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Abstract—GPUs accelerate high-throughput applications,
which require orders-of-magnitude higher memory bandwidth
than traditional CPU-only systems. However, the capacity of
such high-bandwidth memory tends to be relatively small.
Buddy Compression is an architecture that makes novel use of
compression to utilize a larger buddy-memory from the host
or disaggregated memory, effectively increasing the memory
capacity of the GPU. Buddy Compression splits each compressed
128B memory-entry between the high-bandwidth GPU memory
and a slower-but-larger buddy memory such that compressible
memory-entries are accessed completely from GPU memory,
while incompressible entries source some of their data from
off-GPU memory. With Buddy Compression, compressibility
changes never result in expensive page movement or re-allocation.
Buddy Compression achieves on average 1.9× effective GPU
memory expansion for representative HPC applications and
1.5× for deep learning training, performing within 2% of an
unrealistic system with no memory limit. This makes Buddy
Compression attractive for performance-conscious developers
that require additional GPU memory capacity.

I . I N T R O D U C T I O N

GPUs are widely used for high-memory-footprint

applications, including those for High Performance Computing

(HPC) and Deep Learning (DL). HPC applications like planet-

scale simulations and the modeling of fluid and molecular

dynamics have grown to require very large models [1], [2], [3],

[4], [5]. DL networks are also growing such their model sizes

are either too big to run on GPUs or large enough that the only

a small batch size can fit on the GPU, possibly resulting in

low utilization and accuracy issues [6], [7], [8], [9], [10], [11].

Despite increasing memory requirements, compute-class

GPUs will likely continue to prioritize memory speed

over capacity to keep their many parallel cores busy. High

Bandwidth Memory (HBM) must fit in limited package space

and chip periphery such that even the current highest-capacity

GPUs have only 4 HBM stack sites, resulting in a maximum

capacity of 32GB. Meanwhile, non-HBM graphics DDR

memory cannot be driven at high speeds with more than

1 rank per channel, and the number of channels is already

nearing the practical pin count limit. Thus accelerators like

GPUs will always have a relatively limited maximum capacity

as compared to CPUs or other network-attached devices.

Fig. 1: If a memory-entry (128B) does not compress sufficiently,
part of it is accessed from the buddy-memory.
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Fig. 2: A target system for Buddy Compression. Any larger
NVLink-connected memory can be used as buddy storage. The
overall organization of this system is similar to an NVIDIA
DGX-2 node [26].

Currently, applications with large memory footprints must

resort to unattractive options to compensate for limited GPU

memory. They can scale out to many GPUs for capacity

purposes alone (inefficiently utilizing resources) [12], [13],

explicitly orchestrate data movement between the CPU and

GPU to stay within device memory limitations (adding

algorithmic complexity) [14], [7], [15], or rely on off-GPU

memory accesses or Unified Memory [16] to automatically

oversubscribe device memory (limiting performance) [17], [18].

This paper explores memory compression as a performant and

general GPU memory-expansion alternative.

While main memory compression has been studied for

CPUs [19], [20], [21], [22], [23], GPU architectures pose very

different trade-offs. CPU compression techniques assume that

compressed pages are of different sizes, and they re-allocate

pages as compressibility changes [20], [21], [22], [23]. Such

on-the-fly page re-allocations would be prohibitively expensive

in GPUs due to their immense memory bandwidth [17].

Additionally, while domain-specific compression [24], [25]

has been proposed for large-footprint GPU workloads,

general-purpose compression for capacity remains unexplored.

Figure 1 shows that Buddy Compression divides compressed

memory allocations between the GPU device memory
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and a larger-but-slower buddy-memory connected with a

high-bandwidth interconnect. If a cacheline-sized (128B)

memory-entry is sufficiently compressed, it is sourced

completely from device memory; if not, it is sourced from

both device and buddy-memory. This design requires no

re-allocations or page movement if the compressibility of the

data changes over time. A high-bandwidth interconnect like

NVLink [26], OpenCAPI [27], or CXL [28] enables this design,

since it ensures low overhead accesses to the buddy-memory,

so long as most of the data compresses to fit in GPU device

memory. Figure 2 shows that any remote memory connected to

the GPU with a high-bandwidth interconnect is suitable for use

as a buddy-memory. This design maintains a good compression

ratio and high performance while avoiding the complexity and

performance concerns of using CPU memory compression

approaches on GPUs. To summarize our contributions:

• We introduce the first design to use general-purpose compres-

sion to increase the memory capacity of GPUs. Buddy Com-

pression is unique, since it does not require any additional

data movement when the compressibility of the data changes.

• We provide an in-depth analysis of the memory values from

GPU workloads with representative data and derive insights

for effective GPU compression.

• Buddy Compression achieves on average 1.9× (HPC) or

1.5× (DL training) compression and performs within 2%

of an unconstrained-memory-capacity GPU.

• Finally, we present a case study on DL training to understand

the benefits and trade-offs of using Buddy Compression to

expand the GPU memory capacity.

I I . OV E RV I E W A N D B A C K G R O U N D

A. Target Workloads and Related Work

HPC Workloads. Previous work in the HPC domain

suggests that a larger GPU memory would benefit applications

such as fluid dynamics and weather prediction [5], [29], [30],

[31]. However, scientists are currently forced use either a shared

virtual address space like Unified Memory [16], [32] or multiple

GPUs [3], [4] to scale past the GPU capacity limit. Buddy

Compression offers a general and performant alternative to

these approaches. We use a subset of SpecACCEL OpenACC

v1.2 [33] and CUDA versions of the DOE benchmarks

HPGMG [34] and LULESH [35] as accessible and simulatable

representatives for HPC applications. The subset is chosen

based on our confidence in the representativeness of the data

values used in the benchmarks. For each considered benchmark,

we consulted a domain expert to affirm that the input data for

the benchmark could be considered “reasonably representative”

of real-world use.1 We omit many other benchmarks that fail

1Through personal communications, we received a positive affirmation
for the data of LULESH and HPGMG from N. Sakharnykh (NVIDIA) on
30-May-2018 and for some SpecACCEL benchmarks from M. Colgrove
(PGI/NVIDIA) on 29-May-2018.

this test. SPEC benchmarks are also commonly used in prior

compression studies [19], [21], [20], [36], [23].

DL Workloads. GPUs are currently the most popular

choice for training deep neural networks. As networks grow

deeper and wider, they require more data and inevitably hit the

memory-capacity wall. We train a set of 5 convolutional neural

networks to represent DL workloads: AlexNet [37], Inception

v2 [38], SqueezeNetv1.1 [39], VGG16 [40], and ResNet50 [41],

all running on the Caffe [42] framework with the ImageNet [43]

dataset. Additionally we consider a long short-term memory

network, BigLSTM [44], using the English language model.

Many domain-specific solutions have been proposed across

the stack to address the DL memory capacity challenge,

including DL-specific footprint reduction schemes [45],

[46], [25] and asynchronous offloading of data during each

training iteration [47], [14], [12], [48], [15], [49], [50]. Buddy

Compression is an orthogonal and possibly-complementary

approach to expand the effective GPU memory capacity. Our

approach allows larger-footprint DL training runs with no

algorithm-level changes. Buddy Compression can to elide all

communication for compressible data, whereas DL offloading

must transfer some data during every iteration. This reduction

in bandwidth may improve performance, and it likely allows

Buddy Compression to operate with significantly lower

power overheads. In addition, Buddy Compression could

potentially be used in tandem with these other approaches.

For instance, Buddy Compression can be used in conjunction

with vDNN [14] to allow a single layer to be larger than GPU

memory while relying on vDNN to retire and prefetch other

layers to and from host memory in the background.

Memory Compression. Memory compression has been

used in various forms to expand the effective CPU memory

capacity. Most modern operating systems compress the swap

space to reduce paging to disk [51]. Numerous proposals have

been made to accelerate CPU main memory compression in

hardware [19], [20], [21], [22], [23]. However, explored in

Section II-C, these approaches are inefficient and inapplicable

for general-purpose GPU memory capacity compression

due to architectural differences and frequent compressibility

changes in GPU data. The graphics pipeline of most GPUs

includes domain-specific lossy texture memory compression

to reduce the footprint of graphics textures [24], [52]. To our

knowledge, hardware compression is not currently used for

general-purpose compute workloads on GPUs.

Buddy Compression Target System. Figure 2 shows a

future GPU system that we envision for Buddy Compression.

The system is composed of multiple GPU nodes connected

with a high-bandwidth NVLink2 interconnect [53], [26] to a

larger source of remote memory. In currently available systems,

this remote memory could be the system memory of a Power9

CPU, an unused peer GPU memory, or an NVLink2-connected

disaggregated memory appliance, a natural extension of the

technology that is being explored for servers [31], [54], [49].
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Fig. 3: The average compression ratio of the allocated memory for the complete run of each benchmark. Ten equally distributed
memory-snapshots are taken during the entire run of each benchmark, and the compression ratio calculated.

B. Relevant Modern GPU Technologies

High-Bandwidth Interconnects. High-bandwidth inter-

connects are a key enabler for Buddy Compression, and can

be applied on any GPU with a high-bandwidth interconnect

to host memory. In recent years, high-bandwidth interconnects

like NVLink [53], OpenCAPI [27], and NVLink2 [26] have

been used to alleviate the communication bottleneck in

multi-GPU systems. NVLink2 provides 25GBps of full-duplex

unidirectional bandwidth per channel.2 Modern compute-class

V100 GPUs support six NVLink2 channels per GPU, offering a

bidirectional bandwidth of up to 150GBps (full-duplex), much

higher than a 16GBps ×16 PCIe3.0 or 32GBps ×16 PCIe4.0

connection. The NVIDIA DGX-2 [26] workstation has sixteen

V100 GPUs connected through an NVLink2 switch that

support six NVLink2 channels, allowing high-speed remote

access to system memory [55]. Similar solutions are available

for AMD and ARM GPUs using Heterogeneous System

Architecture (HSA) and CCIX [57], [58], and more recently

for Intel GPUs using Compute eXpress Link (CXL) [28].

Unified Memory (UM). These high-bandwidth inter-

connects also enable a shared virtual address space between

the host processor and multiple accelerators. NVIDIA’s

Unified Memory (UM), introduced in CUDA 8 for Pascal-class

GPUs [16], is a prominent example. Non-local UM requests

either remotely access data through the GPU interconnect or

result in transparent data migration with the placement of any

piece of data being determined by a variety of heuristics [16],

[32]. UM supports memory oversubscription, allowing UM-

managed regions that are larger than the GPU device memory

to be accessed without the programmer explicitly managing

data movement. However, this capability is not widely used

for high-performance applications, since large hot working

sets experience frequent page faults and thrashing with Unified

Memory, causing significant slowdowns [32], [59], [60].

C. Compressibility of GPU Workloads

To estimate the possible gains from compression, we first

determine how compressible the high-footprint GPU workloads

are by collecting memory dumps of the workloads running

on a Tesla P100 GPU. We intercept each GPU malloc and

free API call (including variants for pinned and UM-managed

memory) to dynamically track the allocated regions in device

memory. We divide the entire runtime of the workload into 10

2We use the term channel to denote a single NVLink2 ×8 connection.
Other papers call this NVLink2 connection a brick [55] or link-slot [56].

regions, and collect a memory dump of the allocated device

memory at the kernel boundary closest to each region.

Figure 3 shows the compression ratio of each benchmark

using Bit-Plane Compression (BPC) [61] over its entire run.

These compression ratios are optimistic, since they assume

eight available compressed memory-entry sizes (0B, 8B, 16B,

32B, 64B, 80B, 96B, and 128B) and assume no page-packing

overheads. Each memory-entry is individually compressed and

allowed to occupy any of these sizes. On average, the geometric

mean of compression ratios is 2.51× for the HPC benchmarks

and 1.85× for DL training. This average compressibility is

higher than prior reports for CPU workloads [23], which

we attribute to the higher percentage of homogeneous data

allocations (with a single uniform datatype). Prior work has

established that BPC works well for homogeneous data, and

such homogeneity is prevalent in GPU workloads [61].

Compressibility Changes. Changes in compressibility are

more frequent for GPU benchmarks than they are in previously-

studied CPU workloads [21], [23], [20]. As an example,

355.seismic begins with many zero values but slowly reaches

an asymptote at a 2× compression ratio over its execution.

Although the overall compression ratio of the DL workloads

stays roughly constant, compressibility changes frequently for

individual memory entries. This variability is because DL

frameworks perform their own asynchronous GPU memory

allocation with software-managed memory pools and may

reuse the same memory location for a variety of purposes

over program execution [42].

Comparison to CPU Trends. If data compressibility de-

creases, prior CPU memory approaches may be forced to allo-

cate more space for the same memory-entry, causing a memory-
entry overflow and suffering additional data movement [23]. We

observe that memory-entry overflows would happen more often

and be more painful in GPUs than CPUs. While CPU workloads

like SPECcpu2006, Pagerank, and Graph500 experience an

overflow rate of 0.4% per instruction on average [23], the

overflow rate in GPUs is 8% per warp-instruction on average

across our workloads. This difference stems from a higher write

throughput in GPU memories, as well as differing workload

characteristics (e.g. DL training). Furthermore, previous work

has shown that GPU page allocation incurs a hefty GPU-driver

latency and is a sequential bottleneck in an otherwise highly-

parallel system [17]. Since all previous work in CPU memory

compression relies on page re-allocation and data movement,

it is not a good fit for GPUs. Buddy Compression addresses
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Fig. 4: A 128B memory-entry compresses to occupy 1–4 32B
sectors. If an entry does not compress to the target compression
ratio, left-over sectors are accessed from buddy-memory.

this challenge by avoiding any page-level movement due to

memory-entry overflows.

I I I . B U D D Y C O M P R E S S I O N

Buddy Compression allows a programmer or DL framework

to annotate memory allocations to use less device memory than

the allocation size. For instance, if a user has 24GB of data

and a GPU with only 12GB of memory capacity, the data can

be allocated with a target of 2× compression so that only half

of the full data size is allocated on the GPU device memory.

We use fine-grained compression to opportunistically fit data

into this reduced device-resident allocation. If a memory-entry

does not compress sufficiently, an NVLink2-connected larger-

but-slower buddy-memory is used as overflow storage. Data

from compressible memory-entries are sourced completely

from GPU device memory, while incompressible memory

entries are sourced from both device and buddy-memory.

Figure 4 shows Buddy Compression striping the data using

32B sectors which matches the access granularity of GPU mem-

ory on GDDR5, GDDR5X, GDDR6, and HBM2-based GPUs.

For example, if an allocation targets a compression ratio of 2×,

the first two sectors per 128B memory-entry are mapped to

device memory, and the last two are mapped to buddy-memory.

Therefore, if a memory-entry is compressed by 2× or more, it

fits completely in device memory. Otherwise, the latter 64B of

the entry are stored in a pre-allocated buddy-memory location.

Compression Algorithms. A hardware memory compres-

sion algorithm should be fast and require little energy, yet

result in high compression rates. Figure 5a compares several

low-cost compression algorithms [62], [63], [65], [61], [64].

Bit-Plane Compression (BPC) [61] is the most attractive for

Buddy Compression as it achieves robust compression ratios

across both HPC and DL workloads. As Buddy Compression

is algorithm-agnostic, it will work with any low-cost hardware

compression algorithm.

Compression Granularity and Sizes. Most CPU main

memory compression strategies operates at the cache-block

granularity to avoid read-modify-write (RMW) overheads.

Buddy Compression shares this design decision and uses a

128B compression granularity to match the GPU cache block

size [66]. Figure 5b shows a histogram of compressed memory-

entry sizes across our workloads. Buddy Compression supports

the most frequently occurring sizes of 0B, 32B, 64B, and 128B.

We also support 96B compression as it aligns nicely with the

32B access granularity of GPU memory.

Buddy-Memory Carve-Out Region. At boot time, the

driver carves out a contiguous chunk of pinned buddy-memory

for each GPU. These regions are never directly accessed

by the host CPU, eliminating any coherence issues, and

making the address translation for buddy-memory simple and

fast. The buddy-memory size corresponds to the maximum

target compression ratio for the GPU. As an example, if the

maximum target compression ratio is 4×, then the carve-out

region should be 3× as large as GPU device memory, to allow

each memory-entry to have 3 sectors in buddy-memory (in

the worst case) and only 1 on the GPU.

While the size of the carve-out is considerable, most systems

have a significantly larger host system memory than the

aggregated GPU memory capacity. For example, DGX-2 nodes

have an aggregated 512GB GPU versus 1.5TB CPU memory

(3×) [26], Sierra nodes have 64GB GPU versus 256GB CPU

memory (4×) [67], Summit nodes have 96GB GPU versus

512GB CPU memory (5.3×) [68], and ACBI nodes have

64GB GPU versus 384GB CPU memory (6×) [69]. Prior

work [70] reports that host memory remains underutilized

in such systems. Disaggregated memory pools [54], [31], [49]

can be sized to an even larger capacity.

Address Translation. Accessing compressed data requires

additional address translation and metadata which informs (i)

the target compression ratio, (ii) whether a particular memory-

entry was compressed to the target ratio, and (iii) the address in

buddy-memory to be accessed for memory-entries that did not

compress to the target ratio. A global base physical address for

the buddy-memory carve-out region is stored in a Global Buddy

Base-address Register (GBBR). The page-table and TLBs are

augmented to store the information about whether the page is

compressed or not (1 bit), the target compression ratio (3 bits),

and the offset of the buddy-page from the global base address

(16/20 bits for 2MB/64KB GPU pages, a 4× maximum target

compression ratio, and a 32GB maximum GPU capacity). GPUs

differ from CPUs in that they use a larger page table entry

(PTE) which already contains potentially-unused metadata bits.

Open documentation [71] shows NVIDIA Pascal GPUs to have

64b PTEs with 27 bits that are unused or dedicated to graphics-

specific attributes and texture compression. These 27 bits can

be repurposed for general-purpose workloads to store the 16–20

bits of Buddy Compression address translation metadata.

Buddy Compression works for GPU-pinned (cudaMalloc’ed)

memory. CPU-shared (UM [16] or ATS [72], [73]) memory

support requires additional address translation mechanisms

and system-level simulation and is left for future work. Buddy

Compression stores address translation metadata in the GPU

page tables, and non-GPU peers do not have access to

this translation metadata so they cannot make requests to

Buddy-Compressed GPU memory. Other aspects of shared

memory support that are ripe for for future work, such as

compressibility-aware migration heuristics and the ability to

dynamically change compression targets during migration.

Memory-Entry Size Metadata. The compressed size of

each 128B memory-entry uses 4 bits of metadata. We store

this metadata in a dedicated driver-allocated region of device
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(a) Compression Algorithms (b) Compressed Sizes (BPC, 128B Granularity)

Fig. 5: The average compression ratio of different algorithms, and a histogram of compressed sizes across all workloads (BPC,
128B compression). Algorithms: Bit-Plane Compression (BPC) [61], Base-Delta-Immediate and Frequent Pattern Compression
(BDI+FPC) [62], [63], Zero Value Compression [15], Fibonacci Compression [64], and Massively Parallel Compression (MPC) [65].
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Fig. 6: Compression metadata handling architecture; GBBR is Global Buddy Base-address Register.

memory, amounting to 0.4% storage overhead. While our

chosen compression sizes strictly require only 5 states (3 bits)

per compressed cache line, we reserve 4 bits of metadata to

align to a power-of-two and to provision reserved states for

other uses or future compression changes. The metadata storage

overheads of Buddy Compression are comparable to or less

than those of CPU compression schemes [23], [21], [19], [20],

[22]. Figure 6a shows a high-level view of the metadata setup

and translation. The simple GBBR-offset based addressing

makes the overall translation mechanism straightforward to

implement.

A cache is used to avoid metadata traffic for workloads with

good locality. Figure 6b shows the metadata cache hit ratios

as a function of the metadata cache size. Most applications

have high hit ratios. We use a 4-way 64KB metadata cache

that is split into 8 slices, 1 per memory controller. Each 128B

metadata cache entry is split into four 32B sectors, thereby

causing a prefetch of metadata corresponding to 63 neighboring

memory-entries on every metadata sector miss. The metadata is

interleaved across the HBM2 channels using the same hashing

mechanism as regular physical-address interleaving.

A. Benefits of the Buddy Compression Design

No Page-Faulting Expense. The immense parallelism of a

GPU increases its overall throughput. However, driver-based

page-fault handling is remote and non-distributed, making GPU

page-faults expensive [17]. The compressibility of data in

memory can decrease, requiring new page allocations for prior

CPU-based memory compression schemes. The page fault

overhead in GPUs renders these prior CPU-based compression

schemes untenable. Buddy Compression is unique in that the

compressibility of each memory-entry affects only its own

allocation, and compressibility changes never result in page

movement or re-allocation. If the compressed size of a memory-

entry exceeds the device allocation, its upper sectors spill over

to the buddy-memory; if the compressed size then decreases,

stale-but-never-accessed values are left in buddy-memory until

the allocation is freed.

Low Translation Overhead. Memory bandwidth is an occa-

sional bottleneck for GPUs. Accordingly, there has been fruitful

research on bandwidth compression of GPU main memory [61],

[74]. Buddy Compression uses compression to amplify both the

bandwidth and capacity of GPU memory. However, as discussed

earlier, compression-for-capacity requires additional metadata

accesses for translation into the compressed address space,

emphasizing the importance of reducing the metadata size

and keeping translation simple. Buddy Compression requires

only 0.4% metadata, and because the buddy-memory carve-out

region is physically contiguous, addressing into it is offset-based

and straightforward.

B. Reducing Buddy Compression Overheads

With the design of Buddy Compression, the major overhead

comes from accessing the slower buddy-memory in cases of

unexpectedly low compression.

Profiling Target Compression Ratios. Choosing the

right target compression ratio is important, since aggressive

compression ratios will lead to more memory-entries exceeding
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Fig. 7: Sensitivity of the compression ratio and buddy-memory accesses to design optimizations. Optimizations are applied
successively, such that the zero-page optimized design also contains per-allocation compression.

the allocated device memory and requiring buddy-memory

accesses. To choose the target compression ratio, we use a

simple profiling pass on a representative dataset. For HPC

workloads, the profiling pass is run using a smaller dataset,

like the train dataset for SpecACCEL. For DL workloads, a

brief profiling pass is run with a smaller batch size, which can

be embedded in training platforms like PyTorch or TensorFlow.

Understanding Compressibility Patterns. The granularity

at which the programmer annotates memory is also

important—the best annotation granularity depends on the

spatial compressibility patterns. Naive Buddy Compression

considers a single, conservative target compression ratio for

the whole-program. Figure 7 shows that this granularity is too

coarse. The naive mechanism achieves an overall compression

ratio of just 1.57× for HPC workloads and 1.18× for DL

workloads, requiring 8% accesses over the interconnect to the

buddy-memory for HPC, and 32% for DL.

To investigate the appropriate Buddy Compression annotation

granularity, Figure 8 shows a spatial plot (in the virtual address

space) of each workload’s compressibility. Each sub-plot is a

spatial heat map that shows the compressibility of the memory

allocated by a benchmark. A colder color (blue), signifies

high compressibility and a hotter color (red) denotes low

compressibility. The plot is structured with each row having 64

128B memory-entries. Figure 8 shows that the spatial locality of

compressibility varies significantly across benchmarks. While

most HPC benchmarks have large homogeneous regions of

similar compressibility, the distribution is more random in DL

workloads. FF HPGMG shows specific patterns of compress-

ibility that can be correlated to its use of arrays of heterogeneous

structs for data structures. Although the DL workloads do not

show the level of homogeneity that can be seen in HPC work-

loads, the graph still contains some mostly-red or mostly-blue

regions. Based on the insights from these plots, we propose fur-

ther optimizations to the design of Buddy Compression below.

Per-Allocation Compression Targets. Figure 8 shows that

most benchmarks have large homogeneous regions of similar

compressibility. We find that most of these region boundaries

overlap with GPU malloc() boundaries. A special allocation

API for compressed regions allows us to capture this behavior

and eliminate the futile effort of compressing the red regions.

During profiling, we periodically take snapshots of memory,

to track the compression ratios per allocation. At the end of

profiling, we decide target compression ratios per allocation

using heuristics to trade-off the compression ratio with the

buddy-memory accesses. The compression ratio is chosen

conservatively to aggressively reduce buddy-memory accesses.

For example, 355.seismic from Figure 3 exhibits high average

compressibility, but our per-allocation heuristics target most

allocations to 2× compression to compensate for the lesser

end-of-application compressibility.

We evaluate Buddy Compression using a static target

compression ratio per allocation. A dynamic target compression

ratio would require reallocating and moving around memory,

making the compression management more complicated and

less performant. DL frameworks reuse memory allocations

for different purposes, and the compressibility of a single

allocation can change over time. To investigate the effect

of changing DL memory allocations despite using a single

target compression ratio, Figure 9 shows the buddy-memory

access rate of ResNet50 and SqueezeNet over a training

interval. While both programs exhibit frequent compressibility

changes per memory-entry, the buddy-memory access rates

do not fluctuate. Even though the individual memory-entries

frequently change in compressibility, the changes are relatively

unbiased and the net effect is negligible.

The Buddy Threshold Meta-Heuristic. Most benchmarks

have allocations that are highly homogeneous in their compress-

ibility, making the per-allocation target ratio decision straight-

forward. However, for benchmarks like AlexNet and ResNet50,

memory allocations have mixed compressibility, meaning we

must trade-off between the compression ratio and the frequency

of buddy-memory accesses. To guide our per-allocation heuris-

tics, we define a Buddy Threshold meta-heuristic that limits the

expected fraction of buddy-memory accesses. A higher Buddy

Threshold achieves a higher compression ratio at the cost of

more buddy-memory accesses and lower performance.

Figure 10 shows a sensitivity sweep of the Buddy Threshold

(10% to 40%), alongside the best achievable compression ratio

assuming no Buddy Threshold constraints. Buddy-memory

accesses remain infrequent for HPC benchmarks regardless of

the Buddy Threshold selection, due to the largely-homogeneous

allocations in these benchmarks. DL workloads suffer from

more frequent buddy-memory accesses and are sensitive to

the Buddy Threshold. With the exception of FF HPGMG,

we are able to achieve near-optimal compression with a 40%
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Fig. 8: Spatial compressibility patterns. Each heatmap shows the compressibility of all allocated GPU memory. Each row represents
64 128B memory-entries, ordered by their virtual addresses.

Buddy Threshold, as can be seen in comparison with the

red marker. As discussed earlier, FF HPGMG has a peculiar

striped compressibility pattern resulting from its use of arrays

of structs. To capture the maximum compression, FF HPGMG

requires more than 80% Buddy Threshold. Overall, since a

30% Buddy Threshold achieves a good balance between the

compression and buddy-memory accesses, we choose this

parameter for our Buddy Compression evaluation.

Special Case For Mostly-Zero Allocations. The spatial

plots show memory regions that remain mostly-zero across

the entire benchmark. To capture the capacity-expanding

opportunity of such allocations, we add an aggressive target

compression ratio of 16× where we keep only 8B out of each

128B in device memory. The only change is an additional

encoding for page size in the TLB.

This optimization increases the compression ratio for

benchmarks such as 352.ep and VGG16 with mostly-zero

regions. This optimization does not have much impact on the

buddy-memory accesses rate, since such highly-compressible

data almost always fits in device memory. Figure 7 shows

the effect of this optimization. For HPC benchmarks, the

compression ratio goes up from 1.7× to 1.9×, while for

DL, from 1.4× to 1.5×. To enable this optimization, the

profiler marks regions that are mostly zero and remain so

for the entire benchmark run. Because of the limited size of

Fig. 9: The fraction of buddy-memory accesses over a complete
DL training interval does not vary significantly.

the buddy-memory carve-out region, however, the profiler is

constrained to keep the overall compression ratio less than 4×.

C. Evaluated Design

For our evaluation, Buddy Compression uses a 30% Buddy

Threshold for its profiling heuristics, a 4KB metadata cache per

memory controller, and a buddy-memory carve-out that is 3×
the size the GPU device memory (supporting a 4× maximum

expansion of GPU memory, or more with mostly-zero

allocations). We profile the application with a smaller dataset,

and the profiler reports target compression ratios that are

used by the DL framework or HPC user to annotate GPU

malloc API calls. Figure 7 shows the compression ratio and

buddy-memory accesses for the final design. We achieve 1.9×
memory compression for HPC and 1.5× compression for DL

workloads. The average proportion of buddy-memory accesses

are 0.08% for HPC data traces and 4% for DL workloads.

I V. P E R F O R M A N C E E VA L U AT I O N

Having demonstrated that Buddy Compression provides good

compression with infrequent buddy-memory accesses (Figure 7,

Zero-Page Optimized design), we next discuss the performance

benefits of Buddy Compression from GPU memory capacity

expansion. We show that Buddy Compression approaches the

performance of an unrealistic unconstrained-capacity GPU, far

outperforming UM-based oversubscription. We then present

a case-study of DL training to estimate the end-to-end perfor-

mance benefits from an increased GPU memory capacity.

A. Evaluation Methodology

Workloads. As previously described in Section II-A, we

evaluate Buddy Compression’s effectiveness on a set of

10 HPC and 6 DL network training workloads. We collect

a representative trace from each benchmark running its

reference dataset, following the compression-aware subsetting
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Fig. 10: Sensitivity of the compression ratio and buddy-memory accesses to the Buddy Threshold parameter.

methodology of prior work [36]. Each trace contains 1–9 billion

warp instructions and corresponds to the dominant kernel of

each benchmark at an execution point that exhibits the average

compression ratio for that entire benchmark execution. The

trace for each DL workload spans one full training iteration.

Simulation Infrastructure. We use a dependency-driven

GPU performance simulator, similar to the one used by

Arunkumar et al. and others [75], [76], [77]. Tab. I shows our

simulator configurations which are based on public information

about NVIDIA’s P100 Pascal GPU [78] and the interconnect

characteristics of recent Volta GPUs [79]. Non-public microar-

chitectural details are configured using microbenchmark results

from prior work [66], [56]. Each SM is modeled as an in-order

processor with greedy-then-oldest warp scheduling. We model a

multi-level cache hierarchy with private L1 caches and a shared

sectored L2 cache with 128B lines and 32B sectors. Caches are

banked to provide the necessary parallelism to saturate DRAM

bandwidth. We model software-based cache coherence in the

private caches, similar to state-of-the-art GPUs. Device memory

consists of 32 HBM2 channels split across 8 memory controllers

(MCs), and each GPU is connected to buddy-memory with 6

NVLink2 channels (unless otherwise noted).

We conservatively model decompression latency as 11

DRAM cycles, as discussed in prior work [61]. The metadata

cache is 4KB and 4-way set associative per MC. To determine

its performance impact, we also evaluate bandwidth-only

compression between the L2 cache and device memory. Such

compression does not increase the effective memory capacity,

but it can alter the DRAM bandwidth and latency, affecting

performance. Our simulator also models the latency overheads

of accessing the buddy memory; this latency is set to be

twice that of a local GPU HBM2 access, based on prior

characterization work [56], [80].

Figure 11 (left) shows agreement (correlation coefficient

0.989) between the simulated and actual cycles spent on a V100

GPU across a wide variety of benchmarks.3 Corresponding

numbers from GPGPUSim (correlation coefficient 0.948), a

widely-used academic simulator, are also shown. Our motivation

in using a proprietary simulator comes from the two orders-

of-magnitude speed benefit shown in Figure 11 (right), which

allows us to simulate larger and more realistic workloads.

3To compare to GPGPUSim results, we show simulator correlation results
with a slightly different configuration than is used for evaluation. The
P100-based configuration used in the paper also correlates well with silicon.

Tab. I: Performance simulation parameters.

Core
1.3 GHz; 2 greedy-then-oldest warp schedulers per SM
Max 64 32-thread warps per SM

Caches
24KB private L1/texture cache per SM, 128B lines
64KB dedicated scratchpad per SM,
4MB shared L2, 32 slices, 128B lines, 16 ways

Off-Chip
8 MCs, each with 4 875MHz HBM2 channels (900 GBps)

6 NVLink2 channels (150 GBps full-duplex*)

Buddy
64KB metadata cache (4KB slices), 128B lines, 4 ways
Compression/Decompression latency = +11 cycles

* Interconnect bandwidth is swept in later parts of the evaluation.

B. Performance Relative to an Unconstrained-Capacity GPU

We compare the performance of Buddy Compression to an

unrealistic GPU with no memory limits. This unconstrained-

capacity GPU is idealized and it either represents a system

with a higher memory density than is currently possible, or

a system with multiple ranks per channel (disregarding any

impact on signal integrity and memory interface speed). Such

a large memory is not generally feasible in today’s GPUs.

Apart from increasing the effective memory capacity, Buddy

Compression has various performance side effects. GPU

DRAM bandwidth compression, alone, can help performance

by amplifying the memory bandwidth for programs with

good DRAM locality, or it can hinder performance through

(de-)compression latency and overfetch for fine-grained

random memory accesses. Buddy compression potentially

leads to further performance penalties due to the relatively

low bandwidth and long latency of buddy-memory accesses,

extra DRAM traffic and latency due to metadata accesses, and

interconnect contention.
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Fig. 11: Our simulator correlates with a V100 GPU (left, with
slope=1 line drawn). It is two orders of magnitude faster than
GPGPUSim [81], enabling the simulation of longer programs
(right, linear regression lines drawn).
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Fig. 12: The performance effects of compression, not accounting for capacity benefits. Interconnect bandwidths are swept and all
results are normalized to an uncompressed GPU with a 150GBps interconnect and no memory limits.

To separate these effects, Figure 12 evaluates the performance

of Buddy Compression alongside bandwidth-only compression,

sweeping the buddy-memory interconnect bandwidth from 50

to 200GBps full-duplex, where 150GBps represents current

NVLink2 speeds. We analyze the various performance contrib-

utors below. The application-specific performance benefits of

a larger memory capacity are not present in these experiments;

we consider this effect for DL training later in Section IV-D.

Bandwidth-Only Compression. While bandwidth-only com-

pression does not increase the effective memory capacity,

it does achieve an overall speedup of 5.5%. Most of this

speedup comes from the DL training workloads, which are

memory intensive with regular memory accesses. On the other

hand, the HPC applications 354.cg and 360.ilbdc experience

slight slowdowns with bandwidth compression because of their

random and irregular access patterns. Most memory requests

in these programs require only one sector, but bandwidth com-

pression fetches the entire compressed cache-line, squandering

bandwidth. FF Lulesh experiences a slowdown despite having

a regular memory access pattern due largely to the compression

and decompression latency.

Buddy Compression Performance. Buddy Compression

offers 1.5–1.9× higher effective memory capacity while possi-

bly introducing additional overheads in the form of metadata

cache misses and buddy-memory accesses. Figure 12 shows

that while an interconnect bandwidth of 200GBps still achieves

a 2% average speedup using Buddy Compression, all lower

interconnect bandwidths experience some slowdown relative

to the unconstrained-capacity GPU.

Metadata Accesses. Figure 6b shows that the benchmarks

351.palm and 355.seismic experience slowdowns due to a

higher metadata cache miss rate. Since the other benchmarks

have high metadata cache hit rates, metadata accesses do not

have a discernible impact on their performance.

Bandwidth Sensitivity. Most HPC benchmarks have rare

buddy-memory accesses (Figure 7), leading to negligible

performance losses with a high-bandwidth interconnect. When

the interconnect bandwidth is reduced, however, even 1%

accesses buddy-memory accesses can cause considerable

slowdown for bandwidth-sensitive applications like 352.ep

and 355.seismic. Because FF HPGMG spends significant time

performing synchronous CPU-GPU memory copies, the link

bandwidth dramatically affects its performance for reasons

other than Buddy Compression. All results are normalized to

a baseline system with a 150 GBps interconnect.

DL training uses a relatively higher rate of buddy-memory

accesses, as can be seen in Figure 7. These buddy-memory

accesses are caused by a lack of compression locality in the

workloads. For example, AlexNet accesses buddy-memory at

5.4% of locations, leading to a 6.5% slowdown relative to the

unconstrained-capacity GPU when combined with a 150GBps

full-duplex interconnect. Performance degenerates with

lower interconnect bandwidths, with the 50GBps full-duplex

connection seeing a 35% slowdown.

These results show that recently-developed high-speed

GPU interconnects are an enabling technology for Buddy

Compression. The slowest link we evaluate (50 GBps

full-duplex) is still faster than the most recent PCIe generation

(×16 PCIe4.0, providing 32GBps full-duplex bandwidth). Yet

it suffers from more than 20% average slowdown relative to

the unconstrained-capacity GPU. However, high-bandwidth

interconnects such as NVLink2 (150GBps full-duplex) allow

Buddy Compression to come within 1% of the performance

of the unconstrained-capacity GPU for HPC benchmarks, and

within 2.2% for DL training.

Insignificant Factors. Due to the low buddy-memory access

frequency (Fig. 10) and varying program memory intensities,

the Buddy-150GBps interconnect bandwidth utilization is only

5.6% on average across all benchmarks (average 4% for HPC

and 9.8% for DL). While we simulate interference between

buddy-memory and regular interconnect traffic, interconnect

contention does not seem to be a major factor in program

performance. We simulate CPU-GPU traffic in our single-GPU

workloads, while the high-speed interconnect is potentially

also used for GPU-GPU communication. We expect that

multi-GPU programs with GPU-GPU communication may

see some slowdown due to interconnect contention, but will

only affect program portions with overlapped communication

and computation. At worst the performance loss should be

proportional to the bandwidth utilization of the buddy-memory

traffic. We also simulate the additional latency to buddy-

memory, which ultimately has little effect on performance.

This result is apparent from the 200GBps interconnect results,

which offer a net speedup despite the increased buddy-memory

access latency.

Energy. Apart from its system-level performance effects

(with a proportional effect on leakage energy), Buddy Com-
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Fig. 13: Dynamic memory access energy benefits of compression.

pression decreases the energy required to access DRAM.

Figure 13 estimates the dynamic access energy of bandwidth-

only compression and Buddy Compression relative to the

uncompressed GPU with no memory limit. These results

model the energy to read a memory snapshot of each program,

assuming average row-buffer locality and the 64KB metadata

cache hit rates from Figure 6b. We assume that HBM2

consumes 909 pJ per row activation, 1.51 pJ/bit on column

access, and 1.97 pJ/bit on data sensing and I/O [82], while

a high-bandwidth interconnect consumes roughly 11 pJ/bit in

total [83]. We conservatively assume a 100% toggle rate for

compressed data to account for increased entropy, and double

the interconnect energy to represent ingress and egress from a

switch. We also account for the worst-case 32B NVLink2

control header per buddy-memory access packet [84], and

model remote buddy-memory and metadata accesses as HBM2

transactions. Despite these generally-conservative assumptions,

Buddy Compression uses at worst roughly as much memory

energy as the uncompressed baseline, and generally saves some

energy through less HBM2 data movement.

C. Comparison with Unified Memory on NVIDIA GPUs

Faithfully comparing Buddy Compression and Unified

Memory in simulation is not feasible due to the complex

host-driver interactions and page migration policies within

UM. Instead we choose to understand UM performance in

oversubscribed scenarios by running SpecACCEL on real

hardware. Figure 14 shows the measured performance of four

SpecACCEL applications4 with varying levels of oversubscrip-

tion to illustrate the limitations of UM. The programs are run

on an IBM Power9 system, connected to a Tesla V100 GPU via

NVLink2 (interconnect topology with 3 channels, 75 GBps full-

duplex CPU-GPU bandwidth). We compile the SpecACCEL

applications with the managed PGI compiler flag, and force

varying levels of oversubscription through an interposer that

hogs GPU memory at application startup. We also run the

applications using a compiler flag to pin all allocations in host

memory, showing the slowdown in dotted lines.

Our results indicate that slowdown varies widely from

negligible (354.cg and 370.bt, not shown in Figure 14 for

clarity) to 87× slowdown (352.ep). Thrashing hampers UM

performance for the most severely-slowed applications relative

to running in pinned host memory, perhaps because UM is

primarily intended for ease of programming and has not yet

4We omit 354.cg and 370.bt for visibility because they show negligible
slowdowns, even when pinned in system memory. We omit 357.csp due to
failed compilation on the Power9 system, and 355.seismic because it hangs
when run with the memory-hogging interposer.
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been tuned for high-performance memory oversubscription.

Prior work [32], [17] supports our observation that UM oversub-

scription slowdowns can be excessive without more extensive

hardware support. Figure 12 shows that Buddy Compression

suffers from at most 1.67× slowdown for these programs when

oversubscribing by >50%, even with a conservative 50 GBps

NVLink speed. This result indicates that Buddy Compression

is a better approach for managing high-performance memory

oversubscription than software-based UM.

D. Case Study: DL Training with Increased Memory Capacity

Comparing the performance of Buddy Compression to an

uncompressed baseline with no memory limits (as in Figure 12)

ignores the benefits of memory capacity amplification. For HPC

benchmarks, more capacity allows a larger problem to be solved.

Such benefits are important yet difficult to quantify. Accordingly,

we instead study DL training workloads to quantify the

performance benefits from compression. Buddy Compression

increases the maximum supported mini-batch size, training large

networks with fewer GPUs and higher efficiency per GPU.

Memory Footprints of DL Workloads. The memory

footprint of a network during training depends on the mini-batch

size. Larger mini-batch sizes place a larger part of the dataset in

device memory, along with more intermediate data (activations

and gradients). Figure 15a shows memory footprint measure-

ments for each DL training workload as the mini-batch size

is increased. The mini-batch sizes are increased up to the max-

imum that can fit on a Titan V GPU (12GB device memory).

Initially there is not much difference as the batch size is doubled.

Eventually, the memory footprint grows almost linearly with

increasing mini-batch size. This transition point depends on the

size of the network parameters, which do not vary with mini-

batch size. For example in AlexNet, the network parameters

consume a large portion of the overall memory due to the three

large fully-connected layers and relatively few (five) convolu-

tional layers. This attribute leads to a later transition point for

AlexNet at a batch-size of 96; all other networks transition to

an increasing memory footprint at a batch size of 32 or below.

Performance Impact of Larger Mini-Batches. A larger

batch size is often beneficial as it allows more work to be

performed per iteration, better utilizing resources [44], [6]. Fig-

ure 15b projects the speedup for each network with increasing

mini-batch sizes. The graph is generated using a detailed ana-

lytical model very similar to [85], [86], to project performance

with batch sizes that do not fit on current GPUs. Increasing the
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(a) Memory footprint as a function of batch size (PyTorch, Titan Xp).y p ( y

(b) Projected speedup as a function of mini-batch size.) j p p

(c) Projected speedup using larger Buddy Compression batch sizes.p p g g y p

(d) Accuracy across mini-batch sizes (ResNet50, CIFAR100).

Fig. 15: Increasing DL training mini-batch size.

mini-batch size leads to higher relative training speed until the

point of full GPU utilization, after which the effect plateaus.

Buddy Compression allows a larger mini-batch to fit

in GPU memory. Figure 15c shows the relative speedup

projected by our analytical model for this larger mini-batch

size on a Titan V GPU (12GB device memory). The average

speedup is 14%, while BigLSTM and VGG16 achieve higher

speedups of 28% and 30%, respectively. The higher speedup

in these workloads follows from Figures 15a and 15b. Without

compression, both networks are unable to fit the mini-batch size

of 64 that is needed for good resource utilization. The average

speedup of 14% from larger mini-batch sizes is much higher

than the 2.2% performance used to enable Buddy Compression

(Figure 12). Thus Buddy Compression can significantly

improve performance for capacity-constrained GPUs by

enabling better GPU utilization through larger mini-batch sizes.

Better Convergence with Larger Mini-Batches. Apart

from improving computational throughput with better resource

utilization, the mini-batch size can also affect DL training accu-

racy. To investigate, we trained ResNet50 on the CIFAR100 [87]

dataset for 100 epochs on a Titan Xp GPU with different

mini-batch sizes. Figure 15d shows the validation accuracy

results for these runs. Small mini-batches of 16 and 32 do not

reach the maximum accuracy, despite using individually-tuned

hyperparameters. Additionally, the mini-batch size of 64 trains

to the maximum accuracy but converges more slowly than larger

mini-batches. With batch normalization, the jitter in accuracy is

also higher with small mini-batch sizes. While we observe good

validation accuracy up to a batch size of 256, which is consistent

with previous results [6], some prior work reports that increasing

the mini-batch beyond a certain size can be detrimental to the

network’s generalization. However, other work indicates that

tuning loss functions and hyperparameters can enable successful

training with large mini-batches [88], [89].

Huge DL Networks. Recent object detection networks like

MegDet [6] and natural language processing networks like

GPT-2 [11] and BERT [8] exceed GPU memory capacities with

even 2–4 input samples per GPU. Such capacity limitations

are hurdles for developers, since batch normalization requires a

batch size above 32 to be effective [90]. As a result, developers

resort to horizontal scaling by spreading a mini-batch across

many GPUs. For example, MegDet [6], [91] performs

batch normalization across 128 GPUs, resulting in high

communication overheads. This work also presents results

showing that larger mini-batches lead to higher accuracy and are

faster to train. Using horizontal scaling alone to support larger

batches is not sustainable due to the inter-GPU communication

bottleneck. While our simulation infrastructure is unable to

support such huge DL training networks, Buddy Compression

enables modest vertical scaling, which could be combined

with horizontal scaling for more sustainable solutions.

V. C O N C L U S I O N S

This work describes Buddy Compression, the first general-

purpose mechanism to increase user-visible memory capacity

on GPUs. Buddy Compression is enabled by modern high-

bandwidth interconnects that allow a remote memory pool

to be used as overflow storage for incompressible memory

entries. Buddy Compression achieves 1.5–1.9× GPU capacity

expansion across a wide range of HPC and DL workloads with

only a 1–2% performance penalty relative to an unconstrained-

capacity GPU, due to its unique design where compressibility

changes require no additional data movement. This combination

of high performance and compression ratios makes Buddy

Compression an attractive and performant alternative to

existing technologies like Unified Memory oversubscription.
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