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Abstract—Layout-dependent parasitics and device parameters signif-
icantly impact integrated circuit performance and are often the cause
of slow convergences between schematic and layout designs. Circuit
designers typically estimate parasitics from past experience, resulting in
variability between designers and the potential for inaccuracies. In this
paper, we present ParaGraph: a graph neural network model to predict
net parasitics and device parameters by converting circuit schematics into
graphs and leveraging key modeling techniques based on GraphSage,
Relation GCN and Graph Attention Networks. Furthermore, the use
of ensemble modeling increases model accuracy over a large range of
prediction values. Trained on a large dataset of industrial circuits, the
model achieves an average prediction R2 of 0.772 (110% better than
XGBoost) and reduces average simulation errors from over 100% with
designer’s estimation to less than 10%.

I. INTRODUCTION

The dependency of net parasitics and physical device parameters
on circuit layout is becoming increasingly significant within newer
process nodes, where accurate evaluation of circuit performance can
only be achieved after layout is complete. This paper proposes
a technique to predict net parasitics and layout-dependent device
parameters based only on the circuit schematic. There are two main
benefits to accurately predicting these variables before starting the
layout process. First, inclusion of net parasitics and layout-dependent
device parameters is likely to degrade circuit performance. This
typically results in the designer performing an iterative process of
adjusting device sizes post-layout to dial in performance, a process
that can take several iterations for the circuit and layout modifications
to converge. This becomes significantly more labor intensive due to
the increasing complexity of DRC rules within newer technology
nodes, where a single layout iteration can take days or weeks.
Second, parasitic and device parameters are important factors to
include within parasitic-aware optimization techniques as in [1]. An
accurate predictor can help optimization engines find design points
that represent the true post-layout optimum.

Previous work has predicted layout parasitics and device parame-
ters within sub-micron technologies such as 130nm and 90nm process
nodes [2]. Their approach uses layout construction to build estimated
layouts of each device and calculate device geometries accordingly.
They use a linear regression model to estimate net capacitances
based on the number and size of devices connected to each net.
The accuracy of this approach largely depends on the estimation of
maximal transistor series (MTS), a term relating whether transistors
are sharing source or drain diffusion. There are two drawbacks of this
approach. First, the MTS estimation is difficult to perform prior to
layout and requires designers to manually identify all MTS groupings
within the circuit. Second, the layout construction approach uses
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Fig. 1: Circuits sharing a common structure (op-amp) and its layout

simplified design rules targeting standard cells. These circuits are
comparatively smaller than most analog and mixed-signal designs
where layout cannot be easily constructed with simplified rules.

There are numerous circuit topologies and transistor configurations
that commonly recur within various applications. In order to improve
yield and performance, these structures adhere to specific layout
configurations and methodologies. This produces net parasitics and
device parameters that are a function of device sizing within transistor
configurations on the micro and macro scales. This is seen in
Figure 1, where an operational amplifier (op-amp) can be used for
both voltage regulation and signal amplification, yet the structure
layout uses similar approaches in both scenarios. This is also seen
in the MTS identification process used in the previous work, where
circuit structures are manually identified to determine how diffusion
will be shared between transistors and thus affect device parasitics.
While heuristic-based “rule of thumb” estimations are often used in
experienced design teams, the estimation accuracy is not guaranteed
and can vary between cases and individual designers. Instead, we
propose a Machine Learning (ML) prediction method based on the
inherent graph structure of a circuit schematic. By representing circuit
structures as graphs, information regarding net parasitics and device
parameters within circuits sharing similar structures can be leveraged
in making predictions during the initial design phase. Graph neural
networks (GNNs) have been proposed for learning graph structures
and predicting useful graph information previously [3] [4] [5]
[6]. One relevant example is in the EDA domain, where graph
convolutional networks (GCN) were used to accurately predict gate
testability within digital circuits [7].

The contributions of this work are highlighted below:
1. We apply GNNs for use in predicting layout parasitics and

device parameters, which is the first instance of this to the best of our
knowledge. The prediction model is evaluated on a large dataset of
analog and mixed-signal circuits from industry, where average spice
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simulation error is reduced from over 100% with designer intuition-
based prediction to less than 10% with the GNN predictions.

2. We designed our own graph network (ParaGraph) that in-
corporates key ideas from state-of-the-art GNN models such as
GraphSage [4], Relational GCN [5] and Graph Attention Network [6]
while adapting out network to the circuit prediction problem domain
as a heterogeneous graph with heterogeneous nodes and edge types.
The results show a 10%-110% improvement over state-of-art GNN
models and XGBoost.

3. We introduce an ensemble modeling method to improve pre-
diction accuracy for parasitic capacitances over a large range from
0.01fF to 10pf.

The paper is organized as follows. Section II defines the layout
parasitics and device parameters to be predicted, the input features
and the graph construction process. Section III introduces various
graph neural networks and presents the ParaGraph model. Section IV
introduces the ensemble modeling method to handle a large range of
prediction values. Section V presents experimental results based on
training on a large set of industrial circuits.

II. PROBLEM FORMULATION

This work aims to predict both net parasitics and physical device
parameters pre-layout. The model is trained to predict net parasitics
as lumped capacitances. The predicted device parameters include
various layout geometry parameters, such as source/drain diffusion
areas and perimeters, as well as layout dependent effect (LDE)
parameters such as transistor-to-diffusion-edge distances.

A. Layout Parasitics, Device Parameters and Input Features

Layout for a FinFET transistor is illustrated in Figure 2. For
each transistor, we need to predict the transistor’s geometric and
LDE parameters. Geometric parameters include diffusion areas and
perimeters for both the source and drain terminals, which differ de-
pending on whether two adjacent devices are sharing the source/drain
diffusion area. For example, the source diffusion area (SA) of the
active device A on the left is twice as large as its drain diffusion
area (DA) because its drain diffusion is shared with the active
device B on the right. LDE parameters can significantly affect device
performance within newer process nodes. One of the more important
LDE parameters is the length of diffusion (LOD), which measures the
distance of a poly gate to the diffusion edge and is correlated to the
strain applied within the silicon channel and how it affects channel
mobility. For example, in Figure 2, the left-hand LOD for device A:
LOD-L(A) is smaller than that of device B: LOD-L(B). To handle
transistors with multiple fingers, LDE parameters are averaged across
all parallel fingers.

Net parasitics represent capacitive and resistive impedances intro-
duced by metal interconnects within the layout. The total capacitance
on each net is represented as a lumped sum for convenience and is
the focus of this work. While the model can be extended to represent
via and trace resistances, inclusion of multi-path trace resistances
significantly complicates circuit netlists by orders of magnitude and
will be a focus of future work. Table I lists all the geometric and
LDE transistors parameters to be predicted.

The number of fanout of each net as well as various device sizing
features are used as inputs to the model. Table II lists all the features
extracted for each device type and net.

B. Graph Construction

To construct a graph based on a circuit schematic, each device
(transistor, resistor, capacitor, etc.) can be mapped into nodes within
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Fig. 2: FinFET Transistor Layout Illustration

Type Parameters Definition

transistor
LDEx x=(1,..,8), eight LDE parameters
SA,DA source and drain diffusion areas
SP,DP source and drain diffusion perimeters

net CAP net parasitic capacitance

TABLE I: List of Transistor Parameters and Net Parasitics

Type Features Definition

transistor &
transistorthickgate

L gate poly length
NF number of fingers

NFIN number of fins
MULTI number of copies (multiplier)

resistor L length of resistor
capacitor MULTI number of copies

dio NF number of fingers
bjt 1 constant
net N number of fanout

TABLE II: List of Devices and Net Features

the graph. To predict net capacitance, we choose to map nets as
nodes in the graph as well. This ensures nets are represented as graph
elements with corresponding node information (i.e. net capacitance)
that would otherwise be lost if nets were represented as graph edges.
To complete the structure, two edges with opposing directions are
mapped between every net node and the appropriate device nodes
corresponding to terminal connections within the schematic.
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Fig. 3: Inverter Schematic and Heterogeneous Graph

The benefit of mapping both net and devices into graph nodes
is that the relationship between devices and nets is explicit within
the graph and can therefore be used in learning. This naturally
supports hyperedge connections between devices since each net node
can connect to multiple device nodes. Additionally, multiple edge
relationships can be supported between net nodes and device nodes



based on device terminal types (i.e. source, gate, drain). The ability
to make distinctions between device terminals will help the learning
model differentiate different connection structures. Connections to
supply and ground nets are ignored within the graph since predicting
parasitics on the power-rails is not necessary, which in turn reduces
overall graph complexity.

The resulting graph is a heterogeneous Graph G = (V,E)
consisting of a node set V and a directed edge set E. The
heterogeneous graph is also associated with a node type map-
ping function φ : V → TN and an edge type mapping
function ψ : E → TE, where TN and TE are sets of
node types {transistor, net, capacitor, resistor, etc} and edge
types {net → transistorgate, transistorgate → net, net →
transistorsource, etc}, respectively. In the heterogeneous graph
there are always two edges with opposing directions between two
nodes, which correspond to differing edge types. For example, the
opposite edge of type net → transistorgate is an edge of type
transistorgate → net. Figure 3 shows the heterogeneous graph of
an inverter.

III. GRAPH NEURAL NETWORKS

Graph neural networks (GNN) are deep learning models for
the graph domain [8] and are based on two core ideas: graph
embedding and neighbor aggregation. Graph embedding learns em-
bedded features by transforming graph nodes, edges, subgraphs,
and their corresponding features into a lower-dimensional vector
space representation. Neighbor aggregation learns the embedding
properties of a node by aggregating information from nodes within
its local neighborhood, similar to convolution on neighboring image
pixels in Convolutional Neural Networks (CNN). Compared to direct
embedding methods such as Deep-walk [9] and node2vec [10], which
map nodes to vector embedding by a simple embedding lookup,
GNN-based methods can be generalized to graphs never seen by
the network since graph structures are directly incorporated into the
learning algorithm.

There are four widely used GNN models: Graph Convolutional
Network (GCN) [3], GraphSage [4], Relational GCN (RGCN) [5]
and Graph Attention Network (GAT) [6]. These models differ in
how neighboring information is aggregated. Table III shows the
comparison of these GNN models.

In Table III, h(l)
i ∈ RF is the embedding for the lth layer with F

dimensions, h(l+1)
i is the updated embedding for layer l + 1, N(i)

is the neighboring set for node i, cij is equal to the product of the
square root of node degrees such that cij =

√
|N(i)|

√
|N(j)|, σ

is an activation, norm is a normalization function function, b(l) is
the bias of the lth layer, Nr(i) is the neighboring set of node i w.r.t.
relation r, ci,r is the normalizer equal to |Nr(i)|, W0 is the self-loop
weight, Wr is the weight for relation r, αi,j is the learned attention
between node i and j, and ~a is the attention matrix: RF ×RF → R.

GCN and GraphSage are two early GNN models that both leverage
a ’convolutional’ mean aggregator to approximate localized spectral
filters. GraphSage differs from GCN by performing a concatenation
of previous embeddings with the aggregated neighbor embeddings.
This concatenation is similar to the “skip connection” [11] between
different layers of the GraphSAGE algorithm. For graphs with mul-
tiple relational edges, RGCN is proposed for distinguishing between
different relational edges. It applies different weight matrices to
different relational edge groups and aggregates each group indepen-
dently. GAT introduces a self-attention mechanism commonly used
in sequence models to replace the mean neighborhood aggregator. It
allows different weights to be associated with each neighbor in order

Model Aggregation Formula

GCN h
(l+1)
i = σ(b(l) +

∑
j∈N(i)

1
cij
W (l)h

(l)
j )

GraphSage

h
(l+1)
N(i)

= mean
(
{h(l)j , ∀j ∈ N(i)}

)
h
(l+1)
i = σ

(
W · concat(h(l)i , h

(l+1)
N(i)

+ b(l))
)

h
(l+1)
i = h

(l+1)
i /‖h(l+1)

i ‖2)

RGCN
h
(l+1)
N(i)

=
∑

r∈R
∑

j∈Nr(i)
1

ci,r
W

(l)
r h

(l)
j

h
(l+1)
i = σ(h

(l+1)
N(i)

+W
(l)
0 h

(l)
i )

GAT

elij = ~aT concat(W (l)hli,W
(l)hlj)

αl
ij = softmaxi

(
LeakyReLU(elij)

)
h
(l+1)
i = σ

(∑
j∈N(i) αi,jW

(l)h
(l)
j

)
TABLE III: Graph Neural Networks Comparison

to increase the modeling capacity. Analyzing the learned attentional
weights may also help model interpretability.

All of the GNN models listed in Table III except RGCN assume
the graph is homogeneous, meaning there is only one node type and
edge type in the graph. Even though RGCN can model different edge
types, it is still limited to a single type of node. This is problematic
since graphs converted from circuit schematics are heterogenous.
They contain multiple node types that correspond to nets and various
types of devices (transistor, resistor, capacitor, etc) where each
node type has unique feature dimensions as shown in Table II.
Furthermore, different edge relationships exist between differing node
types (net → transistorgate, net → transistorsource, etc). This
results in graph networks that contain more information than the
homogenous graphs typically learned by a GNN, therefore requiring
the development of a graph model capable of handling circuit graphs.
There are no well-known heterogeneous GNN models, and the
problem domain of circuit graphs is unique. Therefore we developed
our own model.

We call our GNN model ParaGraph. It includes a node embedding
model and several fully connected (FC) layers, which take node
embedding as inputs and generates predictions for a layout parasitics
or a device parameter. We train independent models for predicting
each device parameter as well as layout parasitics.

Algorithm 1 Node Embedding Algorithm in ParaGraph
Require: Graph G(V,E), node types TN, edge types TE, node type

mapping φ : V → TN, edge type mapping ψ : E → TE, node
features {hi, ∀i ∈ V}, layer depth L

Output: final Node embedding Z = {zi, ∀i ∈ V}
1: for node type t ∈ NT do
2: h

(0)
i ←Wthi, ∀φ(i) = t . map to common feature space

3: for l← 0 to L− 1 do . layers
4: for t ∈ ET do . edge types
5: for edge(i, j) with ψ(edge) = t do . attentions
6: eij ← ~aT concat

(
W

(l)
t h

(l)
i ,W

(l)
t h

(l)
j

)
7: αij ← softmaxi (LeakyReLU(eij))

8: ht
i ←

∑
j∈Nt(i)

αi,jW
(l)
t h

(l)
j ,∀i ∈ N

9: hi ←
∑

t∈ET
ht
i,∀i ∈ N

10: h
(l+1)
i ← σ

(
W (l) · concat(h(l)

i , hi + b(l))
)

11: Z← {zi = h
(l)
i ,∀i ∈ V}

To compute node embedding, we leverage the key ideas of Graph-
Sage, RGCN and GAT. First, similar to GraphSage, we use the
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Fig. 4: Example of the ParaGraph Node Embedding Update.

concatenation of previous embeddings with the aggregated neighbor
embeddings. Second, we group different edge types independently
during aggregation similar to RGCN. Lastly, we add a self-attention
layer in between the aggregation of each group similar to GAT. The
node embedding algorithm of ParaGraph is outlined in Algorithm 1
and an example of the compute graph for each embedding layer is
illustrated in Figure 4.

To predict a specific parasitic y on node type t, we feed node
embedding zi to several FC layers where φ(i) = t. All of the
FC layers except the last one have the same dimension F as the
embeddings, while the last layer has only 1 dimension. We use a
Mean Square Error (MSE) loss function to regress the predicted value
against the ground truth value.

IV. ENSEMBLE MODELING

In our analog and mixed-signal circuit dataset, net parasitic ca-
pacitances range from 0.01fF to 10pF, resulting in prediction values
that span more than 6 orders of magnitude. This makes training a
single model for predicting across the entire range difficult since
the inherent model error due to layout uncertainty is already much
larger than 1%. This means any capacitance value less than 1% of
the maximum predicted value (< 0.1pF) will be considered noise by
the model and therefore results in poor prediction accuracy for small
capacitance values.

Figure 5a shows the predicted net capacitance vs ground truth for
all testing circuits predicted with a model trained on the maximum ca-
pacitance range (0.01fF - 10pF). The predictions become increasingly
inaccurate (i.e. deviates from a diagonal line) for ground truth values
smaller than 100fF. To alleviate this problem, we propose training
multiple models each with different maximum prediction values
(maxv = 100fF, 10fF, and 1fF). We call these models 100fF model,
10fF model, and 1fF model, respectively. Data points with a ground
truth larger than the maximum predicted value are ignored during
training, which increases prediction accuracy within a specified range
within each model (i.e. values within two orders of magnitude of
the max). The predicted and ground truth parasitics capacitances
inferenced with these three models are shown in Figure 5b, 5c and
5d, respectively.

To leverage ensemble modeling for better prediction accuracy, we
choose which model to use in predicting individual net capacitances.
Models with higher maximum prediction values are more accurate in
the higher range than the models with lower maximum prediction
values, e.g. the 100fF model is more accurate in the range of

(a) maxv=10pF
MAE=1.44fF, MAPE=133%

(b) maxv=100fF
MAE=1.47fF, MAPE=31.6%

(c) maxv=10fF
MAE=1.40fF, MAPE=18.6%

(d) maxv=1fF
MAE=2.02fF, MAPE=23.0%

Fig. 5: Parasitics capacitance prediction with models trained with
different maxv . (x-axis is the original, y-axis is the prediction.)

Algorithm 2 Ensemble Modeling For Net Parasitics Capacitance

Require: a list of K models Mi, and max prediction value maxiv ,
i ∈ (1, ..,K), max0v < max1v < max2v... < maxKv , and net n

Output: prediction p(n) for net n
1: p(n)← predicting net n with M1

2: for i← 2 to K do
3: p′(n)← predicting net n with Mi

4: if p′(n) > maxi−1
v then

5: p(n)← p′(n)

[10fF,100fF] than the 10fF model in that range. The algorithm
to select prediction values based on different models is given in
Algorithm 2. Based on this algorithm, if the 10fF model predicts
a value of 2.5fF, which is greater than the maximum predicted value
of 1fF model, it will be preferred than the 1fF model.

Figure 7a shows predicted capacitance from the ensemble model
vs ground truth. Through visual inspection, we can see that the
predictions with the ensemble model are more accurate over the
entire prediction range. Quantitatively, the ensemble model gives the
smallest mean absolute error (MAE): 0.852fF and mean absolute
percentage error (MAPE): 15.0% of all the individual models.



V. EXPERIMENTAL RESULTS

The models were evaluated on a dataset of industrial analog and
mixed-signal circuits built within a sub-10nm technology. The circuits
contain various active and passive devices including MOSFETs,
BJTs, diodes, resistors and capacitors. The training and testing data
set split was based on designer recommendation, which ensures the
test set circuits are completely different than those in the training set.
The characteristics of the dataset are shown in Table IV.

circuit #net #tran #tranth res cap bjt dio

t1 94 176 0 0 0 0 0
t2 5027 3306 4981 15 250 0 0
t3 15314 5031 18192 20 1503 0 14
t4 196957 327856 88209 135 2758 0 0
t5 93706 146655 4250 293 351 0 0
t6 91792 142575 4250 6 351 0 0
t7 62227 64890 2641 3 330 54 0
t8 2083 0 2843 2 0 0 0
t9 2103 0 2899 2 0 0 0
t10 61666 114822 0 0 0 0 0
t11 35820 689 48303 21 330 36 0
t12 4400 8486 0 0 0 0 0
t13 32643 57377 0 0 0 0 0
t14 1203 44 1477 0 112 0 6
t15 62124 48298 42221 12 566 36 0
t16 15408 37320 0 0 0 0 0
t17 37310 6262 39906 18 548 153 0
t18 5570 11077 1 0 90 0 2

e1 11271 22461 0 0 0 0 0
e2 707 188 1003 0 8 0 8
e3 3998 9193 0 0 0 0 0
e4 4672 11674 0 0 0 0 0

TABLE IV: Device and Net Distribution of the Circuit Dataset. t1−
t18 are used in training while e1− e4 are used for testing.

The graph models were implemented with Deep Graph Library
(DGL) [12], which is based on PyTorch [13], since DGL provides
many convenient APIs for building graph convolution layers. The
proposed ParaGraph model as well as naive GCN, GraphSage, RGCN
and GAT networks were implemented for characterization on the
dataset. Node type specific transformations (Algorithm, line 1-2) had
to be applied for the naive GCN, GraphSage, RGCN and GAT models
to get a common feature space for each node. All the models are
trained on a single NVIDIA Tesla V100 GPU with 16GB memory.

For each graph model, the dimension of embedding and number
of layers were set to F = 32 and L = 5, respectively. We swept
the number of layers and found a higher number of layers gives
better results and plateaus at 5. Both GAT and ParaGraph models
can potentially use more than one attention head, however we are
limited by GPU memory to only use one attention head on our
dataset. We expect more attention heads would lead to even better
results. The number of FC layers were set to 4 for the net parasitic
capacitance model and 2 for all device parameter models. The ADAM
optimizer with a learning rate of 0.01 was used for training. Since
the training sets are sufficiently large, there was no need to apply L2
regularization or dropout. We train each graph model for 300 epochs
and measure the average prediction accuracy across 10 runs.

To compare the accuracy of different graph models, we use
three statistical measurements: R-squared (R2), Mean Absolute Error
(MAE) and Mean Absolute Percentage Error (MAPE). We also in-
clude two classical ML models: XGBoost [14] and Linear Regression
based on node features alone in the comparison. A single net parasitic
capacitance model maxv=10fF is used in this study to ensure the
model comparison is not biased by the ensemble modeling.

Figure 6 shows the average prediction R2 and MAE (relative to
the XGB model) on all testing circuits over the 10 runs. Similar
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Fig. 6: Prediction accuracy comparison for different learning models

comparison is observed for MAPE, and is omitted for brevity.
ParaGraph produces the best R2 value for all device parameters and
net parasitic capacitances with an average prediction R2 of 0.772 (a
perfect prediction would have a maximum R2 value of 1), which is
110% better than XGBoost. The second best model is GraphSage
with an average prediction R2 of 0.703. Furthermore, ParaGraph has
the smallest MAE and MAPE compared to all other learning models.
It reduces the MAE and MAPE of XGBoost by 44% and 67.3%,
respectively, while the second best model GraphSage only by 33%
and 58.3%, respectively.

(a) CAP (Ensemble Model)
MAE=0.852fF, MAPE=15.0%

(b) LDE1
MAE=0.921um, MAPE=162%

(c) LDE5
MAE=1.00um, MAPE=241%

(d) SA
MAE=193nm2, MAPE=10.3%

Fig. 7: Device parameters (LDE1, LDE5, SA) and net parasitics
(Capacitance) prediction vs ground truth on all testing circuits. (x-
axis is the original values, y-axis is the predicted values.)

Figure 7 shows the comparison of the ParaGraph predictions and
ground truths on the net parasitic capacitance, two of the LDE
parameters, and the device source area (SA) parameter. The net



(a) e1 (b) e2

(c) e3 (d) e4

Fig. 8: t-SNE plots of embeddings of capacitance model maxv=10fF
on each testing circuit. Colored by log10 of the ground truth.

Error
Range

Layout w/o
parasitics

Designer’s
Estimation

Prediction w/
XGB

Prediction w/
ParaGraph

< 10% 4 6 17 44
10%-20% 0 17 14 10
20%-30% 5 18 4 8
30%-40% 35 2 7 4
40%-50% 14 6 9 1
> 50% 9 18 16 0
Mean 37.75% >100% 32.14% 9.60%

Geometric Mean 29.01% 43.57% 15.46% 4.00%

TABLE V: Simulation errors between pre-layout predictions and
post-layout on 67 circuit metrics in the testing circuits.

parasitic capacitance and the device source area parameter have a very
good match between the predictions and ground truths, while the LDE
parameters have less accurate predictions. The MAPEs are 15.0%
and 10.3% for parasitics capacitances and device SA parameters,
respectively; while the MAPEs for both LDE parameters are more
than 100%. We believe the relatively large prediction errors on LDE
parameters are the result of inherent layout uncertainty.

To investigate the meaning of the embeddings, we can visualize
the high dimensional embedding vector with t-SNE algorithm [15].
Figure 8 shows t-SNE plots for net node embeddings of the capac-
itance model trained with maxv=10fF on all testing circuits. The
nodes are colored according to the log10 of their ground truth values.
Data points with different colors are well separated, indicating the
model learned to differentiate nets with different capacitances. Note
that there are minor overlapping colors for data points greater than
10fF. This is expected since the model is trained with maxv=10fF.
Nets with capacitance higher than 10fF will result in inaccurate
predictions, which explains why ensemble modeling is needed.

To evaluate the effectiveness of the prediction model, pre-layout
simulations are run using the predicted parasitics and device parame-
ters predicted by both the XGBoost and ParaGraph models. The errors
of a total of 67 key circuit metrics (i.e. slew rate, insertion delay,
power, etc) within the testing circuits are calculated in comparison
to simulations using the post-layout netlist. Comparisons are also
made to two baseline simulations: one with parasitic annotations from
the designer’s original estimates, and the other using layout netlist
without extracted parasitics. Layout parasitics capacitance estimation
flags in the spice model are disabled for simulations with predicted
parasitics, but enabled for two baseline simulations. The resulting
simulation errors for each testing circuit are shown in Table V. On
average, the ParaGraph prediction reduces the pre-layout simulation
error geometric mean from 43.57% and 29.01% in two baselines to

only 4.00%. The mean error is also reduced to 9.60%. The number of
metrics with relative large errors (> 30%) is significantly reduced.
The designer’s estimation manages to reduce simulation errors on
some metrics, but significantly increases errors on others metrics
that are highly sensitive to parasitics, which results in larger average
errors. Note that even with ParaGraph model, there are still several
simulation error > 30%. This is because these circuit metrics depend
on nets with larger parasitics capacitance, e.g. greater than 10fF. The
predictions errors are generally worse for those larger parasitics for
a couple of reasons: first, circuit floorplan has large impact on larger
parasitics, which is hard to predict from schematic; and second, our
training data is limited for larger parasitics, we would expect accuracy
to increase with more data.

VI. CONCLUSION

In this paper, we apply machine learning to predict layout parasitics
and device parameters to increase the accuracy of pre-layout simula-
tions of analog and mixed-signal circuits. Inspired by the observation
that similar circuit structures produce similar parasitics, we built a
machine learning model (ParaGraph) based on key ideas of state-
of-art graph neural networks. The model is evaluated on a large
dataset of industrial circuits based on electrical simulations using
the predictions. Based on the prediction accuracy and reduction in
simulation errors, we are optimistic that graph convolutional networks
can be used in this task. Future work will focus on extending this
model to predict net parasitic resistances as well.
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