time (0.882 ns in double-precision). Based on
these, we determine the size of our internal memory structure as
256 bytes per column (16 Kbyte in 64 column wide DCSR) to be able
to hide 18.8 ns in both single-precision and double-precision cases.
This internal buffer is enough to hide the latency for supplying
per-column data demand, even in the case of rare 100% DRAM
channel utilization.

Area and energy consumption. In our estimation, the area
for one transformation unit is 0.077 mm?. In GV100 with 64 HBM2
pseudo channels, the total area for our transformation units is
4.9 mm?, which is 0.6% of the overall chip (815 mm?). We evalu-
ate the highest power consumption, which is the case of always
generating a single element DCSR row. Generating one single ele-
ment DCSR row with 8-byte data (4-byte index and 4-byte value)
consumes 6.29 pJ every 0.588 ns (7.09 pJ every 0.882 ns for 8-byte
data value), leading to 0.68 W (0.51 W for 8-byte value) with a fully
loaded memory system (870 GB/s). Considering that our evaluated
system consumes maximum 250 W, the energy overhead of our
mechanism is trivial even in the worst case. Indeed, the peak power
of our engine is 0.27% of the TDP (and 2.96% of the idle power).
Clearly, our average speedup (2.26x) more than amortizes for the
added power and energy. Moreover, the processing time of the en-
gine is smaller than the kernel processing time of each SM, thus
it can mostly be hidden. The head and tail effects are negligible
compared to the overall processing time. Furthermore, it can be
clock-gated when not in use. Thus, no energy cost is added to the
normal GPU operation.

The cost of the transform engine is proportional to the memory
bandwidth. Thus a smaller system will also require fewer transfor-
mation engines. If we consider NVIDIA’s 284 mm? TU116 chip with
288 GB/s of aggregate bandwidth across 24 16-bit wide 12 GB/s
GDDR6 channels, adding 24 transform engines would cost 1.85 mm?.
This is 0.65% of the overall area (similar to the 0.6% overhead for
GV100).

6 DISCUSSION
6.1 Data Layout and Load Balancing

A naive data layout of the sparse CSC input may cause memory
traffic congestion issue at FB partitions. Figure 17 (left) illustrates

Daichi Fujiki, Niladrish Chatterjee, Donghyuk Lee, and Mike O’Connor

=
52
m 22 m 9
af
S
FB1 | FB2 | FB3 | FB4 ol FB1 ;l/ FB3 | FB4
3=
<7 >
S FB3 | FB4 | FB1 | FB2

\ 4

FB4 | FB3 | FB2 | FB1

FB2 | FB1 | FB4 | FB3

A strips

Figure 17: Load balancing issue and tile separation ap-
proach.

that each of the strips of sparse A matrix is allocated to one of the
four FB partitions. As in the figure, allocating an entire strip of A
in one FB partition causes a camping problem where multiple SMs
pound on the same FB partition. Ideally, a shared unified memory
would enable SMs to share a strip across SMs, however, in practice,
SMs only have a private shared memory, thus with such data layout
load balancing issue will inevitably arise.

To address the load balancing problem, we horizontally split the
strips into tiles and store the tiles across multiple FB partitions.
This allows SMs to access different parts of a strip stored in differ-
ent FB partition, as illustrated in Figure 17 (right). When an SM
advances to process the next tile in a strip, current FB partition
returns next_fb_ptr and current col_idx_frontier. We do not
have to store column index offset of a tile in the memory because
tiles in a strip are sequentially accessed. However, next_fb_ptr
and col_idx_frontier will cause small increase in the memory
footprint. This overhead is small because we do not break up a
strip into thousands of segments unlike the stateful CSR-to-DCSR
conversion (Section 4).

We analyze the performance impact of switching FB partition
by simulating its overhead of the additional memory bandwidth by
inserting L2 load instructions. We use synthetic matrices with uni-
form random distribution and randomly selected matrices from [9],
and analyze the execution time normalized to that of cuSPARSE as-
suming FB partition switching happens for every x non-zero rows,
varying x. We observe that the overhead of the additional memory
bandwidth adds negligible performance impacts if the number of
non-zero tile rows stored in an FB partition is not less than 64.
Therefore, we can just split the strip as many as the number of
FB partitions, and since we are not required to do random access
within a strip, there will be no non-trivial metadata that consumes
bandwidth.

Alternatively, we can put the conversion unit in SMs. This also
solves the load balancing problem, although it incurs 2X area cost
to allow all SMs to have the conversion unit and to increase the
buffer size to cover the increased latency for the Xbar traversal etc.

6.2 Towards Large Scale SpMM

SpMM for large scale matrices requires huge storage for dense B
and C. For example, 2M X 2M dense matrix is as large as 17 TB, and
the entire matrix cannot fit in the GPU main memory. For those
extremely large matrices, we can divide the work and process each
submatrix of the dense matrices by streaming the working data
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set from the system memory to GPU’s main memory. This can
be enabled by using multiple CUDA streams or paging in and out
of Unified Virtual Memory (UVM). Further, we can have multiple
GPUs working on individual subproblems individually.

Our proposed method can naturally fit in this picture. In a multi-
GPU system, the input sparse matrix is shared by all the partic-
ipating GPUs by making its copies because A is the most space
efficient data among the three. Since remote communication for
fetching the dense matrices will be the bottleneck, a GPU node
will fetch tiles in vertical B strips and calculate complete vertical C
strips to minimize the communication. The space efficient CSR/CSC
format is beneficial in this context by allowing larger memory space
for B and C strips to overlap computation and data streams. Also,
by dynamically generating DCSR tiles and its metadata within FB
partitions of each GPU, we can provide the aforementioned bene-
fits of CSC’s bandwidth efficiency and tiled-DCSR’s computation
efficiency.

7 RELATED WORK

To the best of our knowledge, this is the first work that demon-
strates the feasibility of near-memory data format transformation
for SpMM. Below we discuss some of the closely related works.

Sparse Linear Algebra. Since sparse linear algebra is a funda-
mental operation in many kernels, there has been a large body
of works which propose efficient parallel algorithms for heteroge-
neous architectures. A number of works have investigated efficient
sparse data structure and algorithm for SpMV for GPUs [1, 4, 8,
17, 31, 38]. Recently Merrill et al. [21] proposed merge-based ap-
proach for parallel SpMV. Merge-based approach strictly balances
the workload by performing balanced decomposition of loads for
non-zero data and row offsets by finding a merge-path. Merge-based
approach is also employed in [39] for SpMM. These are orthogonal
to our approach and can be integrated to provide better perfor-
mance especially when a skewed non-zero distribution is observed
across rows.

Hong et al. [12] propose to extract highly clustered row seg-
ments from the sparse matrix. The heavy clusters are formatted
into Densified CSR (DCSR) and multiplied by submatrices of the
dense matrix cached in the GPU shared memory to achieve high
data reuse. The remainder of A forms a light and sparse matrix,
which is stored in CSR format and processed in output stationary
fashion. However, this hybrid approach can suffer from bandwidth
to read B matrix multiple times (especially when the B elements
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accessed by heavy rows segments and light matrix overlap) and
format conversion (preprocessing) cost as discussed in Section 3.3,
and in [39]. Our technique avoids both these problems.

Compressed Sparse Fiber (CSF) [7, 19, 30] is a sparse data struc-
ture for sparse tensors. It is originally designed to efficiently solve
Matricized Tensor Times Khatri-Rao Product (MTTKRP), the core
kernel of Canonical Polyadic Decomposition (CPD) with Alternat-
ing Least Squares. MTTKRP iteratively accesses modes (or dimen-
sion) of the sparse tensor in different orders, which requires efficient
access to slices of the tensor in each mode. CSF uses a tree-based
structure to make slices accessible in an efficient manner. While
CSF is an interesting idea that provides flexibility in access to multi-
mode tensors, it is overkill for Sp)MM of which (slice) access pattern
is deterministic and not as complicated.

Sparse General Matrix-Matrix Multiplication (SpGEMM) is an-
other class of sparse workloads, which multiplies two sparse matri-
ces. Nagasaka et al. [22] proposes fast SP)GEMM algorithm with low
memory usage for GPUs. Their algorithm utilizes GPU’s shared
memory for accumulating partial contributions, combining it with
several thread assignment method.

Near-Memory Data Manipulation. While many Processing-
In-Memory (PIM) in the past explored single-die integration of
logic and DRAM, manufacturing cost and unconventional program-
ming models have imposed limitations on them and made them
less practical. Near Data Processing (NDP) moves compute near
memory, and reduces the expensive memory communication cost
by performing computation locally near memory. TOP-PIM [40]
studied the impact of NDP in the logic layer of 3D-stacked memory
for heterogeneous computing of CPU and GPU. Kim et al. [15] pro-
poses partitioned execution mechanism that enables NDP for data
distributed across multiple standardized stacked memory with NDP
layer. On contrary to those NDP approaches which perform com-
putation locally to exploit internal memory bandwidth and reduce
external bandwidth, we still use GPU cores to execute the main
SpMM kernel. Since our approach adds metadata for efficiency, ap-
plying those NDP approaches is not desired because of its negative
impact on the external memory bandwidth.

Design space for smart memory controller embodies another
class of NDP. Impulse [6] adds another layer of address translation
in the memory controller to remap memory access to distinct cache
lines in physical pages (e.g. elements in a diagonal of a dense matrix)
into a dense cache line. By gathering and densifying information
conveyed by a cache line, it reduces wasted bus bandwidth and the
effect of false sharing problem. Data Reorganization Engine [10]
adopts similar gather/scatter engine on a 3D stacked memory. Our
approach is different in that it augments the information for better
performance by performing data structure and algorithm specific
data manipulation. We also exploit large Xbar bandwidth available
internally in GPU die, which does not form a bottleneck for appli-
cations with large memory footprint and irregular access patterns.

8 CONCLUSION

We propose a near-memory data transformation technique for ef-
ficient SpMM. We conduct a detailed analysis of SpMM workload
using latest GPU, focusing on data locality, computation order, data
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format, and computation / storage efficiency. We observe a combi-
nation use of C-stationary with DCSR and B-stationary with tiled
DCSR provides best computation efficiency for matrices with a
variety of density and non-zero distribution. We also develop an
analytical model and a heuristic function to select the algorithms.
While the tiling techniques offer opportunities for better job distri-
bution and locality exploitation utilizing shared memory in SMs,
storing pre-processed tiled data causes non-trivial increase in meta-
data storage overhead of sparse matrices which are most frequently
accessed from DRAM as well as preprocessing cost. Our proposal
converts the sparse data format from a storage friendly CSC to com-
putationally friendly tiled DCSR in a hardware assisted manner at
FP partition in GPU. We also propose techniques for better memory
load balancing and larger problem scale targeting multi-GPU sys-
tems. Our approach achieves 2.26X better performance compared
to cuSPARSE.
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