
Neural Temporal Adaptive Sampling and Denoising

J. Hasselgren, J. Munkberg, M. Salvi, A. Patney and A. Lefohn

NVIDIA

SUNTEMPLE Sample map Uniform 4 spp Our result at 4 spp Reference (4k spp)

Figure 1: We propose a novel method for temporal adaptive sampling and denoising of sparse Monte Carlo path traced animations at
interactive rates.

Abstract
Despite recent advances in Monte Carlo path tracing at interactive rates, denoised image sequences generated with few samples
per-pixel often yield temporally unstable results and loss of high-frequency details. We present a novel adaptive rendering
method that increases temporal stability and image fidelity of low sample count path tracing by distributing samples via
spatio-temporal joint optimization of sampling and denoising. Adding temporal optimization to the sample predictor enables it to
learn spatio-temporal sampling strategies such as placing more samples in disoccluded regions, tracking specular highlights, etc;
adding temporal feedback to the denoiser boosts the effective input sample count and increases temporal stability. The temporal
approach also allows us to remove the initial uniform sampling step typically present in adaptive sampling algorithms. The
sample predictor and denoiser are deep neural networks that we co-train end-to-end over multiple consecutive frames. Our
approach is scalable, allowing trade-off between quality and performance, and runs at near real-time rates while achieving
significantly better image quality and temporal stability than previous methods.

CCS Concepts
• Computing methodologies → Neural networks; Ray tracing;

1 Introduction

There has been substantial recent progress in denosing for of-
fline rendering. A great overview is available in the survey from
Zwicker et al. [ZJL∗15]. Recent deep learning denoisers use large
convolutional neural networks (CNN) to predict unique filter ker-
nels per pixel [BVM∗17]. A similar network has been applied
to time sequences, by running the network in parallel over mul-
tiple frames [VRM∗18]. Adaptive sampling is supported through a
learned error-predicting module. Xu et al. [XZW∗19] use an adver-
sarial loss function when training a CNN denoiser. These approaches
generate state-of-the-art denoising quality from 16-64 samples per
pixel (spp), but come at significant cost: seconds per frame on a
high end GPU.

More recently Gharbi et al. [GLA∗19] apply a CNN on individ-
ual samples, typically 8-32 samples per pixel. They learn a sample
embedding per-pixel, process the embeddings by U-nets [RFB15],
and finally splat large (21×21 pixel) kernels per sample onto the
framebuffer. They show high quality results on still images, albeit
at a very high computational cost and memory requirements. The
network input consists of 74 scalar features per sample in each pixel.
Runtime cost is measured in seconds or minutes and scales linearly
with the input sample count. In this paper, we strive for interac-
tive denoising, with total cost of adaptive sampling and denoising
measured in milliseconds.

Kuznetsov et. al [KKR18] introduce deep adaptive sampling
and reconstruction (DASR) for low sample count rendering. Their



J. Hasselgren, J. Munkberg, M. Salvi, A. Patney & A. Lefohn / Neural Temporal Adaptive Sampling and Denoising

Sample map
 estimator

Sample map Denoiser OutputAdaptive samplesGuides

Motion vectors

Renderer

Temporal
Reprojection

Recurrent feedback loop

Figure 2: An overview of our approach. The sample map estimator network outputs a sample map, which dictates how many paths the renderer
should trace for each pixel. The adaptively sampled image is then denoised by a denoiser network, producing the output image. Our approach
relies on a recurrent feedback loop where the previous denoised frame is reprojected and added as an input to both the sample map estimator
and the denoiser.

architecture uses two CNNs: one network learns to predict a sample
density map and a second network learns to denoise the adaptively
sampled rendered image. The scene is first rendered at 1 spp, which
is provided as input to the sample density map estimation network.
This network outputs a sample density map, that guides where to
trace additional paths. These new, adaptively distributed samples,
are added to the initial samples, and the final image is produced by
the denoiser network. The system is trained end-to-end, optimizing
both networks jointly, using just the loss of the final image. Thus,
the sampler network can insert more samples where the denoiser
network does a poor job, and vice versa.

To denoise low-sample count renderings at interactive rates, Chai-
tanya et al. [CKS∗17] propose to use a U-net with recurrent con-
volutional blocks at each encoder level, allowing the network to
exploit temporal information. At inference time, the network is ap-
plied to a single frame at a time, but keeps internal state at each
encoder level, similar to an IIR filter, so it is significantly faster than
the networks for offline rendering running in parallel over multiple
frames. However, the hierarchy of recurrent blocks is expensive,
and capturing frame-to-frame reprojection with small convolution
primitives is challenging. Consequently, their algorithm is mostly
suitable for small motion between frames, and they employ temporal
anti-aliasing [Kar14] as a post-processing step to reduce remaining
temporal artifacts. A similar network structure with hierarchical
temporal recurrence is used by Kaplanyan et al. [KSL∗19] but in
the context of foveated rendering.

Similar recurrence loops have been applied in video-to-video
synthesis [WLZ∗18] and video super-resolution [SVB18]. They use
a sequential generator to generate the t-th frame x̂t in the form of a
feed-forward network, which takes the previously generated result,
x̂t−1, warped using optical flow, as one of the inputs.

Spatiotemporal variance-guided filtering [SKW∗17, SPD18] ag-
gressively accumulates samples over time based on heuristics. It
combines selective temporal accumulation with large bilateral spa-
tial kernels to reach impressive denoising results from low sample
count input. The quality is plausible, if somewhat lower than the

learned approaches, but performance is attractive for interactive ap-
plications: a 1920×1080 frame is denoised in a few milliseconds. A
similar approach using blockwise regression was recently proposed
by Koskela et al. [KIM∗19].

We propose a novel approach for interactive, temporally stable,
adaptive sampling and denoising by extending the end-to-end train-
ing procedure proposed by Kuznetsov et. al [KKR18] to the temporal
domain. This drastically increases the effective sample count, sub-
stantially improves temporally robustness and allows us to avoid
the initial sampling pass. We use a small U-net architecture with
hierarchical kernel prediction (KP) [VRM∗18] to create a robust and
efficient denoiser. Similar to previous temporal machine learning
denoisers, we use recurrence, but restrict it to the denoised output at
full resolution instead of recurrence at each level, following the ap-
proach taken in recent work in video-to-video synthesis [WLZ∗18]
and video super-resolution [SVB18]. In contrast to their work which
uses optical flow, we warp the previous output using high quality
motion vectors readily available by the renderer. This is key to the ef-
fectiveness of our approach. Since warping is applied on a per-pixel
level with accurate motion vectors we get high temporal reuse except
in areas with disocclusion, or highly view dependent shading, where
no temporal data is available. This changes the problem from learn-
ing to track the motion of noisy image features [CKS∗17] to learn to
detect where temporal reuse is appropriate. This is a much simpler
problem, well suited to CNNs, which have been demonstrated to
excel at image recognition tasks. A version of our architecture with
10× fewer weights than Chaitanya et al.’s network still generates
higher quality results on animated sequences.

Our approach generalizes to new data and runs at interactive rates
at 1920×1080 pixel resolution. Our main contributions are:

• Temporally stable adaptive sampling at low sample counts.
• Adaptive sampling driven by warped temporal feedback instead

of an initial sampling pass.
• An interactive, temporally-stable denoiser network based on hier-

archical kernel prediction and warped temporal feedback, which



J. Hasselgren, J. Munkberg, M. Salvi, A. Patney & A. Lefohn / Neural Temporal Adaptive Sampling and Denoising

48

conv (3x3)
+ ReLU

downscale
2x

upscale
2x

skip 
connection

48

I
48

I/2
48

I/448
I/848

I/1
6
48

I/3
2

96 96
96 96

96 96

26
I/4

96 96

26
I/2

64 64

51
I

Figure 3: U-net architecture for the adaptive sampler and denoiser
network. The adaptive sampler network outputs a scalar per pixel,
representing the sample map. For the denoiser, we additionally use
three levels of kernel prediction (green boxes in lower part). At each
level, we output per-pixel weights for a 5×5 kernel and a scalar
layer blend weight. At the finest level, we additionally output a 5×5
kernel which is applied to the warped previous denoised output.

is substantially faster and generates higher image quality than
previous hierarchical recurrent denoisers.
• A scalable architecture with high image quality for larger net-

works, that still outperforms previous work while scaled down to
real-time performance.

2 Our Approach

Figure 2 presents an overview of our approach. The design extends
deep adaptive sampling and reconstruction (DASR) [KKR18], with
a recurrent feedback loop and temporal reprojection. This increases
the effective sample count and enforces a temporal error metric,
which improves the temporal stability of the denoiser. Our method
accurately predicts the sample density map using only temporal
reprojected data and the geometry buffer of the current frame, al-
lowing us to remove the initial sampling pass. In addition, we use
hierarchical kernel prediction in the denoiser network for increased
quality and robustness.

2.1 Networks

For both the sample map estimator and denoiser networks, we use
U-nets [RFB15] with 3×3 convolution kernels throughout, as shown
in Figure 3. The main differences between the two networks are the
input feature guides, and how the output is processed.

The temporal reprojection steps uses per-pixel motion vectors
m generated by the renderer at the primary intersection point, and
warps, using bilinear filtering, the previous frame (chistory) to align
with the current frame:

cwarped (x,y) = chistory (x+mx,y+my) . (1)

We use PyTorch’s grid_sample function to implement this image
warp during training.

Adaptive Sampler The adaptive sampling network is fed with
the warped previous denoised output (warped using application-
provided motion vectors) along with feature buffers for the current
frame (normals, depth, motion vectors and albedo at first hit). The
sample map is then produced using direct prediction, by combining
all output features into a single component gray-scale image gener-
ated by a final convolutional layer. The sample map is normalized as
suggested by Kuznetsov et. al [KKR18] to reach a desired average
sample count:

ŝ(p) = round

(
M · es(p)

∑
M
i=1 es(i)

·n

)
. (2)

Here, M is the number of pixels in the image, n is the average num-
ber of samples per pixel, and s(p) is the unnormalized output of
the network. The normalization is similar to a softmax operation,
and we have found that implementing this using a softmax over the
unrolled image tensor improves the stability of the gradient com-
putation as opposed to chaining the individual operations. We use
Kuznetsov et. al’s [KKR18] approximation of the renderer gradient
during back-propagation.

Denoiser As shown in Figure 2 the input to the denoiser network
consists of the adaptively sampled noisy image, rendered as dic-
tated by the sample map, and all inputs of the sampler network,
including the warped previous denoised output. The outputs of
the last three hierarchical levels of the decoder network are fed
through a convolutional layer predicting filter weights. Thus, we
implement a multi-scale kernel predicting network as suggested by
Vogels et al. [VRM∗18]. Our denoiser architecture is illustrated in
Figure 3. We use three levels of kernel prediction, each with a 5×5
pixel kernel, applied to a full resolution noisy image and, 2×, and
4× downscaled versions. The scaled and filtered images, i are com-
bined using the scale composition suggested by Vogels et al. (Eq. 5),
reproduced here for completeness. Let ic represent the coarse-scale
image, i f the fine-scale image and α a trainable per-pixel scalar
weight. D and U are 2× 2-downsampling and nearest-neighbor up-
sampling operators, respectively. The coarse and fine images are
combined using:

op = i f
p−αp

[
UDi f

]
p
+αp

[
Uic
]

p . (3)

This composition is applied recursively from coarsest to finest scale.

Additionally, we predict a temporal 5×5 pixel kernel at the finest
scale, which is applied to the reprojected denoised image of the
previous frame (history). The filtered history is linearly blended
with the result of the multi-scale filtered current frame using a
trainable per-pixel scalar, α

t . As shown in Figure 3, this results in
51 per-pixel features at the finest scale: (two 5× 5 kernels + α

t ),
and 26 features at the coarser scales (a 5×5 kernel + α). Similarly
to Vogels et al., we observe higher quality networks when using
kernel prediction compared to direct prediction. We compare direct
prediction against kernel prediction in Section 3.

Training To account for the recurrent term (the reprojected de-
noised previous frame), we employ back-propagation through
time [GBC16], training on sequences of N frames. Typically, we use
sequences of five frames, where one frame is used for initialization



J. Hasselgren, J. Munkberg, M. Salvi, A. Patney & A. Lefohn / Neural Temporal Adaptive Sampling and Denoising

BISTROINDOOR BISTROOUTDOOR CHARACTERS

LIVINGROOM PARAGON PINKROOM

SERATH PARK BURGER

Figure 4: Animations used to train the networks. For each scene,
we dump between 16-25 clips, each with eight frames. We store 64
individual samples for each pixel of the input images (to allow for
adaptive sampling). The target images are rendered with 1024 spp.

and we train with the four subsequent unrolled iterations of the
network. For the first frame, we initialize the recurrent term to the
noisy uniformly sampled image at our target sample count.

We train sample map estimation and denoising end-to-end, which
means that the loss term is only computed on the final denoised
image. There is no specific loss computed for the sample map.
We use both a spatial L1 and a temporal L1 loss term [CKS∗17],
weighted equally. The temporal L1 term is intended to suppress
temporal flickering and is computed as the L1 norm of the temporal
finite differences between frame i and frame i− 1. Let xi be the
denoised frame and yi be the corresponding reference frame, where
i is the current time step. The temporal gradients are ∆xi = xi−xi−1
and ∆yi = yi− yi−1, and our loss, L, is

L = L1(xi,y1)+L1(∆xi,∆yi). (4)

When training, the spatial loss is only applied to the last frame of
each sequence, and the temporal loss by necessity involves the last
two frames. This procedure ensures that the network has access to a
reasonable amount of temporal information, and avoids transients
from initializing the recurrent term.

2.2 Implementation

We implemented our technique in PyTorch [PGC∗17] and integrated
it with the Falcor rendering framework [BYF∗19]. We initialize
the trainable parameters of our networks using Xavier initializa-
tion [GB10] and train with the Adam optimizer [KB15] with an

Temporal history Current frame Output

Figure 5: The network aggressively uses temporal information. An
example frame from the CHARACTERS scene where we visualize the
filtered history (left) and the filtered image of the current frame
(center) that are used to construct the denoised output (right). Note
that most information is taken from the history. The animation has
moving characters but a static camera.

initial learning rate of 0.001. All networks are trained for 1000
epochs. We clamp input values to ([0,65535]) and transform input
radiance values, x, according to x′ = log(x+1)

1
2.2 . The log-squeeze

is motivated by the 2e exposure scaling of most tonemappers. Since
we gamma correct the image before display we also included this
transform. We recommend to match the training loss to the tonemap-
per used in the rendering system (if known).

For the adaptive sampler network, we convert all color inputs
(albedo and warped previous denoised output) to gray scale using
the CCIR 601 weights v = 0.2989r+0.587g+0.114b. The rationale
behind this is that the adaptive sampling should be independent of
chroma and motivated by noise levels, geometric complexity, or ani-
mation/disocclusion. To implement the renderer during training, we
follow the pre-computation approach of Kuznetsov et al. [KKR18]
and store pre-computed images of (independent) renderings with 2n

samples for n∈ [0,5]. During training, we generate desired per pixel
sample counts by combining the appropriate layers. For example to
get 13 spp, we combine the sample layers with 1+4+8 samples.

We train with input augmentations (random crops, flip x/y, rotate
90 degrees) and shuffle the training data each epoch. For denoisers
with direct prediction networks, we also include hue permutations
and a grayscale augmentation as this reduces color shifts.

We use nine animated scenes, shown in Figure 4 for training. For
each scene we use 16-25 animation clips, each with eight frames,
for a total of 1368 frames, each stored with per-sample info up to 64
spp and per-pixel feature guides (normals, depth, albedo and motion
vectors). We render references with 1k samples. The rationale be-
hind this setup is to maximize training diversity while keeping data
generation and storage costs reasonable. Using separate clips rather
than all frames of a longer animation helps the network rapidly see
significantly different views of the scene, and training a CNN with
lower quality references can be expected to converge with similar
quality and speed as training with ground truth. For evaluation we
use longer video clips and references with 4k spp.

3 Results

A main contribution of this work is temporally stable denoising.
Figure 5 shows one example of how the denoiser network mixes



J. Hasselgren, J. Munkberg, M. Salvi, A. Patney & A. Lefohn / Neural Temporal Adaptive Sampling and Denoising

O
ur

D
A

SR

SUNTEMPLE BATHROOM CLASSROOM

Figure 6: Sample map comparison between our method and DASR,
visualized as heatmaps. Our sample map is typically of higher qual-
ity than DASR since it is computed from the denoised & reprojected
data rather than a low (1spp) initial sampling.

the temporal history with the current denoised frame. As can be
seen, it aggressively re-uses temporal data except for in areas of
disocclusion or with view-dependent shading. We refer to the video
for results on temporal stability as it is hard to convey in still images.

The temporal history greatly improves the adaptive sampling
stage. In Figure 6 we compare the sample maps between our method
and DASR. Our sample map is typically of higher quality than
DASR since it is computed from the denoised & reprojected data
rather than a low (1spp) initial sampling.

To evaluate quality, we present both peak signal-to-noise ratio
(PSNR) and temporal PSNR (tPSNR), which is PSNR computed
on the temporal finite differences ∆xi = xi− xi−1. Both metrics are
applied on the tonemapped output. Figure 7 shows a breakdown of
PSNR and tPSNR scores for two animation clips of the SUNTEMPLE

scene rendered at 4 spp. We start with a simple direct prediction
U-net (Direct prediction) with feature counts as reported in Figure 3,
and observe how image quality is improved by adding three-level
hierarchical kernel prediction (KPN), temporal recurrence (Our uni-
form), and adaptive sampling (Our adaptive). Note that the adaptive
network consistently outperforms the corresponding uniform net-
works (wherein each pixel is sampled with exactly four samples),
and is close to on par with 8 spp uniform for the first clip. A visual
comparison for a selected frame is shown in Figure 8. The recurrent
methods require a short transition period of 2-3 frames between
clips, before reaching full quality. Such a period could easily be
hidden in a cross-fade or transition, so we do not consider this a lim-
itation. Other than for abrupt camera transitions (cuts), the temporal
methods are stable even for large and complex camera and object
motion.

We evaluate our method quantitatively in Figure 9, where we com-
pare it with competing algorithms for the SUNTEMPLE animation.
Visual comparisons are shown in Figure 10 and a larger collec-
tion of images is included in the supplemental material. In both
figures, we compare our algorithm to recursive denoising autoen-

Clip 1 Clip 2

Clip 1 Clip 2

Figure 7: PSNR and tPSNR scores for the SUNTEMPLE animation.
Our baseline is a U-net directly predicting the colors (Direct Pre-
diction), and observe how quality is improved by adding kernel
prediction (KPN), temporal recurrence (Our uniform), and adaptive
sampling (Our adaptive). The results are for denoising 4 spp images
unless otherwise noted.

coders [CKS∗17] (RAE), deep adaptive sampling and reconstruc-
tion [KKR18] (DASR) and spatiotemporal variance-guided filter-
ing [SKW∗17] (SVGF). Note that SVGF is designed for 1 spp input
with features from a rasterized geometry buffer, and does not directly
fit with our ray tracing framework. We therefore generated these
results by tracing four paths from each rasterized primary pixel,
which unfortunately means that SVGF results do not benefit from
anti-aliasing. In the supplemental material we include a version of
SVGF applied on an image rendered at 2× higher resolution, with
one path per pixel, followed by 2× downscaling. This comes at
roughly 4× the filtering cost, and improves PSNR scores by about
one decibel on average.

To compare the methods in a similar setting, we altered DASR to
use the same, slightly larger, U-nets as our method (~850k weights,
see Figure 3). We use the RAE architecture as described in their
paper (~2.6M weights, a larger network than ours) but we passed
the albedo as an additional guide instead of doing the albedo de-
modulation. We trained both variants, and the former approach
generated higher quality results for our dataset. We use the same
loss function (spatial and temporal L1) and log-space training for all
learning-based methods, and as such we do not expect results exactly
comparable to what they report. It is straightforward to increase or
decrease the U-net feature counts, or tweak training parameters for
all methods. We also feed DASR, RAE, and our method the exact
same feature guides. The visibility guide of the DASR paper is
omitted in this comparison since it is hard to generalize for scenes



J. Hasselgren, J. Munkberg, M. Salvi, A. Patney & A. Lefohn / Neural Temporal Adaptive Sampling and Denoising

4 spp Reference Sample map

Our adaptive Our uniform

Figure 8: Quality comparison between our adaptive and uniform
algorithms for the SUNTEMPLE scene. The sample map shows that
our sampling network prioritizes the specular highlights on the
statue, and the details on the pillars in the background. The denoised
image is significantly improved in those regions.

Figure 9: Image quality comparison between our adaptive method
(we also include a scaled down version of the architecture: our
adaptive small), deep adaptive sampling and reconstruction (DASR),
spatiotemporal variance-guided filtering (SVGF), and the recurrent
autoencoder (RAE) on the SUNTEMPLE scene.

with large light counts or environment lighting, and we found it to
only have a small impact on image quality.

The RAE paper states that the recurrent loops at finer resolu-
tions have insufficient temporal receptive field to reproject the high-
frequency features. We observe a similar behavior: the hierarchical
recurrent architecture of RAE is significantly less temporally stable
than our architecture, likely because their recurrent state is not repro-
jected to align with the current frame. They mitigated this drawback
somewhat by applying temporal anti-aliasing (TAA) [Kar14] as
a supplemental post-processing pass to all methods in the evalua-

Scene Our adapt. Our unif. DASR Direct prediction
SUNTEMPLE 7.0 9.8 10.0 14.8
CLASSROOM 7.0 10.6 12.4 15.0
BATHROOM 7.3 9.7 12.6 12.1

Table 1: Relative mean square error (rMSE) for the SUNTEMPLE,
CLASSROOM, and BATHROOM scenes. For clarity, we factor out 0.001
from all rMSE values.

Scene Clips Hold-out Specialized
SUNTEMPLE 16 28.1 dB 28.3 dB
BISTROINDOOR 16 32.4 dB 32.5 dB
PINKROOM 25 31.8 dB 32.5 dB

Table 2: PSNR scores for different training sessions with the current
scene eliminated (hold-out), or specialized for that scene. PSNR
scores are computed on one frame per clip per scene, and the indi-
vidual scores are averaged.

tion. With our warped recurrent architecture, there is no need for
a last-mile post-processing step to improve temporal stability, in-
stead, our trained temporal reprojection is integrated in the network
architecture. Please refer to the accompanying video to see tempo-
ral robustness comparisons without any TAA post-processing. We
argue that our proposed network is significantly more temporally
stable, and comes at a much lower computational and storage cost
compared to the full hierarchy of (non-warped) convolutional RNN
layers with accompanying state.

In Table 1 we report relative mean square error (rMSE) for a
set of validation images not a part of the training set (full image
is the supplemental material). The relative quality of the different
algorithms are similar to our PSNR results even though this metric
is measured on high dynamic range data. The BATHROOM scene is a
notable outlier, where DASR fails to outperform a direct prediction
denoiser. We speculate that this is because of very high noise levels
coupled with bad feature guides, due to the many reflective surfaces,
which makes it hard to predict the sample map from the 1 spp initial
sampling. Our adaptive method also performs worse for this scene,
but we note that the higher quality temporal data still allows it to
outpace the uniform version.

The BATHROOM scene is designed to be a hard case for our al-
gorithm. For mirrors, motion vectors will match the motion of the
mirror surface, rather than the motion of the reflected object, which
means that reprojection is incorrect for large parts of this scene. A
similar problem appear in shadows from moving objects. RAE and
SVGF have the same challenges when reprojection fails. Still, we
note from the images and video that our algorithm tends to outper-
form the competition while remaining temporally stable. We show
an example in Figure 11.

3.1 Generalization

In order to evaluate how well the method generalizes, we trained
different versions with hold-out. That is, we select a scene and train
two versions: one where the scene is eliminated from the training
set, and one version specialized only for that particular scene. We



J. Hasselgren, J. Munkberg, M. Salvi, A. Patney & A. Lefohn / Neural Temporal Adaptive Sampling and Denoising

4 spp Sample map Reference Our adaptive RAE DASR SVGF

S
U

N
T

E
M

P
L

E
B

A
T

H
R

O
O

M
C

L
A

S
S

R
O

O
M

4 spp Sample map Reference Our adaptive RAE DASR SVGF

Figure 10: Denoising quality from an average of 4 spp. These scenes were not part of the training set. We show comparison with RAE
(recurrent autoencoder), SVGF (spatiotemporal variance guided filtering), and DASR (deep adaptive sampling and reconstruction).

then evaluate image quality on that scene to determine the quality
difference of a generalized network compared to the practical upper
limit. The PSNR scores of this study are summarized in Table 2.
As can be seen, the method appears to generalize well, with the
hold-out versions of the network often having quality on par with
the specialized network.

3.2 Performance and Scaling

Compared to DASR, the overhead at inference time of the temporal
recurrence loop and hierarchical kernel evaluation of our method
is less than 1 ms at 1920× 1080 pixel resolution. Reprojection is

Config. Sample map est. Denoiser Kernel Total
LARGE 20 ms 21 ms 1 ms 42 ms
SMALL 3 ms 10 ms 1 ms 14 ms

Table 3: Performance breakdown for our large (high quality) and
small (performance) network configurations, running on an NVIDIA
Geforce RTX 2080 Ti graphics card at 1920×1080 pixel resolution.

implemented as a GPU texture lookup, so it’s extremely fast. Given
the improvements to image quality and temporal stability, we believe
this is a motivated cost, even for real-time rendering applications.



J. Hasselgren, J. Munkberg, M. Salvi, A. Patney & A. Lefohn / Neural Temporal Adaptive Sampling and Denoising

Input 4 spp Our Sample map

Reference SVGF RAE

Figure 11: A hard case with moving shadows and reflections where
motion vectors are inaccurate. Note that our sample map fails to
detect the moving shadow below the left foot. This is a challenging
case for all algorithms relying on temporal reprojection.

We have highlighted the network architectural components which
have significant impact on quality, e.g., kernel prediction, adaptive
sampling and temporal feedback (see Figure 7). Additionally, the
number of network layers, feature counts, and kernel sizes can
be tweaked to trade quality for performance. In our experience
most such optimizations scale gracefully with runtime performance
being roughly inversely proportional to image quality. To that end,
Table 3 shows run-time performance of both the LARGE network
configuration, presented in this paper, and an optimized SMALL

configuration that trades image quality for additional performance.
The small version improves performance by 3× while reducing the
PSNR score of the SUNTEMPLE animation by a modest 0.6 dB, still
outperforming competing algorithms, as can be seen in Figure 9.
The implementation details of the SMALL network can be found in
the supplemental material.

To evaluate the impact of a larger recurrent state, we configured
our network with 64 additional recurrent features (in addition to the
denoised color output). This allows the network to, e.g., pass through
additional data such as input samples and sample map from previous
frame, or freely compute additional data to be reprojected and re-
used for the current frame. This configuration (with larger recurrent
state) had 0.2 dB lower PSNR on our validation set compared to the
LARGE network, which is within expected variations due to training
with stochastic gradient descent.

4 Discussion

We have described a rendering approach using deep learning, tem-
poral reprojection and adaptive sampling to achieve high quality,
temporally stable, denoising of path traced animations at near real-
time rates. By combining temporal reuse and adaptive sampling,
the network learns to reconstruct difficult temporal effects, such as
disocclusion and view dependent shading.

Our system is scalable in that network complexity controls the

ratio between quality and performance, and we have shown that this
holds for larger, high quality, networks all the way down to the real-
time performance realm. Even for the smallest network design, we
note that our architecture outperforms previous work significantly
both in quality as well as in performance.

Seemingly, the most objectionable artifact from our method is
ghosting and the network tends to error on the side of aggressive
temporal reuse. See, for example, the CLASSROOM scene in Figure 10.
While this is particularly visible in still images, it tends to be much
less pronounced in motion, though if one looks carefully it is still
possible to notice the artifacts in the accompanying video.

View dependent shading effects, such as reflections, remain an
open issue. Such effects makes it hard to compute accurate motion
vectors, and different shading terms can have different motion. Con-
sequently our warping will be less accurate and temporal reuse is
limited. This is stressed in the BATHROOM scene, which contains
many mirror surfaces. The results for this scene is still surprisingly
good and we perceive it as temporally stable. Seemingly the motion
vectors are accurate enough for the planar and simple reflective
objects. The more complex robot object consists of rotating planar
mirrors. This makes temporal reuse virtually impossible, but also
makes it very hard to perceive if the result is temporally stable.

Acknowledgments

We thank Bill Dally and David Luebke for discussions and sup-
porting the research; NVIDIA Research staff for suggestions and
discussions; Donald Brittain for deep learning framework code used
in performance measurements; Petrik Clarberg, Nir Benty and Kai-
Hwa Yao for Falcor support.

References

[BVM∗17] BAKO S., VOGELS T., MCWILLIAMS B., MEYER M.,
NOVÁK J., HARVILL A., SEN P., DEROSE T., ROUSSELLE F.: Kernel-
Predicting Convolutional Networks for Denoising Monte Carlo Render-
ings. ACM Trans. Graph. 36, 4 (2017). 1

[BYF∗19] BENTY N., YAO K.-H., FOLEY T., OAKES M., LAVELLE C.,
WYMAN C., CLARBERG P.: The Falcor rendering framework, 10 2019.
URL: https://github.com/NVIDIAGameWorks/Falcor. 4

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A. S., SCHIED C.,
SALVI M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interac-
tive Reconstruction of Monte Carlo Image Sequences Using a Recurrent
Denoising Autoencoder. ACM Trans. Graph. 36, 4 (2017), 98:1–98:12. 2,
4, 5

[GB10] GLOROT X., BENGIO Y.: Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics (2010),
Teh Y. W., Titterington M., (Eds.), vol. 9 of Proceedings of Machine
Learning Research, pp. 249–256. 4

[GBC16] GOODFELLOW I., BENGIO Y., COURVILLE A.: Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org. 3

[GLA∗19] GHARBI M., LI T.-M., AITTALA M., LEHTINEN J., DU-
RAND F.: Sample-based Monte Carlo Denoising Using a Kernel-splatting
Network. ACM Trans. Graph. 38, 4 (july 2019), 125:1–125:12. 1

[Kar14] KARIS B.: High-Quality Temporal Supersampling. In SIG-
GRAPH Courses: Advances in Real-Time Rendering in Games (2014). 2,
6

https://github.com/NVIDIAGameWorks/Falcor
http://www.deeplearningbook.org


J. Hasselgren, J. Munkberg, M. Salvi, A. Patney & A. Lefohn / Neural Temporal Adaptive Sampling and Denoising

[KB15] KINGMA D. P., BA J.: Adam: A Method for Stochastic Optimiza-
tion. In Proceedings of the 3rd International Conference for Learning
Representations (2015). 4

[KIM∗19] KOSKELA M., IMMONEN K., MÄKITALO M., FOI A., VI-
ITANEN T., JÄÄSKELÄINEN P., KULTALA H., TAKALA J.: Blockwise
Multi-Order Feature Regression for Real-Time Path-Tracing Reconstruc-
tion. ACM Trans. Graph. 38, 5 (2019), 138:1–138:14. 2

[KKR18] KUZNETSOV A., KALANTARI N. K., RAMAMOORTHI R.:
Deep Adaptive Sampling for Low Sample Count Rendering. Computer
Graphics Forum 37 (2018), 35–44. 1, 2, 3, 4, 5

[KSL∗19] KAPLANYAN A. S., SOCHENOV A., LEIMKÜHLER T.,
OKUNEV M., GOODALL T., RUFO G.: Deepfovea: neural reconstruction
for foveated rendering and video compression using learned statistics of
natural videos. ACM Trans. Graph. 38, 6 (2019), 212:1–212:13. 2

[PGC∗17] PASZKE A., GROSS S., CHINTALA S., CHANAN G., YANG
E., DEVITO Z., LIN Z., DESMAISON A., ANTIGA L., LERER A.:
Automatic differentiation in PyTorch. In NIPS-W (2017). 4

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-Net: Convolu-
tional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015 (2015),
vol. 9351, pp. 234–241. 1, 3

[SKW∗17] SCHIED C., KAPLANYAN A., WYMAN C., PATNEY A.,
CHAITANYA C. R. A., BURGESS J., LIU S., DACHSBACHER C.,
LEFOHN A., SALVI M.: Spatiotemporal Variance-guided Filtering: Real-
time Reconstruction for Path-traced Global Illumination. In Proceedings
of High Performance Graphics (2017), HPG ’17, pp. 2:1–2:12. 2, 5

[SPD18] SCHIED C., PETERS C., DACHSBACHER C.: Gradient Esti-
mation for Real-time Adaptive Temporal Filtering. Proc. ACM Comput.
Graph. Interact. Tech. 1, 2 (2018), 24:1–24:16. 2

[SVB18] SAJJADI M. S. M., VEMULAPALLI R., BROWN M.: Frame-
Recurrent Video Super-Resolution. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (June 2018). 2

[VRM∗18] VOGELS T., ROUSSELLE F., MCWILLIAMS B., RÖTHLIN
G., HARVILL A., ADLER D., MEYER M., NOVÁK J.: Denoising with
Kernel Prediction and Asymmetric Loss Functions. ACM Trans. Graph.
37, 4 (2018), 124:1–124:15. 1, 2, 3

[WLZ∗18] WANG T.-C., LIU M.-Y., ZHU J.-Y., LIU G., TAO A.,
KAUTZ J., CATANZARO B.: Video-to-Video Synthesis. In Advances in
Neural Information Processing Systems (NeurIPS) (2018). 2

[XZW∗19] XU B., ZHANG J., WANG R., XU K., YANG Y.-L., LI C.,
TANG R.: Adversarial Monte Carlo Denoising with Conditioned Auxiliary
Feature Modulation. ACM Trans. Graph. 38, 6 (2019), 224:1–224:12. 1

[ZJL∗15] ZWICKER M., JAROSZ W., LEHTINEN J., MOON B., RA-
MAMOORTHI R., ROUSSELLE F., SEN P., SOLER C., YOON S.-E.:
Recent Advances in Adaptive Sampling and Reconstruction for Monte
Carlo Rendering. Computer Graphics Forum (Proceedings of Eurograph-
ics - State of the Art Reports) 34, 2 (2015), 667–681. 1


