PyTorchFI: A Runtime Perturbation Tool for DNNs

Abdulrahman Mahmoud', Neeraj Aggarwal!, Alex Nobbe!, Jose Rodrigo Sanchez Vicarte',
Sarita V. Advel, Christopher W. Fletcher!, Turi Frosio?, Siva Kumar Sastry Hari?

1University of Illinois at Urbana-Champaign, 2NVIDIA Corporation

Abstract—PyTorchFI is a runtime perturbation tool for deep
neural networks (DNNs), implemented for the popular PyTorch
deep learning platform. PyTorchFI enables users to perform
perturbations on weights or neurons of DNNs at runtime. It is
designed with the programmer in mind, providing a simple and
easy-to-use API, requiring as little as three lines of code for use.
It also provides an extensible interface, enabling researchers to
choose from various perturbation models (or design their own
custom models), which allows for the study of hardware error
(or general perturbation) propagation to the software layer of
the DNN output. Additionally, PyTorchFI is extremely versatile:
we demonstrate how it can be applied to five different use cases
for dependability and reliability research, including resiliency
analysis of classification networks, resiliency analysis of object
detection networks, analysis of models robust to adversarial
attacks, training resilient models, and for DNN interpertability.
This paper discusses the technical underpinnings and design
decisions of PyTorchFI which make it an easy-to-use, extensible,
fast, and versatile research tool. PyTorchFI is open-sourced and
available for download via pip or github at:

https://github.com/pytorchfi

I. INTRODUCTION

With the recent advances in machine learning (ML) alongside
enabling hardware (such as GPUs [22] and custom ML
processors [7], [14]), deep neural networks (DNNs) have quickly
become a dominant player in the application space. Today,
DNNSs are heavily used across many application domains and
hardware platforms, ranging from entertainment devices such
as personal phones, to stringently safety-critical systems such
as perception software in self-driving vehicles.

With the ubiquitous utilization of DNNs across many domains,
it is crucial that DNNs operate reliably in the face of errors.
There is mounting evidence that even tiny perturbations, such
as transient cosmic ray particle strikes causing a bit flip (called
soft errors), can cause a DNN to output an incorrect result
at the software level [8], [19], [23], [37]. Additionally, recent
work in adversarial machine learning has shown that malicious
perturbations in the input (and more advanced attacks such as
rowhammer within a network), can alter a DNNs execution [2],
[3], [12], [271-[20], [32], [42]. On one hand, most of the time
an error has a negligible impact on the computation because it
either gets masked out entirely (e.g., due to activation functions
such as ReLLU layers) or does not cause the DNN’s decision
to cross a decision boundary (a misclassification). On the other

This material is based upon work supported in part by the Applications
Driving Architectures (ADA) Research Center, a JUMP Center co-sponsored by
SRC and DARPA. A portion of this work was performed while Abdulrahman
Mahmoud interned at NVIDIA.

hand, there are errors which manifest into observable output
corruption. It is therefore crucial that developers understand
the dependability and reliability characteristics and limitations
of their models before deployment in the field.

Developers are currently lacking the tools to study the impact
of perturbations on DNNs. In order to detect and mitigate
hardware errors which can propagate and affect DNN outcomes
or malicious adversarial perturbations in the network, researchers
and developers alike need accurate tools for assessing DNN relia-
bility in the face of different error types. Such tools must be easy-
to-use (for widespread adoption by researchers and developers),
extensible (to keep up with the fast moving field of deep learning,
while also allowing for the study of different perturbation models),
and fast (since DNNs can become very large and there are many
possible places within a network for an error to manifest).

In this paper, we introduce PyTorchFI, a runtime perturbation
tool for DNNs developed in the popular PyTorch [31] framework.
PyTorchFI allows users to perform neural network perturbations
in weights and/or neurons in convolutional operations of
DNNs during execution. Therefore, it enables the study of
the manifestation and propagation of different perturbations at
the application level. PyTorchFI is designed to be programmer-
friendly and easy-to-use: it minimizes the programmer overhead
by streamlining the installation process through the pip package
manager, and provides a simple and intuitive implementation
for performing perturbations at runtime. In addition, PyTorchFI
is extremely fast with negligible runtime overhead due to its
native implementation. Further, PyTorchFI is very versatile: by
abstracting the notion of an “error” to that of a “perturbation” and
designing for the latter, we believe a tool such as PyTorchFI can
have many additional research applications beyond just reliability.

This paper focuses on presenting and discussing the technical
underpinnings and design decisions of PyTorchFI, which are key
to making it an easy-to-use, extensible, fast, and versatile tool.
Additionally, we showcase multiple use cases for PyTorchFI,
including (1) reliability analysis of convolutional neural networks
(CNNs), (2) reliability analysis of object detection networks, (3)
resiliency analysis of models designed to be robust to adversarial
attacks, (4) training error-resilient models, and (5) an early
exploration of using PyTorchFI for the interpretability of DNNGs.

In summary, the primary contributions of this paper are:

o A programmer-friendly and easy-to-use perturbation tool

implemented in the PyTorch framework.

« An extensible perturbation tool, allowing researchers to im-

plement their own perturbation models or select one from a
library of provided models. Further, it is tightly incorporated

https://github.com/pytorchfi

within the PyTorch framework, allowing for future exten-
sions to keep up with the fast moving field of deep learning.

o A fast and light-weight perturbation instrumentation,
running at the speed of silicon and tested on both CPUs
and GPUs.

o An exploration of PyTorchFI’s versatility as a research
tool, by studying five different use cases in the areas of
reliability, security, and interpertability.

PyTorchFI is publicly available at https://github.com/pytorchfi

and is also downloadable via Python’s pip package installer.

II. BACKGROUND AND RELATED WORK
A. CNN Background

A convolutional neural network (CNN) is a class of
deep neural networks (DNNs) used for tasks such as image
recognition and object detection. Figure 1 shows a general
overview of a CNN performing inference (or forward-pass),
an execution of a CNN to determine the class of an input
image. A CNN is composed of many convolutional layers,
which convolve the pre-trained weights/filters on input feature
maps (or input fmaps) to produce output fmaps. A non-linear
activation function is typically applied element-wise to the
output fmaps and is considered part of the layer. Output fmaps
of one layer form the input fmaps to the next layer.

Operations such as pooling and batch-normalization can also
be applied after convolutional layers. These layers are connected
using a human-selected topology to form a network. Simple
DNN architectures consist of a series of convolutional layers
(with pooling/batch-normalization layers in between) followed by
some fully-connected layers. The final layer in the classification
model is typically a softmax layer, which provides a probability
distribution for each possible class the network is trained to
predict. The class with the highest probability (the Top-1 class) is
the chosen prediction of the network during an inference. During
training, these outputs are used to compute a loss between the
expected and inferred output. That loss is then backpropagated
through the network by a training algorithm, such as Stochastic
Gradient Descent (SGD). Updates are computed during backprop-
agation to minimize the loss. It is common practice to compute
and average updates across batches of inputs simultaneously.

The most fundamental computational unit in a CNN is a
neuron (also commonly referred to as an activation value). A
neuron is the result of a dot product between a filter of weights
and an equal sized portion of the input. An output fmap is
a plane of many neurons, and is obtained by performing a
convolution operation over an input fmap.

B. Related Work

DNN dependability research that addresses hardware
resilience, robust model training, security, and interpretability of
models has largely been performed using custom techniques and
tools [13], [23]. All these research areas require modifying state
(by injecting random error or noise, or calculated perturbations)
during DNN execution to evaluate and develop new techniques.
This paper presents a tool, PyTorchFI, that enables easy
customization to the target study (increasing productivity) and

Low-Level
—vm» Features > -

Convolution | | Activation

High-Level
m Features ->E->Classes

Activation

I-x

Fully
Connected

Hi*lixk =2

Feature
Fllters maps

Each value in a feature map
is referred to as a neuron

Fig. 1: A CNN inference example [7].

runs on state-of-the-art silicon (fast), making it a desirable tool
for different dependability research studies.

Two related error injection tools that offer similar capabilities
are Ares [35] and TensorFI [9], designed to operate within the
Keras [10] and TensorFlow [1] frameworks, respectively. These
two tools allow modifying the state of the layers in DNNs as
they are executing. However, Ares requires changes to the Keras
inference computation to introduce dynamic perturbation, which
is required for most dependable research studies. TensorFI
requires the users to update a configuration file in addition to
making modifications to the TensorFlow program. While Keras
and TensorFlow are commonly used deep learning frameworks,
PyTorch has emerged as a popular framework for DNN research
for its ease-of-use [16] and its use of dynamic graphs for DNN
computations, which is extremely powerful for understanding
and debugging DNN models.

Apart from filling the gap for the PyTorch framework, we
addressed the limitations of the prior tools and offer a tool that
is fast and easy-to-use. Specifically, we address the issue of
portability and longevity of the tool by implementing PyTorchFI
in Python 3 rather than Python 2 [9] (Python 2 is no longer
support as of January 1, 2020 [33]); we support injecting errors
during both inference and training (we present a use case in
Section IV-D); and we minimize the programmer overhead via
a simplistic API which does not require model modifications.
Additionally, PyTorchFI is still extremely fast as it operates
at roughly the same native speed of PyTorch on silicon.

III. PYTORCHFI: TOOL DESCRIPTION

At a system level, PyTorchFI is a lightweight tool built on
top of PyTorch [31] which enables perturbations on weights and
neurons of DNN models for perturbation analysis with use cases
including hardware resiliency, adversarial attacks, robust DNN de-
sign, and intepretability. This section explains the design choices
and implementation details which make PyTorchFI an easy-to-
use, extensible, fast, and versatile tool for error perturbations
in DNNs. An overview of PyTorchFI is illustrated in Figure 2.

A. Design Choices

Dynamic perturbations for neurons can be implemented in sev-
eral ways within the PyTorch framework. The simplest implemen-
tation is to append an intermediate layer after every convolutional
layer, and apply a transformation layer to perturb output values
before proceeding to the next layer in the network. Studying the
effects of different perturbation models using this method would
require major alterations to the network configuration. For deep

https://github.com/pytorchfi

o

PyTorchFl
" Output |
PyTorchFl PyTorchFl
weight perturbation neuron perturbation
PYTSRCH
Hardware
Platform

Fig. 2: PytorchFI is a lightweight tool built on top of PyTorch [31] that enables
error perturbations for research into different domains of deep learning. Pertur-
bations in weights are performed offline by modifying the weight tensor, while
neuron perturbations are implemented using hooks on convolution operations.

networks with many layers, or networks with custom layers
in-between convolutions, making the modifications to the model
for this approach will require non-trivial effort for the user.

Another option is to modify the PyTorch source code to
intercept the computation of the neuron to perturb it. This
method suffers from a lack of portability because it may require
separate implementations for convolutions on CPU, GPU, and
other backends. It would require patching scripts and developer
maintenance for future versions of PyTorch.

Rather than modifying the network topology or the PyTorch
source code, we utilize PyTorch’s hook functionality to perturb
neuron values during the forward pass of a computational model.
By leveraging the hook API to instrument error, PyTorchFI
avoids altering any source code of PyTorch while also enabling
compatibility with future PyTorch versions. Furthermore, it
allows the perturbation to run at the native speed of PyTorch,
with minimal introduced overheads (overheads depend only
on the code introduced for perturbation — the instrumentation
methodology introduces nearly no runtime overhead).

B. Implementation

Identifying hooks as the best candidate for instrumenting
neuron perturbations is an important step to ensure that
PyTorchFI is fast, extendable, and easy to integrate with existing
implementations. For weights, we further optimize PyTorchFI
by providing wrapper functions that directly modify the weight
tensor before an inference, effectively perturbing weights offline
and away from the critical path (Figure 2). This optimization
translates to no runtime overhead for weight perturbations.

PyTorchFI was designed from the ground up for minimal
programming overhead for the programmer. As a result, a
researcher can begin using PyTorchFI by following just three
steps: (1) importing PyTorchFI, (2) initializing their model, and
(3) performing a perturbation with a custom or provided default

error model. The following are the steps to install and use the tool.

1) Installing and importing PyTorchFI: PyTorchFI has
been published to the pip package manager of Python,
an extremely popular method for managing libraries
such as numpy and scikit-tools. This makes

PyTorchFI easily accessible, and requires no compilation
or configuration scripts. Importing the tool is as easy as
using import in the beginning of the code.

2) Initialization: Initializing PyTorchFI takes the model for
which perturbations will be performed. Other arguments
include input image height and width, and optional
parameters such as batch size, model data type (e.g., FP32 or
FP16), and whether to run on the CPU or GPU. PyTorchFI
then performs a single, dummy inference to profile the model
and gathers all the hyperparameters of the network, such as
the number of layers, filter sizes, and feature map sizes. This
information is used for ensuring that perturbations are legal,
and to provide detailed debugging messages to the end user.

3) Perturbation: The third step involves selecting a
perturbation model and a perturbation location. We provide a
default set of perturbation models for the user to select from,
such as a random value, a single bit flip, or zero value. The
user can also easily implement their own perturbation model.
Along with the perturbation model, the user needs to specify
the location of the weight/neuron that will be perturbed.
This can be a single location (specified by the layer, feature
map, and neuron’s coordinate position in the tensor) or
multiple locations to incur multiple perturbations across
the network. The user can also specify whether to have
the same perturbation across all elements in a batch, or a
different perturbation per element.

The actual perturbation occurs during runtime by taking in the
location of the erroneous neuron/weight and appending it to a
list of positions in the tensor to change. Then, on every layer, the
forward hook will iterate through all of the locations and corrupt
the corresponding value based on the selected perturbation model.

C. Evaluation

PyTorchFI has been tested on PyTorch versions 1.0 through
1.4 (latest at the time of submission). We expect long term
support for PyTorchFI, as hooks are becoming first class
objects in the PyTorch environment: they have been explicitly
mentioned in every PyTorch release [34] and are widely used
within the PyTorch ecosystem.

PyTorchFI's implementation has extremely low overhead
since there is only a single check on every layer. If there are no
perturbations defined, then there is no overhead. It also scales
very well, since the same hook can be used to inject single
or multiple error within the same operation.

To evaluate the runtime overhead introduced by PyTorchFI, we
measured the runtimes of pretrained DNNs with and without per-
turbations introduced by PyTorchFI. We ran our experiments on
two hardware platforms — for CPU, we used an AMD EPYC 7401
processor with 1 TB of RAM and for GPU we ran on an NVIDIA
Titan Xp with 12 GB of RAM. We used the default perturbation
model provided by PyTorchFI (a uniform, random value between
[-1,1]) on a random neuron location for random input images.
We averaged the runtime across 1000 trials for each network.

Figure 3 shows the runtime results. We see that all inferences
(with and without PyTorchFI) typically take less than 0.2
seconds for both CPUs and GPUs. As GPUs are known to offer

(=]
(=Y
v

o
=
E———

|
. | |
o - |

CIFAR10

B

[||

I

[|

Wall Clock Time
(seconds)
o
&

o

AlexNet
DenseNet
PreResNet-110
Resnet-110
ResNeXt
VGG_19
AlexNet
DenseNet
PreResNet-110
ResNet-11

[=]
ik
>
=
=3
o
o

B CPU Base Runtime CPU PFI Runtime

2 .
. \
I \ \ .
H 1 1l
th\\l\\l\l\ \I\
$ % ¢£ & & 3 §& § 3 3 § ¢%
T g 3 =T = 5 8 § g g E %
1 v -
wv
ImageNet Average

GPU Base Runtime GPU PFI Runtime

Fig. 3: Average runtime for 19 networks across three datasets, with and without PyTorchFI (PFI), for a single neuron injection with batch size = 1. PyTorchFI
effectively runs at the same native speed on both CPU and GPU with negligible overhead.

higher throughput for deep learning workloads compared to
CPUs, the GPU runtimes we observed were a lot faster. More
importantly, what we find is that the runtime with perturbations
differs by less than 10 millisecond in wall-clock time across both
platforms, all models, and datasets. Further, we also performed a
study of PyTorchFI using inference batching (a common practice
for some DNN inference applications). We swept the batch size
from 1 to 512. We observed the same trend: the wall clock time
overall went up (as batching takes longer to run than for a single
inference), while the runtimes with and without PyTorchFI
were comparable and within the error margins, indicating an
amortized cost per model for instrumenting perturbations. Thus,
PyTorchFI is extremely fast, effectively operating on the native
speed of the underlying hardware platform.

D. Limitations

PyTorchFI operates at the application level of DNNs, which is
useful for modeling high level perturbations and understanding
their effect at the system level. Lower level perturbation models,
such as register-level faults, cannot be captured at this level.
However, we can still use PyTorchFI to model lower level faults
by mapping them to either single- or multiple- bit flips (in single
or multiple neurons). Recent studies have shown that high level
models can be used to study the effect of errors at the system
level [6], [25]. At the same time, higher level models can
run 4-6 orders of magnitude faster [15] compared to low-level
implementations [5]. We show that PytorchFI runs at the native
speed of silicon, as it requires no code instrumentation for error
modeling. This enables a faster exploration of the large state
space which is crucial for understanding real-life aspects of
errors in safety-critical applications.

IV. PYTORCHFI USE CASES

We demonstrate PyTorchFI’s versatility as a research tool
by showcasing five different use cases: 1) resiliency analysis of
a classification task, 2) resiliency analysis of an object detection
task, 3) resilience analysis of models robust to adversarial attacks,
4) training error-resilient models, and 5) DNN interpretability.
While these are not the only uses of PyTorchFI, we show these
to illustrate the importance and generality of the tool. Our goal
is to demonstrate the uses of the tool and not to fully address
challenges in each of the areas covered by the use-cases.

1.0%

0.8%

z
£ 0.6%
Q2
3 0.4%
£ 04
o B 1
0.0% [|

AlexNet GoogleNet ResNet50 ShuffleNet SqueezeNet VGG19

Fig. 4: Top-1 Misclassification probability for different quantized networks
trained on ImageNet [! 1], using a single-bit flip error model of neurons.

Top-1 Misclassification

A. Resiliency Analysis of DNNs used for Classification

DNNs are trained and optimized for accuracy, size, and
speed, but not typically for resiliency against errors. We
employed PyTorchFI to study the reliability of several popular
networks. We performed large error perturbation campaigns
across six networks with INT8 neuron-quantization [38] for
the ImageNet [| 1] dataset. In each inference run, we inject a
single-bit flip in a randomly selected neuron in the DNN to
emulate a computational hardware error that may occur during
inference. We only select images that are correctly classified
by the model without perturbations. After conducting an error
injection campaign for a model, we measure the total number of
output corruptions observed, defined as a Top-1 misclassification
due to the perturbation. We performed more than 107 million
error injection experiments in total, which provides us 99%
confidence interval error bars of <0.2% for each network.

Figure 4 summarizes the results. All the networks display
output corruptions and are not 100% reliable — overall, a little
less than 1% of all errors manifested as Top-1 misclassifications.
Results show that some networks are more resilient than other.
For example, although AlexNet has a much lower classification
accuracy than ShuffleNet (and is also a much smaller network in
terms of size), both display a similar susceptibility to producing
output corruptions due to single-bit flips. This suggests that
network topology plays a role in resiliency of networks, also
noted by prior work [23] done in the context of an accelerator.

While we demonstrate that some networks are more resilient
than the others, several other resilience studies can be performed
using PyTorchFI. Some examples are (1) evaluating resilience
of a model at coarser granularity (via layer or feature map level
error injections) to gain insights into why some models are more
resilient than others, and use the results for low-cost selective

(b) PyTorchFI perturbations

(a) No perturbation

Fig. 5: Perturbations on YOLOV3 object detection network

protection, (2) studying the effect of quantization on resilience,
and (3) studying network vulnerability based on different output
corruption criteria (e.g., top-1 misclassification vs. Top-1 not in
Top-5 vs. significant confidence change between Top-3). Perform-
ing these studies using PyTorchFI can provide significant insights
into DNN resilience and are interesting future research directions.

B. Resiliency Analysis of CNNs used for Object Detection

We used PyTorchFI to study resilience of object detection
networks, exploring another class of DNNs widely used
in autonomous vehicle systems. Object detection is more
complex than image classification: it combines both the object
localization and classification problems. Thus, the definition
of an output corruption in this context changes dramatically
from the Top-1 misclassification for a classification network.

Using PyTorchFI, we perturb multiple neuron values (one neu-
ron perturbation per layer, each with a uniformly chosen random
FP32 value) and study the effect on the inference output. Figure 5
illustrates the observed differences. Figure 5a depicts a correct
inference with the YOLOV3 network [36] on an image from the
COCO dataset [24]. In this image, the network identifies two
objects (a car and a truck) by placing a border around each object
and classifies each of the detected objects. Figure 5b shows that
the perturbed network can behave irrationally, identifying many
phantom objects each of which are classified seemingly arbitrarily.
This example illustrates that PyTorchFI can be used to perform
perturbations on DNN tasks beyond classification networks and
with a different error model than the one used in Section IV-A.
More importantly, it illustrates that perturbations can cause
egregious outputs which must be studied for building resilient
object detection networks for many safety-critical applications.

Using PyTorchFI, researchers can study the effect of
perturbations across different error models on emerging DNN
tasks. As nearly all the perception tasks in autonomous system
are being performed by DNNG, it is important to have a versatile
tool which can be used to perform detailed resiliency studies
(including the ones described at the end of the previous section).

C. Resilience Analysis of Models Robust to Adversarial Attacks

In a traditional adversarial attack setting for classification
networks, small perturbations in the input layer of a DNN
typically propagate through subsequent layers and eventually
lead to an incorrect classification [4]. Some of the defense
strategies developed to protect a DNN from adversarial attacks
aim at limiting the propagation of the perturbation from one

a=.025 a=.1 a=.25 a=.025 a=.1 a=.25 a=.025 a=.1 a=.25 a=.025 a=.1 a=.25

Relative Vulnerability
e © o 9
o N » o ® »

e=.125 e=.25 e=.5 e=2

Fig. 6: Relative vulnerability (compared to a baseline model without IBP)
of the first two layers of AlexNet when trained with different IBP parameters.

layer to the last one. To that end, PyTorchFI can be used to
validate that protection against adversarial attacks should make
a network inherently more resilient.

We consider the case of AlexNet on CIFAR-10 [21], and train
a version of AlexNet through the Interval Bound Propagation
(IBP) approach [13]. For a perturbation with a maximum
L., = € norm in input, IBP computes the corresponding
minimum and maximum probability of each class in output.
Training is performed by minimizing the cost function

J:Z(l_a)log(pwin)+alag(pwin_6pwin(€))7 (1)
where Y 10g(pywin) is the traditional cross-entropy loss function,
whereas > 10g(Pwin —0Pwin (€)) is the worst-case cross entropy,
computed when the DNN is under attack and the magnitude
of the attack is e. For training, we follow the procedure for
AlexNet in [43], but minimize the cost function in Equation 1.
To guarantee stable convergence, we use curriculum learning as
described in [13], and we scale linearly both o and € from 0 to
their respective maximum values from iteration 41 to iteration
123. We consider different values of a={0.025,0.1,0.25} and
e ={0.125,0.25,0.5,2.0} as these two parameters affect the
robustness of the trained DNN in a different way: increasing e
leads to networks that are resistant to large input perturbations,
while increasing « gives more importance to the worst case
entropy, potentially penalizing the accuracy on clean data.

We used PyTorchFI to analyze the effect of IBP on the
resiliency of the network, using the methodology similar to the
one used in Section IV-A. The results showed improvement in
the total resilience after training with IBP. While performing the
per-layer vulnerability analysis, we discovered that the first two
layers of AlexNet developed higher resilience compared to the
rest of the layers. Figure 6 summarizes this key finding. This
figure shows the vulnerability of the first two layers (defined
using Topl-misclassifications) relative to a baseline AlexNet
that is not trained with IBP. The analysis with PyTorchFI shows
that the IBP is capable of improving resilience by up to 4x: this
is a positive side-effect of adversarial training that, on the other
hand, decreases the accuracy on clean data by approximately
3%. Our results also show that not all models trained to be
robust to adversarial attacks are equally resilient. PyTorchFI
enables us to investigate the reason for such differences and
eventually develop a method that is robust to adversarial attacks
and also highly resilient to hardware errors.

D. Training for Inherently Error-Resilient Models

Most use cases presented so far assume a trained model,
which is then vetted using PyTorchFI for robustness to errors.

TABLE I: Training ResNet18 with and without PyTorchFI for resiliency.

[| Baseline | PyTorchFI |

Training time 2h 8m 33s | 2h 8m 57s
Test accuracy 95.50% 95.34%
Post-training output misclassifications
(out of 24 million) 10,543 7,701

A different approach towards DNN resiliency is to attempt to
build reliability inherently into the network while training.

We propose a training procedure where we inject errors
during training using PyTorchFI to increase the robustness
of the network to errors once deployed. Injecting errors/noise
during training can reduce the converged accuracy of the model
and increase the training time. Models trained to be robust to
traditional adversarial attacks commonly observe such a behavior.
In contrast, our initial experiments show that some resilience can
be built into the models via an injection-based training method
with nearly no change in the model accuracy and training time.

Training, as described in section II-A, consists of many
forward and back-propagation passes. PyTorchFI can be used
to inject errors during forward passes during training, where
the error model selection can be part of the training protocol.

Incorporating PyTorchFI into training requires minimal
modifications — three additional lines of code as described
in Section III-B. We integrate one of the built in error models
for training, namely, a random neuron per layer is changed to
a uniformly random value between [-1, 1] during the forward
pass. Evaluations are presented on ResNetl8 [17] trained on
CIFAR10 [20]. Two models are trained for comparison: a
baseline without PyTorchFI, and one with it. Both models
are trained from the same initialization conditions for a clean
comparison, and no other hyper-parameters are varied.

Table I summarizes some of the key elements between the
two models, which were trained on an Nvidia Titan V. We
find that training with PyTorchFI has a negligible impact on
training time, where both models completed the same number of
iterations on the dataset in the same amount of time. Importantly,
integrating PyTorchFI into training does not adversely affect
convergence. We find that training with PyTorchFI reduces the
accuracy of the final model by 0.16%. Note that convergence
time, unlike training time, describes the number of epochs
required to reach the final accuracy; training with PyTorchFI
does not affect convergence time either.

After training, we performed error injections on a separate
test set to compare the resiliency of both networks. We measured
the number of Topl-misclassifications due to perturbations, and
found that the number of misclassifications are reduced for the
ResNet18 model trained with PyTorchFI.

While these encouraging results show that some robustness
can be introduced with no practical change in training time
and model accuracy, selecting a different error model and the
frequency with which we injection errors during the forward
pass (during training) may likely provide different robustness,
accuracy, and training time trade-offs. Studying this trade-off
space is an interesting future research direction.

(b) Low sensitivity (c) High sensitivity

(a) No perturbation

Fig. 7: Visualization of error injections in DenseNet using Grad-CAM [39].
a) shows the original visualization with no perturbation, b) perturbation in the
least sensitive feature map, c) perturbation in the most sensitive feature map.

E. Interpretability

One important research question which can provide insight into
the reliability and dependability of neural networks is to interpret
how a DNN works. While prior research has looked into DNN
interpretability [26], [40], [41], the field is still evolving and state-
of-the-art techniques cannot fully explain the predictions made by
the models. We propose a technique which can work alongside
the state-of-the-art techniques to assist in DNN interpretability.

One popular technique for visualizing the important input
pixels which contributed to a DNN inference is Guided-
GradCAM [39], [44]. Guided-GradCAM performs backprop-
agations starting at different layers to generate gradients for
the input, which are then aggregated and visualized based on
magnitude. We perform error injections using PyTorchFI in
the forward pass of GradCam on specific feature maps, to
highlight the effect of a neuron firing and the affect that a specific
feature has on classification. Figure 7a shows the superimposed
heatmap generated by the Guided-GradCam technique on a
correct inference using DenseNet [18]. Figure 7b shows the effect
of injecting an egregiously large value of 10,000 in a feature map
which has little impact on the classification as defined by the
gradient values of the feature map. As shown, although the neuron
value in this feature map is extreme, the visualization technique
shows little difference in the output; this is also corroborated in
the softmax where the Top-1 class does not change. On the other
hand, perturbing a neuron of a “highly vulnerable” feature map
skews the heatmap as portrayed in Figure 7c. Thus, an error-
injection technique can be tuned to shed insight into the mapping
between important input pixels and important feature maps. This
simple experiment can perhaps guide a more rigorous iterative
algorithm: perturbing a network at different feature maps and
observing the effect on the heatmap along with the Top-1 network
classification to extract which regions of the input pixels are
picked up during inference to arrive at the correct classification
of the image. This is an interesting future research direction.

V. CONCLUSION

We present PyTorchFI, an open-source runtime perturbation
tool for DNNs implemented for the PyTorch deep learning
framework. PyTorchFI is an easy-to-use, extensible, fast, and
versatile tool for performing perturbations in neurons and weights
of DNNs during execution. This paper describes the technical
underpinnings of the tool, and demonstrates five different use
cases enabled by PyTorchFI across multiple domains.

[1]

[3]

[4

=

[5

=

[6]

[10]
[11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

REFERENCES

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schus-
ter, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on
heterogeneous systems,” 2015. [Online]. Available: http:/tensorflow.org/
B. Biggio, B. Nelson, and P. Laskov, “Poisoning Attacks against Support
Vector Machines,” in The International Conference on Machine Learning
(ICML), 2012.

N. Carlini and D. Wagner, “Towards Evaluating the Robustness of Neural
Networks,” in IEEE Symposium on Security and Privacy (SP), 2017.
N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. J. Goodfellow, A. Madry, and A. Kurakin, “On Evaluating Adversarial
Robustness,” ArXiv, vol. abs/1902.06705, 2019.

C. Celio, D. A. Patterson, and K. Asanovi¢, “The Berkeley Out-of-Order
Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized
RISC-V Processor,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2015-167, 2015. [Online]. Available: http:
/Iwww?2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
C.-K. Chang, G. Li, and M. Erez, “Evaluating Compiler IR-Level Selective
Instruction Duplication with Realistic Hardware Errors,” The 9th Workshop
on Fault Tolerance for HPC at eXtreme Scale (FTXS), 2019.

Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A Spatial Architecture for
Energy-Efficient Dataflow for Convolutional Neural Networks,” in The
International Symposium on Computer Architecture (ISCA), 2016.

Z. Chen, G. Li, K. Pattabiraman, and N. DeBardelenben, “BinFI: An
Efficient Fault Injector for Safety-Critical Machine Learning Systems,”
in The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2019.

Z. Chen, N. Narayanan, B. Fang, G. Li, K. Pattabiraman, and
N. DeBardeleben, “TensorFI: A Flexible Fault Injection Framework for
TensorFlow Applications,” ArXiv, vol. abs/2004.01743, 2020.

F. Chollet et al., “Keras,” https://keras.io, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in The International Conference on Learning
Representations (ICLR), 2015.

S. Gowal, K. Dvijotham, R. Stanforth, R. Bunel, C. Qin, J. Uesato,
R. Arandjelovic, T. A. Mann, and P. Kohli, “On the Effectiveness of
Interval Bound Propagation for Training Verifiably Robust Models,” ArXiv,
vol. abs/1810.12715, 2018.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, and B. Dally,
“Deep compression and EIE: Efficient inference engine on compressed
deep neural network,” in The International Symposium on Computer
Architecture (ISCA), 2016.

S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer,
“SASSIFI: An Architecture-level Fault Injection Tool for GPU Application
Resilience Evaluation,” in IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2017.

H. He, “The State of Machine Learning Frameworks,”
https://thegradient.pub/state- of-ml-frameworks-2019-pytorch-
dominates-research-tensorflow-dominates-industry/, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

S. Jha, S. S. Banerjee, T. Tsai, S. Hari, M. Sullivan, Z. T. Kalbarczyk,
S. W. Keckler, and R. K. Iyer, “ML-based Fault Injection for Autonomous
Vehicles: A Case for Bayesian Fault Injection ,” in International
Conference on Dependable Systems and Networks (DSN), 2019.

A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,”
Computer Science Department, University of Toronto, Tech., 2009.

A. Krizhevsky, V. Nair, and G. Hinton, “CIFAR-10 (Canadian Institute
for Advanced Research).”

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Neural Information
Processing Systems (NIPS), 2012.

G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding Error Propagation in Deep Learning Neural
Network (DNN) Accelerators and Applications,” in The International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2017.

T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft coco: Common objects in context,”
ArXiv, vol. abs/1405.0312, 2014.

Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “LLFI:
An intermediate code-level fault injection tool for hardware faults,” in
2015 IEEE International Conference on Software Quality, Reliability and
Security (QRS), 2015.

A. Mahendran and A. Vedaldi, “Salient Deconvolutional Networks,” in
European Conference on Computer Visio (ECCV), 2016.

B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. P. Rubinstein,
U. Saini, C. A. Sutton, J. D. Tygar, and K. Xia, “Exploiting Machine
Learning to Subvert Your Spam Filter,” in USENIX Workshop on
Large-Scale Exploits and Emergent Threats (LEET), 2008.

A. Newell, R. Potharaju, L. Xiang, and C. Nita-Rotaru, “On the Practicality
of Integrity Attacks on Document-Level Sentiment Analysis,” in Artificial
Intelligent and Security Workshop (AlSec), 2014.

J. Newsome, B. Karp, and D. X. Song, “Paragraph: Thwarting Signature
Learning by Training Maliciously,” in International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), 2006.

A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library,” in Neural Information Processing Systems (NeurIPS), 2019.
R. Perdisci, D. Dagon, W. Lee, P. Foglat, and M. Sharif, “Misleading
worm signature generators using deliberate noise injection,” in /EEE
Symposium on Security and Privacy (S&P), 2006.

Python, “Sunsetting Python 2,” https://www.python.org/doc/sunset-python-
2/, 2020.

PyTorch, “Releases pytorch/pytorch,” https://github.com/pytorch/pytorch/
releases, 2020.

B. Reagen, U. Gupta, L. Pentecost, P. N. Whatmough, S. K. Lee,
N. Mulholland, D. Brooks, and G.-Y. Wei, “Ares: A framework for
quantifying the resilience of deep neural networks,” in Design Automation
Conference (DAC), 2018.

J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
ArXiv, vol. abs/1804.02767, 2018.

A. H. M. Rubaiyat, Y. Qin, and H. Alemzadeh, “Experimental Resilience
Assessment of an Open-Source Driving Agent,” Pacific Rim International
Symposium on Dependable Computing (PRDC), 2018.

C. Sakr and N. R. Shanbhag, “An Analytical Method to Determine Min-
imum Per-Layer Precision of Deep Neural Networks,” IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.
R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and
D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via
Gradient-Based Localization,” in International Conference of Computer
Vision (ICCV), 2017.

K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps,”
CoRR, vol. abs/1312.6034, 2014.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller,
“Striving for Simplicity: The All Convolutional Net,” CoRR, vol.
abs/1412.6806, 2014.

H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli,
“Is feature selection secure against training data poisoning?” in The
International Conference on Machine Learning (ICML), 2015.

W. Yang, “Pytorch-classification,” https://github.com/bearpaw/pytorch-
classification, 2017.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

http://tensorflow.org/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
https://keras.io
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
https://www.python.org/doc/sunset-python-2/
https://www.python.org/doc/sunset-python-2/
https://github.com/pytorch/pytorch/releases
https://github.com/pytorch/pytorch/releases
https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification

	Introduction
	Background and Related Work
	CNN Background
	Related Work

	PyTorchFI: Tool Description
	Design Choices
	Implementation
	Evaluation
	Limitations

	PyTorchFI Use Cases
	Resiliency Analysis of DNNs used for Classification
	Resiliency Analysis of CNNs used for Object Detection
	Resilience Analysis of Models Robust to Adversarial Attacks
	Training for Inherently Error-Resilient Models
	Interpretability

	Conclusion
	References

