
GRANNITE: Graph Neural Network Inference for
Transferable Power Estimation

Yanqing Zhang
NVIDIA

Santa Clara, CA, USA
yanqingz@nvidia.com

Haoxing Ren
NVIDIA

Austin, TX, USA
haoxingr@nvidia.com

Brucek Khailany
NVIDIA

Austin, TX, USA
bkhailany@nvidia.com

Abstract—This paper introduces GRANNITE, a GPU-
accelerated novel graph neural network (GNN) model for fast, ac-
curate, and transferable vector-based average power estimation.
During training, GRANNITE learns how to propagate average
toggle rates through combinational logic: a netlist is represented
as a graph, register states and unit inputs from RTL simulation
are used as features, and combinational gate toggle rates are
used as labels. A trained GNN model can then infer average
toggle rates on a new workload of interest or new netlists from
RTL simulation results in a few seconds. Compared to traditional
power analysis using gate-level simulations, GRANNITE achieves
>18.7X speedup with an error of only <5.5% across a diverse
set of benchmark circuits. Compared to a GPU-accelerated
conventional probabilistic switching activity estimation approach,
GRANNITE achieves much better accuracy (on average 25.9%
lower error) at similar runtimes.

Index Terms—power estimation, machine learning, graph neu-
ral network

I. INTRODUCTION

Today’s computing systems are power-constrained. From
datacenters to mobile devices, limits on thermal or electrical
power impact achievable performance. As a result, accurate
power estimation is a critical part of all aspects of digital
VLSI development flows today. Architectural power analysis
requires estimating average power over hundreds to millions of
cycles. Power integrity signoff requires accurate power analy-
sis on physically-annotated gate-level netlists. Dynamic power
optimizations during logic synthesis, clock gate insertion, or
place-and-route steps are necessary to meet power targets.

In most power analysis use cases, annotating toggle rates
with vectors captured from real workloads is highly preferred
to vectorless methods because of their accuracy. However,
accurate vector-based power analysis also requires running
gate-level simulations (Fig. 1a). These simulations are very
slow, typically 10-1000 cycles/s, depending on activity factor
and size of design, leading to long turnaround times (hours to
days). Slow simulations negatively impact design productivity
for architectural power analysis and are impractical for use in
dynamic power optimizations, such as automatic clock or data
gating or gate resizing during place-and-route. As a result,
in such cases, it is more typical to use a switching activity
estimator (SAE), shown in Fig. 1b. Average toggle rates for
unit inputs and registers are gathered over a window of interest
from RTL simulations. Internal toggle rates within synthe-
sized combinational logic are estimated using probabilistic
approaches. Although this method is fast, it is inaccurate, due
to issues such as signal correlation or reconvergence.

Synthesized

Gate-level

Netlist

Gate Traces

Power

Calculation

Average

Power

Gate-level

Simulation

(10-1k cycles/s)

(a) Traditional gate-level simulation.

Synthesized

Gate-level

Netlist

Input and Register

Toggle Rates

Switching Activity

Estimator

(100-1k cycles/s*)

Average

Power

RTL Simulation

(1k-10k cycles/s)

Power Calculation

(b) Switching activity estimation.
Gate-level

Netlist

GNN Model

Training

Gate-level

Simulation

Translate to

Graph Objects

Input and Register

Toggle Rates

Ground Truth

Toggle Rates

Per Gate

Toggle Rates
vs

(c) GRANNITE training.

Synthesized

Gate-level

Netlist
Input and Register

Toggle Rates

Average

Power

RTL Simulation

(1k-10k cycles/s)

Power Calculation

Trained GNN Model

(10k-100k cycles/s*)

Translate to

Graph

Object

(d) GRANNITE inference.
Fig. 1: Average power estimation flows. For (b)(d), throughput is based on a
power window of 1000 cycles.

To enable fast and accurate average power estimation, we
propose GRANNITE1, a supervised learning-based SAE for
average power inference that foregoes the need for gate-
level simulation. During training (Fig. 1c), GRANNITE takes
gate-level netlists and corresponding input port and register
toggle rates over a power window from simulation as input
features. Ground-truth toggle rates per logic gate from gate-
level simulation are taken as labels to train against. The trained
model can then be used as a learned SAE (Fig. 1d), inferring
logic gate toggle rates from new input toggle rate features
over a new window of interest for the same designs, or new
designs. The inferred toggle rates can then be easily translated
into industry-standard formats such as the Switching Activity
Interchange Format (SAIF) for average power analysis by
commercial tools over the window of interest.

Compared to previous machine learning (ML) based power
estimation approaches [1] [2], GRANNITE is transferable
since it is able to infer power on new gate-level netlists without
requiring retraining. This is accomplished by using a novel
graph neural network (GNN) model architecture [3] [4] for
fast, accurate, and transferable SAE. By achieving an equiva-
lent throughput of >10k cycles/second with a window size of
1000 cycles and skipping gate-level simulation, GRANNITE

1GRANNITE stands for GRAph Neural Network Inference for Transferable
power Estimation.

978-1-7281-1085-1/20/$31.00 ©2020 IEEE

greatly improves productivity and turnaround time for average
power analysis use cases. Our GPU-accelerated implementa-
tion of GRANNITE achieves >18.7X speedup and <5.5%
error on average compared to a traditional gate-level simula-
tion approach. As a comparison to previously proposed SAE
methods [5] [6], we also introduce a novel GPU-accelerated
implementation of a baseline probabilistic SAE using a similar
graph message passing framework to GRANNITE. It achieves
40x-1125x speedup with similar accuracy (31% average error)
compared to a commercial power analysis tool.

The remainder of this paper is organized as follows: Sec-
tion II introduces background information on the problem of
switching activity estimation and related work. Section III
presents an overview of GNNs, GRANNITE implementation
details, and the baseline probabilistic SAE implementation
details. Section IV shows our benchmark and experimental
results, and discusses the achieved accuracy and speedups.
Section V concludes the paper.

II. BACKGROUND

Fig. 2 shows the problem formulation of switching activity
estimation and its application to power analysis. Exact solu-
tions require gate-level simulations to propagate traces from
register outputs and unit inputs (typically captured from RTL
simulation or FPGA emulation) through a combinational logic
netlist. It is common in many cases that only average power is
needed. In such cases, it is inefficient to use traditional event-
driven simulators when only the final average toggle rates (α)
on gate outputs are needed for the dynamic power calculation.
Prior research has looked at ways to speed up the calculation
of these average gate toggle rates. We highlight four main
approaches: accelerated gate-level simulation, statistical sam-
pling approaches, probabilistic switching activity analysis, and
machine learning (ML) based approaches.

In recent years, researchers have proposed novel simula-
tion methods using parallel architectures such as GPUs to
accelerate gate-level simulation. These methods have focused
on either using hybrid event-driven and oblivious methods
or parallelizing simulation across cycles and gates to achieve
more speedup [7] [8] [9]. However, Amdahl’s law effects or
GPU device memory can limit speedups, and typically some
amount of manual tuning is needed. [8] makes improvements
to the memory issue using a novel dynamic memory allocation
scheme, and they achieve a throughput of ˜300 million gate ×
cycles per second. This would correspond to a range of 300-
3k cycles/s for 100k-1mil gate-sized designs. Considering that
windows for average power can range up to millions of cycles,
this is still too slow for many use cases.

As an alternative to simulating millions of cycles on a gate-
level netlist, statistical sampling approaches take a subset of
the cycles captured from FPGA emulation or RTL simulation
and replay only that subset during gate-level simulation [10].
This approach is desirable as it can distill long simulations
(millions of cycles) down to tractable windows of activity for
analysis. However, it has drawbacks in that it does not escape

D Q

D Q

D Q

D Q

𝑃𝑑𝑦𝑛_𝑙𝑜𝑔𝑖𝑐 = ෍

𝑔𝑎𝑡𝑒

𝛼𝑔𝑎𝑡𝑒𝐶𝑔𝑎𝑡𝑒𝑉
2𝑓

𝛼 𝑘𝑛𝑜𝑤𝑛

𝛼?
𝛼?

𝛼?

Fig. 2: Depiction of Switching Activity Estimation (SAE) problem.

slow gate-level simulation, and it can miss power analysis
corner cases.

Another approach, shown in Fig. 1b, is to move away from
simulation altogether, and instead propagate average toggle
rates from inputs to outputs based on static probabilities
computed from the boolean logic expression of each gate [5]
[6]. This approach is often used in commercial power analysis
tools. This approach is fast, but can be highly inaccurate, since
it does not consider reconvergence correlations. Some work
has improved the accuracy of the propagation approach by
adding analytical terms to the formulation [5]. In [5], a custom
algorithm tags gates in the design that have reconvergent
inputs, and simulates those gates by recording their boolean
logic expression with regards to primary inputs instead of
propagated toggle rates. One drawback with this approach
is the massive memory requirement needed for recording the
analytical logic expressions, which scales with logic depth and
number of primary inputs.

More recently, supervised ML techniques have been pro-
posed for modeling average power of designs, sacrificing a
small amount of accuracy for large speedups [1] [2]. Similar
to GRANNITE, PRIMAL trains a deep learning (DL) model
to infer combinational logic switching activity from RTL
simulation traces containing register outputs and unit inputs
[2]. PRIMAL demonstrated scalability to large (˜100k gate)
designs with high accuracy. However, previous ML approaches
lack transferability. Although the trained ML models can infer
average power for a new workload on the same design, a new
ML model must be trained for each new design encountered.
This is problematic for fast power analysis of changing netlists
or new designs since training can take hours or days.

III. GRANNITE IMPLEMENTATION

GRANNITE is a novel fast, accurate, and transferable ML
approach to SAE based on GNNs. We train GRANNITE
models on one set of designs (Fig. 1c), and then can run
SAE inference (Fig. 1d) in a few seconds on new designs.
In this section, we describe the GRANNITE architecture and
implementation, written in PyTorch [11] with the Deep Graph
Library (DGL) package [12].

A. Overview of GNNs

GNNs are a powerful neural network architecture for ma-
chine learning on graphs [3], with many applications in social
networking [4] or scene labeling [13]. GNNs operate by
assigning node and edge features on a graph, then sharing
the features with neighbor nodes through message passing.

Step 1: Message sending

msg = f(edge_features, h)

Step 2: Message Reduction

reduce=f(msg0,msg1,msg2…)

Step 3: Node Transformation

hnew=f(reduce,h,node_features)

msg0

msg1
reduce hnew

h

h

Fig. 3: Depiction of graph neural network layer mechanisms in GRANNITE.
Same level nodes are processed in parallel, while different level nodes are
processed in sequence. Step 1 sends a message across each edge to the
next node, applying a function of local edge features and predecessor node’s
propagating features. Step 2 applies a function to conglomerate all incoming
messages into one reduced message. Step 3 applies a function of the reduced
message, local node features, and previous node features to attain the new
propagating node features.

TABLE I: SUMMARY OF LOCAL NODE/EDGE FEATURES

Type Description, (Count) NAND2/A Pin
Example Value

Node Intrinsic state probabilities (2) prob 0=0.25
Node Intrinsitic transition probability (1) prob sw=0.1875
Node Boolean tag if gate is inverting logic (1) inv=1
Edge Pin state to output state correlation (1) state cor=0.5

Edge Pin transition to output pin transition
correlations (16) trans cor 0 to 1=1.0

Our model is a variation of a popular type of GNN, the
graph convolutional network (GCN). GCNs perform message
passing through three steps of message sending, message
reduction, and node transformation [4]. While GCNs perform
neighbor message passing on all nodes in parallel, our vari-
ation does so in a levelized, sequential manner. The final
resulting node features then become the output of the graph
network layer. Fig. 3 gives a depiction of the GRANNITE
GNN layer message-passing mechanisms. GRANNITE learns
parameters from input feature data as well as structure of the
input graph. Since a logic netlist is represented as a graph,
during training, we expect the message passing steps to learn
to propagate toggle rates through the netlist from one logic
level to the next. In this way, GNNs can learn an approximate
solution to SAE based on the netlist features, graph structure,
and labeled training data.

B. Toggle Rate Features

Toggle rates of input ports and register outputs are used
as inputs to the GRANNITE model, gathered from gate-
level simulation during training or RTL simulation during
inference. These toggle rate input features are the ‘source’
of the switching activity of the yet unknown toggles in the
combinational logic and are readily available prior to gate-
level simulation. We encode the features into an array format
with four dimensions representing [chance to stay low, stay
high, switch to low, or switch to high] over the training power
window. During training, the same encoding is used for per-
logic-gate toggle rate labels.

C. Graph Object Creation

The other input to GRANNITE is the graph representation
of the gate-level netlist, translated via a custom Python script
into a DGL graph object, shown in Fig. 4. Gates are mapped

D Q

D Q
HA

A

B

CO

S

D Q

D Q

CO

S

Source nodes
Sink nodes

edge features:
state_cor=0.25
trans_cor_0_0=0
pin_order=0

… …

node features:
prob_0=0.8125
prob_1=0.1875
cell_type=42…

Fig. 4: Translating gate-level netlists to graph objects. Multiple output gates
are split into multiple nodes. The process also records node and edge features.

+ + +

Input/Register
Toggle Rates

h.size()=[nodes, windows batch, 4-dim toggle rates]

h.size()=[nodes, windows batch, 128-dim embeddings]

Learned Toggle
Rates

+

hsource_nodes=[[0.1,0.7,0.1,0.1], […]]

hgate_nodes =[[0.0,0.0,0.0,0.0], […]]
hall_nodes=[[0.25,0.25,0.25,0.25], […]]

Fig. 5: Diagram of GRANNITE architecture. Arrays have 3 dimensions as
we enable multiple power windows to be batched during training/inference.

to graph nodes and output-pin-to-net-to-input-pin connections
into graph edges. The translation process automatically splits
multiple output gates, such as full-adders, into two sepa-
rate nodes. The translation preserves both graph connectivity
information and local node and edge features that contain
characteristics of each gate and net, shown in Table I.

D. GRANNITE Architecture

Fig. 5 describes the overall architecture of GRANNITE.
The GNN model consists of 1 fully-connected (FC) layer
followed by 1 GNN layer and concludes with 2 FC layers. The
first FC layer maps the low (4) dimension input toggle rate
features to a higher dimension space (we chose 128 dimen-
sions). We expect the dimensions to represent different learned
switching activity embeddings. In essence, the function of the
GNN model is to learn the complex, non-linear relationship
between input toggle rates, logic, netlist structure, and output
toggle rates. Table II defines our GNN message-passing mech-
anisms. First, message sending concatenates the predecessor
nodes’ embeddings with local edge transition features before
matrix multiplying with local edge state features. Second,
message reduction sums all incoming messages. Last, the node
transform function concatenates the reduced message with
local node features before passing through an FC layer inside
the GNN layer. Thus, the calculated embeddings on each node
contain both information from predecessor nodes and local
node features. Messages are passed from first gate/node stage
to last in a levelized manner using the prop nodes function

TABLE II: GNN LAYER MESSAGE PASSING DEFINITIONS

embeddings0,

embeddings1,

…

embeddings127,

edge_trans0,

…

edge_trans15

[edge_state] ×

෍

0

𝑛

𝑚𝑠𝑔

reduce0,

reduce1,

…

reduce143,

node0,

…

node21

msg=h

1

2

3

Pin ordering

Table lookup

BaselineImplementation

Message

Sending

Message

Reduction

Node

Transform
h ×

GRANNITE

TABLE III: BASELINE VS. COMMERCIAL TOOL COMPARISON

Design
Commercial
Estimator
Error (%)

Baseline
Error
(%)

Commercial
Estimator

Throughput
(kHz)

Baseline
Estimator

Throughput
(kHz)

Speedup
(X)

qadd pipe 36.2 0.5 2.0 355.2 177.6
qmult pipe 52.1 0.6 1.0 40.6 40.6

fadd 48.5 51.5 2.0 2251.0 1125.5
fmult 137.4 157.1 1.2 646.1 538.4

NoCRouter 19.2 5.0 0.3 146.4 585.6
RISC-V 2.8 2.8 0.2 22.4 112.0

Throughput is calculated with 1000 cycle power windows.

from DGL. The result of the GNN layer sees embeddings
on every logic node/gate in the graph, and the last two FC
layers map the high dimension embeddings back into low
(4) dimension output toggle rate features. Since we know the
desired model is highly non-linear, we provide non-linearity
in the network by adding LeakyReLu activations on the first
three layers and a Softmax activation on the last layer, as the
4-dimension toggle rate features necessarily sum to 1. During
training, we expect the learned embeddings will contain both
predecessor and local information, and the GNN will learn the
correct output toggle rates based on both local logic functions
and reconvergence correlation caused by predecessors.
E. Baseline GPU-Accelerated Probabilistic SAE

We note that a conventional probabilistic SAE, much like
the zero-delay mode version of [6], can be implemented using
a similar PyTorch/DGL framework as the GNN model since
prop nodes naturally levelizes the netlist. Recent work has
shown the advantages of using DL packages to accelerate
EDA workloads on GPUs [14] for access to optimized GPU-
accelerated libraries and software productivity. In our case, we
demonstrate that we can also leverage PyTorch/DGL on GPUs
to speed up probabilistic SAE.

In our baseline probabilistic SAE, we use the same toggle
rate features as GRANNITE, since the 4 dimensions contain
both state and transition probabilities. We also use the same
graph object creation flow (Fig. 4). Local edge features are
changed to a pin order numerical key and node features are
changed to a cell type key that will be used in steps 2 and

TABLE IV: BENCHMARK CIRCUITS FOR GRANNITE

Design Description Gate
Count

Stimulus
(40k cycles)

qadd pipe 32-bit fixed point adder 774 Random
qmult pipe 32-bit fixed point multiplier 1410 Random

fadd 32-bit floating point adder 961 Random
fmult 32-bit floating point multiplier 2005 Random

NoCRouter Wormhole router with virtual
channels 10,330 Operation

mode tests
RISC-V

Core
RISC-V Rocket Core

(SmallCore) 56,243 dhrystone
benchmark

datapath
units

shifters, encoders, muxes,
leading 0/1 detectors, . . .

˜1000
each Random

Inference is run on each circuit to verify transferability of GRANNITE.

3 of message passing, respectively. In this case, the “virtual
neural network” architecture contains only a simple GNN
layer. The GNN layer is edited to perform levelization and
message passing as described in Table II. Message sending
simply sends input pin toggle rates to the node/gate. Message
reduction concatenates incoming messages in order of the
pin order key so that the pin toggle rates align with the
ensuing lookup table (LUT) in node transform step. The LUT
is a pre-loaded 3D array that stores the corresponding weights
of each pin’s effect on each of the 4-dimension toggle rate
features for each logic cell type (dimensions of the LUT are
[logic cell types, number of pins, 4 dimension toggle rate
weights]). Node transforms perform table lookups based on
cell type key and matrix multiplies with the pre-aligned input
toggle rates, thus completing the probabilistic SAE calculation.

We compare a probabilistic SAE engine in a widely-
used commercial power analysis tool to our GPU-accelerated
PyTorch/DGL framework implementation and find that we
achieve similar or better accuracy at >40X speedup as shown
in Table III. For the remainder of this paper, we use our
PyTorch/DGL implementation as a baseline comparison for
the GRANNITE ML-based SAE, and will refer to it as the
Baseline implementation in later sections.

IV. RESULTS AND DISCUSSION

To evaluate GRANNITE, we conduct GNN model training
and inference experiments on an NVIDIA Tesla V100 GPU
with 16GB device memory. GRANNITE and our baseline
probabilistic SAE both run on the same logic netlists, syn-
thesized from RTL to a 16nm FinFET standard cell library
using a commercial logic synthesis tool.

For training and testing datasets, we use 26 benchmark
circuits listed in Table IV, containing small to medium sized
units with a wide range of average toggle rates (0.01-0.30).
We use open-source RTL for fixed- and floating-point arith-
metic units [15]. The open-source Network-on-Chip router
is written in SystemC and synthesized to RTL by a high-
level synthesis (HLS) tool [16]. The RISC-V core is an
RV64IMAC implementation of the open-source RocketChip
Generator [17], similar to the SmallCore instance. We also
include 20 randomly-chosen datapath IP blocks supplied by a
commercial logic synthesis tool (˜1k gates each) to increase
the diversity of standard cell gate types during training.

GNN models are trained on 25 of the 26 total circuits,
leaving 1 circuit outside of the training data set to be the

TABLE V: AVERAGE POWER RESULTS AND ERROR COMPARISON

Design

Ground
Truth

Average
Power
(mW)

Baseline
Predicted

Power
(mW)

GRANNITE
Inference

Power,
Testing
(mW)

GRANNITE
Inference

Power,
Validation

(mW)
qadd pipe 0.553 0.550 (0.5%) 0.564 (2.0%) 0.563 (1.9%)
qmult pipe 2.018 2.006 (0.6%) 2.156 (6.8%) 2.084 (3.3%)

fadd 0.068 0.103 (51.5%) 0.071 (4.0%) 0.068 (0.3%)
fmult 0.219 0.563 (157.1%) 0.215 (1.9%) 0.221 (1.0%)

NoCRouter 1.036 1.088 (5.0%) 0.897 (13.4%) 0.918 (11.4%)
RISC-V 0.923 0.904 (2.0%) 0.997 (8.0%) 0.873 (5.4%)

datapath units N/A (3.3%) N/A (1.0%) N/A (0.9%)
AVERAGE (31.4%) (5.3%) (3.4%)

% Error in parantheses vs. ground-truth gate-level simulations. ‘Testing’ refers
to when both design and power window are excluded from the training set.
‘Validation’ refers to running inference on a new power window when the
design is included in the training set.

test data set. In this way, we may verify the transferability
of the proposed GNN architecture on all 26 circuits. In
addition to this round-robin ‘n-1’ training/test regime, we also
train a GNN model on all 26 circuits, and test on different
power windows than the windows in the training data, thereby
verifying accuracy on new workloads running on designs in the
training set. The input toggle rate features are constructed by
calculating toggle rates across a sliding power window of 750
cycles out of a total of 40k simulated cycles for each design.
We train for 10 epochs, and, due to our limited data, choose
a training batch size of 1 (i. e. 1 power window trained per
backprop calculation). All training set circuits are trained in
parallel by using DGL’s dgl.batch() API. Our loss function
is Mean Square Error (MSE) loss between predicted and
ground truth logic gate toggle rates. After training, inference
is performed on new power windows of 1000 cycles on a new
test design, or new power windows on the training designs.
The output toggle rates are then translated into a SAIF file and
average power is computed by a commercial power analysis
tool. The same test power windows are used in the baseline
probabilistic SAE implementation.

A. Average Power Estimation and Speedup Results

Table V shows the accuracy achieved by GRANNITE
compared to the baseline. For brevity, we only list the mean
relative error metrics for the 20 unnamed datapath units. Only
the combinational average power consumption is reported as
sequential power is known (from the register traces).

Compared to the baseline probabilistic SAE, GRANNITE
achieves much better overall accuracy (5.3% vs. 31.4%)
and achieves <10% error for all the benchmarks but the
NoCRouter in the testing (transferable power estimation) re-
sults. In all benchmarks, GRANNITE’s error decreases from
testing to validation, suggesting that expanding training data
will improve accuracy. Since NoCRouter is a larger bench-
mark, we expect that there is increased likelihood that the
training data did not see some feature patterns present in
NoCRouter, which would explain the slightly worse error for
the NoCRouter design.

Table VI shows the speedup achieved when using
GRANNITE over the traditional flow of using gate-level sim-
ulation. The quoted throughput is based on running inference
at 1000 cycle power windows, which is well within range

TABLE VI: SPEED COMPARISON

Design

Batch
Size=1

Inference
Latency (s)

Max
Windows

Batch Size

Per Cycle
Simulation

Throughput
(kHz)

GNN
Inference

Throughput
(kHz)

qadd pipe 0.293 2200 2.5 5050.9 (2044.9X)
qmult pipe 0.401 1400 1.9 1679.5 (888.3X)

fadd 0.304 1200 8.8 3024.5 (343.7X)
fmult 0.342 950 6.2 1259.9 (202.5X)

NoCRouter 0.435 175 1.4 194.7 (141.0X)
RISC-V 0.703 30 2.4 44.4 (18.7X)

Throughput based on 1000 cycle power windows at max batch size. Speedup
(X) in parantheses. GRANNITE has an additional benefit of allowing batching
of power windows to be calculated in parallel.

for average power estimation purposes. The GPU-accelerated
baseline SAE throughput is reported in Table III, and is similar
to GRANNITE. Since both are implemented in PyTorch/DGL,
we can easily batch many power windows in parallel during
one run of inference. The minimum speedup at max batch size
is 18.7X, greatly outperforming the traditional approach. Of
note is that speedup can be even greater with larger power
window size, for example >187X for 10k cycle windows.

B. Discussion on Inference Accuracy

We analyze the embeddings learned by the GNN layer
by plotting the tSNE [18] plot of all embeddings across all
benchmarks in Fig. 6. We see that clustered points are
comprised of similar toggle rates, evidence that GRANNITE is
able to learn a wide range of toggle rates. Similar toggle rates
form several different clusters, which we think is evidence
GRANNITE is able to discern between different switching
situations (perhaps correlated vs. uncorrelated signals).

We note that GRANNITE greatly improves the accuracy
of average power estimation for the floating-point arithmetic
units compared to the baseline. Table VII provides evidence
of GRANNITE’s ability to infer signal correlation from the
structure of the FADD graph/netlist to improve accuracy. We
take the top eight most frequent cell types occurring in the
FADD benchmark and record the percentage of those cells
that we consider correlated. We define ‘correlated’ as those
cells where the difference between the ground truth toggle rate
vs. the expected toggle rate if all the inputs were completely
random/uncorrelated to each other is more than 20%. We find
a high percentage of cells are correlated, which explains the
high error for the baseline implementation, which does not
consider correlation. We also record the uncorrelated root-
mean-square-error (RMSE) for these cells and compare it
to the inferred RMSE. We find that for most cell types,
GRANNITE improves the error over the uncorrelated case.
Admittedly, we note it is hard to analyze for the 2 cell types
(NAND2 and NAND3) that have higher RMSE, if their higher
RMSE is caused by GRANNITE failing to learn properly, or if
those cells are merely propagating higher predecessor errors.
To that end, we conclude that GRANNITE shows promise
in resolving the signal correlation issue during toggle rate
prediction, and propose future work to continue to validate
this hypothesis. Adding more circuits and larger circuits to
the training dataset could improve data balance in the trained
model. Adding dimensions to the register trace input features
could help represent input signal correlation.

0.00

0.05
0.10
0.15
0.20
0.25
0.30

Fig. 6: tSNE plot of 128 dimension embeddings across all gates in all
benchmarks. Coloring based on ground truth toggle rates per gate.

TABLE VII: ANALYSIS OF TOP 8 MOST FREQUENT CELLS IN FADD

Cell Type Count Uncorrelated
RMSE

GRANNITE
Inference

RMSE

% of
Correlated

Cells
NAND2 140 0.0121 0.0195 31
NOR2 124 0.0152 0.0137 42
AO22 110 0.0140 0.0128 33
AOI22 50 0.0072 0.0060 54
XOR2 40 0.0301 0.0119 33
OAI21 34 0.0267 0.0181 68

OAI211 31 0.0246 0.0117 81
NAND3 28 0.0179 0.0225 96

C. Discussion on Speedup and Memory Requirements

Using the RISC-V circuit as an example, Fig. 7 shows
that total inference time grows sub-linearly with regards to
batch size. This means that to achieve maximum speedup for
a design, we must maximize batch size. Profiling the GPU,
we find low GPU utilization (at most hovers around 18%),
and high memory capacity usage, meaning there is ample
room for improvement. Table VIII gives some insight into
memory capacity requirements. For each layer, the neural
network parameters are replicated per gate/node per power
window. Using this formula, it would seem the FC1 layer
would allocate the most memory. However, we are limited
by the GNN0 layer, which has many more parameters but a
smaller nodes dimension. We expect that optimizations may
be possible in the PyTorch/DGL software stack to improve the
efficiency of GPU device memory allocation to alleviate this
bottleneck on maximum batch size. Another possible way to
increase batch size is to do model reduction, but we find our
model is dense (0 sparse parameters), so conventional model
reduction techniques will not apply. To this end, we leave code
optimizations and graph reduction/clustering techniques to
increase our maximum batch size to future work. It should be
noted that even given this analysis, multiplying our maximum
batch size with number of nodes shows GRANNITE can scale
up to ˜1.6 million gate designs (with batch size 1).

V. CONCLUSIONS

We have presented GRANNITE, a novel GNN model
that achieves fast, accurate, and transferable average power
estimation by inferring output toggle rates on logic gate
cells and foregoing the need for slower gate-level simulation.
GRANNITE achieves less than 5.5% average error and at
worst 13.4% error for new benchmark circuits and new power
windows during inference mode, which is a vast improvement

TABLE VIII: PARAMETER SIZE ANALYSIS

Layer Name Layer Size Params Max Nodes Bytes/Window
Estimated
Window

Batch Size
FC0 4x128 640 56,243 143,982,080 117

GNN0 154x128 19,840 5,203 412,910,080 41
FC1 128x32 4,128 56,243 928,684,416 18
FC2 32x4 132 56,243 29,696,304 569

RISC-V circuit is used for Max Nodes column. GNN uses double-precision
float data format, so each parameter occupies 4 bytes of memory.

0

5

10

15

20

25

0 5 10 15 20 25 30

Se
co

n
d

s
(s

)

Number of batched windows

Inference Time
Expected Inference Time

Fig. 7: Relationship between batched windows for RISC-V and total inference
runtime. Runtime increases sub-linearly with increased batch size.

over the 31% average error given by a baseline probabilistic
estimator implementation. In addition, it achieves >18.7X
speedup when compared to traditional per-cycle gate-level
simulation. We also provide evidence this approach can help in
alleviating some signal correlation inaccuracies, which is an
issue commonly plaguing non simulation, switching activity
estimation ideas. Future work in increased training dataset
sizes and input feature representations can further improve
accuracy. Software optimizations or graph/model reductions
can lead to increased batch sizes and improved speedups.

REFERENCES

[1] Jianlei Yang et al., “Early stage real-time SoC power estimation using
RTL instrumentation,” in ASP-DAC, Jan 2015, pp. 779–784.

[2] Yuan Zhou et al., “PRIMAL: Power Inference Using Machine Learn-
ing,” in DAC, 2019, pp. 39:1–39:6.

[3] Jie Zhou et al., “Graph Neural Networks: A Review of Methods and
Applications,” CoRR, vol. abs/1812.08434, 2018.

[4] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” CoRR, vol. abs/1609.02907, 2016.

[5] M. Nourani, S. Nazarian, and A. Afzali-Kusha, “A parallel algorithm
for power estimation at gate level,” in MWSCAS, Aug 2002, pp. I–511.

[6] Huzefa Mehta, “Accurate Estimation of Combinational Circuit Activity,”
in DAC, June 1995, pp. 618–622.

[7] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level
simulation with GP-GPUs,” in DAC, July 2009, pp. 557–562.

[8] S. Holst, M. E. Imhof, and H.-J. Wunderlich, “High-Throughput Logic
Timing Simulation on GPGPUs,” TODAES, pp. 37:1–37:22, Jun. 2015.

[9] Y. Zhu, B. Wang, and Y. Deng, “Massively Parallel Logic Simulation
with GPUs,” TODAES, vol. 16, no. 3, pp. 29:1–29:20, Jun. 2011.

[10] D. Kim et al., “Strober: Fast and Accurate Sample-Based Energy
Simulation for Arbitrary RTL,” in ISCA, June 2016, pp. 128–139.

[11] A. Paszke et al., “Automatic differentiation in pytorch,” in NIPSW, 2017.
[12] Minjie Wang et al., “Deep Graph Library: Towards Efficient and

Scalable Deep Learning on Graphs,” ICLR Workshop on Representation
Learning on Graphs and Manifolds, 2019.

[13] B. Shuai, Z. Zuo, G. Wang, and B. Wang, “DAG-Recurrent Neural
Networks For Scene Labeling,” CoRR, vol. abs/1509.00552, 2015.

[14] Yibo Lin et al., “DREAMPlace: Deep Learning Toolkit-Enabled GPU
Acceleration for Modern VLSI Placement,” in DAC, 2019, pp. 117:1–
117:6.

[15] “OpenCores.org Fixed Point Math Library for Verilog Manual,” https:
//opencores.org/project/verilog fixed point math library/manual.

[16] Brucek Khailany et al., “A modular digital vlsi flow for high-productivity
soc design,” in DAC, 2018, pp. 72:1–72:6.

[17] K. Asanović et al., “The Rocket Chip Generator,” EECS, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016.

[18] L. van der Maaten and G. E. Hinton, “Visualizing High-Dimensional
Data Using t-SNE,” Journal of MLR, vol. 9, pp. 2579–2605, 2008.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

