
GPU-Trident: Efficient Modeling of Error
Propagation in GPU Programs

Abdul Rehman Anwer
University of British Columbia

abanwer@ece.ubc.ca

Michael Sullivan
NVIDIA

misullivan@nvidia.com

Guanpeng Li
University of Iowa

guanpeng-li@uiowa.edu

Timothy Tsai
NVIDIA

timothyt@nvidia.com

Karthik Pattabiraman
University of British Columbia

karthikp@ece.ubc.ca

Siva Kumar Sastry Hari
NVIDIA

shari@nvidia.com

Abstract—Fault injection (FI) techniques are typically used
to determine the reliability profiles of programs under soft
errors. However, these techniques are highly resource- and
time-intensive. Prior research developed a model, TRIDENT to
analytically predict Silent Data Corruption (SDC, i.e., incorrect
output without any indication) probabilities of single-threaded
CPU applications without requiring FIs. Unfortunately, TRIDENT
is incompatible with GPU programs, due to their high degree
of parallelism and different memory architectures than CPU
programs. The main challenge is that modeling error propagation
across thousands of threads in a GPU kernel requires enormous
amounts of data to be profiled and analyzed, posing a major
scalability bottleneck for HPC applications.

In this paper, we propose GPU-TRIDENT, an accurate and
scalable technique for modeling error propagation in GPU
programs. We find that GPU-TRIDENT is 2 orders of magnitude
faster than FI-based approaches, and nearly as accurate in
determining the SDC rate of GPU programs.

Index Terms—GPU, Error Propagation, Soft Error, Silent Data
Corruption, Error Resilience, Program Analysis

I. INTRODUCTION

Transient hardware faults (i.e., soft errors) are predicted to
increase in future processors due to growing system scales,
progressive technology scaling, and lowering operating volt-
ages [32]. In the past, such faults were handled in high-
reliability systems through hardware-only solutions such as
dual modular redundancy (DMR) and circuit hardening [25].
However, these techniques are challenging to deploy in com-
modity systems as they incur significant performance and
energy overheads. This problem is exacerbated in the case
of Graphics Processing Units (GPUs), which are commonly
deployed in HPC systems, as GPUs typically have a much
larger number of execution units than CPUs and hence can
have greater exposure to soft errors [35].

One consequence of hardware errors is incorrect program
output or silent data corruption (SDC), which is difficult to
detect and can have severe consequences [32]. Therefore, it
is important to estimate the SDC probability of a program
to decide whether protection is needed, and if so, to reduce
the cost of protection by selectively protecting the most SDC-
prone program state (e.g., selective instruction duplication).

Fault injection (FI) is commonly employed to estimate the
SDC probability of a program. FI perturbs program state
during execution, and checks the program output to detect
failures (if any). Thousands of program executions are typ-
ically required to obtain statistically significant results, and
hence FI is often very slow and challenging to deploy in
practice [12], [13], [21]. Further, selective protection tech-
niques need the SDC probability on a per-instruction basis.
This requires hundreds of FIs per instruction, which is very
resource intensive. As a result, researchers have attempted to
model error propagation to evaluate SDC probabilities quickly
without any FIs [8], [15], [33]. Unfortunately, these techniques
(1) have significant inaccuracies [8], [33], (2) require large
and difficult-to-obtain training corpuses of FI data that are
representative of typical faults [15], or (3) do not provide
reliability profiles for individual instructions which is critical
for the selective protection of HPC programs [15], [22].

In recent work, Li et. al. [21] proposed an automated
technique called TRIDENT that analytically models error prop-
agation in programs to predict their SDC probabilities without
performing any FIs. While TRIDENT is shown to be accurate
and fast in evaluating the vulnerability of single-threaded CPU
programs to transient errors, we find it is neither accurate
nor scalable for kernels of GPU programs, which are highly
parallel and have a very different programming model. In
particular, inter-thread data dependencies among the threads
in a typical GPU program complicate error propagation [20],
and not modeling them leads to large inaccuracies in predicting
SDC probabilities, e.g., the mean absolute error in SDC predic-
tion without modeling inter-thread dependencies is 17.2% with
respect to FI (Section III). Furthermore, when modeling GPU
programs, TRIDENT takes a significant amount of time due to
the large number of threads in GPU programs, often running
into days or even months (Section III). Finally, to accurately
estimate per-instruction reliability, TRIDENT needs to consider
data characteristics specific to GPU applications, which is not
supported (as it was developed for CPU applications).

In this work, we propose an accurate and scalable technique
to analytically model error propagation in GPU programs.
Our key insight is that error propagation in GPU programs

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/31.00 ©2020 IEEE

can be abstracted using program execution patterns based on
memory accesses, loop iterations, and control-flow. Moreover,
there is similar error propagation across different threads in
GPU programs, and hence we can achieve significant speedup
by carefully selecting a few threads for analysis. Our work
builds on top of the open-source TRIDENT framework, and
significantly enhances it to solve the above challenges of GPU
programs - therefore, we call our technique GPU-TRIDENT.

There are 3 factors that make GPU-TRIDENT practical for
assessing the reliability for real-world GPU programs, and
protecting them. First, GPU-TRIDENT is nearly as accurate
as FI but works without requiring any FIs, and is hence
significantly faster than FI. Second, it does not require any
training corpuses of FI data. Finally, GPU-TRIDENT is able
to efficiently guide the selective protection for a GPU program
given a reliability target and a performance overhead budget.

To the best of our knowledge, we are the first to efficiently
model error propagation for GPU programs, using neither FI
nor training data based on FI, to estimate its SDC probability.
Our main contributions in this paper are as follows:

• Identify challenges in efficiently and accurately modeling
error propagation for GPU applications (Section III).

• Propose heuristics for pruning the state space for mod-
eling error propagation in GPU programs. The heuristics
are based on similarity among the control flow and mem-
ory access patterns of the program’s threads (Section IV).

• Build GPU-TRIDENT, an efficient and accurate model of
error propagation for GPU programs that implements the
above heuristics. GPU-TRIDENT is implemented using
the LLVM compiler [19], and is completely automated.

• Compare the accuracy and scalability of GPU-TRIDENT
to FI when predicting the SDC probabilities of individual
instructions and that of the entire GPU kernels (Sec-
tion V) for 17 GPU kernels belonging to 12 applications.

• Demonstrate the use of GPU-TRIDENT to guide selective
instruction duplication, under a given overhead budget.

Our main results are as follows:

• SDC probability predictions from GPU-TRIDENT have a
high agreement (Pearson correlation coefficient of 0.88)
with the FI results, for most of the evaluated kernels.
Individual instructions of most kernels also have a high
degree of agreement with the FI results (average Pearson
correlation coefficient of 0.83). On average, the overall
SDC probability predicted by GPU-TRIDENT is 35.67%,
while FI measures SDC probability as 33.73% across
the kernels (error bars range from ±0.53% to ±1.82%
depending on the benchmark).

• GPU-TRIDENT incurs a fixed initial overhead and a small
incremental overhead for each sampled instruction, while
FI incurs an overhead proportional to the number of
sampled instructions (i.e., injected faults). This makes
GPU-TRIDENT much more efficient for large programs
than FI. For example, for 5000 faults, GPU-TRIDENT is
55.6 times faster than FI. FI takes on average around 4
CPU hours for 5000 sampled instructions, while GPU-

TRIDENT takes approximately 6 minutes across bench-
marks. This difference is even higher for more complex
applications. For example, FI takes 22.7 hrs for the
Circuit benchmark while GPU-TRIDENT takes just 8
minutes. On average, GPU-TRIDENT is about two orders
of magnitude faster than FI across the benchmarks.

• Using GPU-TRIDENT to guide selective instruction du-
plication reduces the SDC probability of kernels by
approximately 58% and 85% (at 1/3rd and 2/3rd the
performance overhead of full duplication respectively).
This is comparable to the results obtained using FI.

II. BACKGROUND

In this section, we first present our fault model, then define
the terms we use, followed by a brief primer on GPU archi-
tecture. Finally, we provide a brief overview of the TRIDENT
technique [21], as it forms the basis of GPU-TRIDENT.

A. Fault Model

In this paper, we consider transient hardware faults that
occur in the computational elements of the GPU, including
architectural registers and functional units, and affect the
program’s execution. We assume these faults manifest as a
single bit flip. Many studies [4], [5], [11], [31] have shown
that there is little difference between the SDC probability of
single and multiple bit flips. Moreover, previous work in this
area [15], [20], [26], [36] also uses the single-bit flip model.

We do not consider faults in the GPU’s control logic, nor do
we consider faults in the instructions’ encoding. We also do
not consider faults in the memory or caches, as we assume that
these are protected with error correction codes (ECC) - this
is the case for most modern GPUs used in HPC applications.
However, an error can propagate to memory, if an erroneous
value is stored by a store instruction into memory, resulting
in subsequent loads being faulty (these faults are considered).

Finally, similar to most other work in the area [7]–[10],
[12], [18], we assume that the program does not jump to
arbitrary illegal addresses due to faults during the execution, as
this can be detected by control-flow checking techniques [28].
However, the program may take a faulty legal branch (the
execution path is legal but the branch direction is wrong due
to faults propagating to the branch condition).

B. Terms and Definitions

Fault Activation: The event corresponding to the software
manifestation of the fault, i.e., the fault becomes an error
and corrupts some software state (e.g., a register or memory
location). The error may or may not result in a failure.
Crash: The raising of a hardware trap or exception due to an
error (e.g., read outside its memory segments). The program
is terminated as a result by the operating system.
Silent Data Corruption (SDC): A mismatch between the
output of a faulty program run and that of an error-free
execution of the program, without any exception being thrown.
SDC Probability: The probability that the program had an
SDC given that the fault was activated—other work uses a
similar definition [8], [13], [29].

C. GPU Architecture and Programming Model

We focus on GPU applications that are implemented on the
NVIDIA Compute Unified Device Architecture (CUDA). A
GPU application consists of a control program running on the
CPU and a computation program called the kernel that runs
in parallel on the GPU(s), in form of multiple threads.

Each GPU has its own memory space that is distinct from
the host CPU’s memory. In the CUDA programming model,
there are various kinds of memory: (1) global, (2) constant,
(3) texture, (4) shared, and (5) thread-local memory allocations
and accesses. Global, constant, and texture memory accesses
that miss in the on-chip caches are loaded from the large and
comparatively-slow device memory. The shared memory space
is software managed. It is much smaller and built on chip,
and is hence much faster to access. Thread-local memory
is typically stored in the fast register file, though compiler-
inserted spill and fill operations occasionally place thread-local
state in slower areas of the storage hierarchy.

The CUDA programming model allows (1) sharing data
among a subset of threads in a thread block (e.g., warp-
shuffle), (2) sharing data across all the threads in a thread
block using the shared-memory scratchpad, (3) sharing data
across the threads in a compute kernel using device global
memory, and (4) sharing across devices using unified virtual
memory (UVM) [14]. This gives rise to two types of memory
dependencies between instructions. (1) Intra-thread memory
dependency: Static loads and stores of same thread are depen-
dent on each other due to the same memory being accessed by
them, and (2) Inter-thread memory dependency: Static loads
and stores in different threads are dependent on each other due
to the same memory being accessed in different threads.

D. TRIDENT Framework

TRIDENT is an open-source framework that analytically
models error propagation at the instruction-, control-flow-, and
memory-levels to derive an estimate of the overall SDC rate
and SDC rate per instruction for a given CPU program [21].
However, TRIDENT does not handle the modeling of error
propagation in multi-threaded programs, as well as other GPU-
specific structures. As we show in Section III, modeling these
is critical for GPU programs. Our technique is built on top of
the TRIDENT framework, but extends it significantly.

Example: Figure 1a shows how TRIDENT works using an
example from the CPU version of the pathfinder benchmark.
TRIDENT works at the LLVM Intermediate Representation
(IR) level, and hence these correspond to LLVM instruc-
tions [19]. TRIDENT consists of three sub-models that work
synergistically together to calculate error propagation proba-
bility from a given location of error occurrence to the program
output instruction, as follows:

1) Static-instruction sub-model (fs): If an error occurs at
INDEX 1 (say), fs calculates the overall propagation proba-
bility for the error from Index 1 to Index 4. Each instruction is
assigned an individual error propagation probability from that
instruction to the next data-dependent instruction in the same
basic block. This individual probability is derived by analyzing

bb4

$2 = load 0x04
$3 = add $2, 4
$4 = cmp $3, 4
br $4, bb5, bb10

bb5
$5 = mul $6, 16
...

bb10
...

bb11
store ..., 0x08

bb12
...

bb18
... = load 0x08

... ...

80% 20%

30% 70%

INDEX 1
INDEX 2
INDEX 3
INDEX 4

INDEX 6

INDEX 5

T F

T F

store ... OUTPUT

(a) Code example for TRIDENT, with
propagation probabilities.

...

...
S 5 0x4
S 5 0x8
S 5 0xC
S 5 0x10
L 6 0x4
L 6 0x8
L 6 0xC
L 6 0x10
...
...

Tim
e

INDEX
1

INDEX
6 NULL

OUTPUT

0.4 0.6

1.0

(b) A memory access trace and
corresponding memory depen-
dency graph.

Fig. 1: Working of TRIDENT [21].

the instruction and profiling the values of its operands. fs
computes the overall propagation probability by aggregating
individual probabilities of the instructions in the basic block.

2) Control-flow sub-model (fc): It computes the probabili-
ties of store instructions getting corrupted (divergence from
a fault free run) due to corruption of branch instructions,
which results in control-flow divergence. TRIDENT identifies
all stores that are dominated by the corrupted branch (Index
4) and computes the probabilities of them getting corrupted.

3) Memory sub-model (fm): Memory sub-model models
how errors propagate via memory dependencies. Continuing
with our running example, if Index 5 is corrupted, the er-
roneous value stored by the instruction may be loaded later
by the load instruction (Index 6) in bb18. Hence, the error
propagates via a memory dependency.

To figure out the memory dependencies between all loads
and stores, TRIDENT profiles a memory execution trace from
the program. The trace (Figure 1b) contains all the executed
store and load instructions at runtime (ordered by execution
time). Each record in trace contains the type of operation
(load/store), index of the static instruction and the address
that is accessed by the instruction. TRIDENT leverages the
memory execution trace to track error propagation in fm
by constructing a memory dependency graph for fm. The
graph contains memory dependencies between static store and
load instructions, and it is weighted based on the dynamic
instruction counts of these instructions. An example of the
graph is shown in Figure 1b. A node means an instruction (load
or store), and the edges indicate possible dependencies. The
weights (dependent on dynamic instruction count) are marked
besides each edge. This graph is used during execution to track
error propagation due to memory dependencies.

III. CHALLENGES

In this section, we discuss the challenges in modeling error
propagation in GPU programs. As described in section II-C,
GPU kernels are massively parralel, and many kernels share
data across threads. Therefore, errors may propagate not only
within each thread, but also between the threads.

Fig. 2: A slightly modified code segment from the Circuit
benchmark [3].

Because GPU programs have a large number of threads
(e.g., the Circuit application [3] has 4.25 million threads),
tracking error propagation via memory dependencies incurs
high overheads due to the large amount of memory depen-
dency information required. Moreover, even small inaccuracies
in modeling error propagation of individual threads are exac-
erbated when aggregating the kernel’s overall SDC probability
due to the large number of threads.

Figure 2 shows a code example of the cudaSolve kernel from
the Circuit benchmark. This program solves a 2D circuit grid
in parallel using the Jacobian method. For ease of explanation,
we have slightly modified the code and removed the irrelevant
parts. In the example, a subset of shared memory (line 4)
is initialized in each thread (line 6). After all threads have
completed the initialization (line 8), the data in the shared
memory is read by adjacent threads (line 10) for computation.
This way, data can be efficiently transferred between threads
via fast on-chip shared memory. However, this can also result
in error propagation from one thread to another, and eventually
to the entire thread block and the output of the kernel. Li et
al. [20] have previously shown that a single fault can lead to
high contamination (up to ~60%) of memory states in GPU
applications, due to error propagation across threads and data
flow between global and shared memory.

We identify three challenges in modeling error propagation
for GPU programs, and illustrate them with examples.

(1) Large amount of profiling data: To track error prop-
agation via memory dependencies, one needs to profile all
memory accesses in the kernel and identify the data depen-
dencies between each load and store. This can be done using
dynamic analysis, matching the runtime memory addresses of
each load and store. However, a typical GPU kernel consists
of hundreds or thousands of threads, each of which may
interleave dependencies between threads in their respective
thread blocks. Consequently, a huge amount of memory access
information needs to be collected during the profiling phase.
For example, Lulesh, which is a typical HPC application [17],
generates a memory execution trace larger than 1 TB even for
medium sized inputs. Processing the trace i.e., loading it into
memory and traversing it (Section II-D3), incurs significant
overheads, which makes it impractical to use TRIDENT for
modeling of GPU HPC benchmarks. It is not possible to
bypass this memory bottleneck by applying TRIDENT to

individual threads, as the time for modeling thousands of
threads runs into days or even months - see Table III1.

(2) Large number of threads: Tracing error propagation
between threads in a GPU kernel requires a fine-grained error
propagation model for every thread in the GPU kernel, which
potentially incurs a large modeling overhead. For example,
if an error occurs in a thread, it first propagates within the
thread. Later, the error may propagate to another thread in
its thread block via a shared memory dependency. Hence, the
error continues to propagate in both threads. Finally, the error
may propagate to some other threads or back to the original
thread at any time, depending on program execution. To track
the error, one should model all the threads in the program, and
trace the propagation in a lock-step fashion.

A natural question that arises is can we ignore error prop-
agation between threads in GPU programs? To answer this
question, we modify GPU-TRIDENT to stop tracing the error
propagation when any shared memory access is encountered.
We show the results in Figure 3 for the benchmarks that use
shared memory in our evaluation (the experimental setup and
benchmarks are described in Section V-A). As can be seen, the
SDC probabilities predicted by the modified GPU-TRIDENT
are significantly lower than the FI ground truth (mean absolute
difference of 17.2%). The only exception is LUD K3, which
only uses shared memory sparingly (only two stores are to
shared memory by each thread). This result indicates that we
cannot ignore inter-thread error propagation in GPU programs.

(3) Accumulated inaccuracy from individual threads:
The overall SDC probability of a GPU kernel is the aggrega-
tion of the SDC probabilities of the individual threads. Because
GPU programs consist of hundreds or thousands of threads,
if the model is inaccurate in each thread (even slightly), the
overall SDC probability of the kernel will be very inaccurate.

IV. APPROACH

In GPU-TRIDENT, we first propose two heuristics to select
a subset of threads in a GPU kernel to find the intra-thread
memory dependencies within it (Section IV-A). We then
propose a third heuristic to a select a new subset of threads to
construct inter-thread memory dependencies (Section IV-B).
Finally, we identify 2 sources of inaccuracies in TRIDENT,
and propose heuristics to mitigate them (Section IV-C).

A. Profiling for Intra-Thread Memory Dependency (H-Intra)

The goal of this step is to construct the memory dependency
graph for a given GPU kernel without profiling all the memory
accesses in all the threads. Recall that the memory dependency
graph in TRIDENT is required to establish data dependencies
between static store and load instructions (Section II-D3). It
is possible to profile all memory addresses used by load and
store instructions, and then match the addresses to build the
graph. However, this can be extremely time-consuming in
massively parallel GPU programs. Instead, we profile only
a small subset of threads based on control-flow similarity,

1We obtained these numbers by multiplying the time taken by TRIDENT
for each thread of the program with the number of threads in the kernel.

Fig. 3: Prediction of SDC Probability by a modified GPU-TRIDENT that does not model error propagation across threads, for
benchmarks that use shared memory; NW K1 means the first kernel of NW benchmark.

and match loads and stores in those carefully-selected threads
to build the memory dependency graph. We call these intra-
dep threads. These are the threads whose memory reads and
writes can be profiled to get all the intra-thread memory
dependencies between static load and store instructions of the
kernel. Algorithm 1 describes how to choose intra-dep threads.

Note that in this section, we use the entire control-flow
profile of a thread to perform the grouping of threads, rather
than the number of instructions executed per thread used in
prior work [26] as we found it to be more accurate.

Algorithm 1: Selecting intra-dep threads.
Input : CFT : Control flow of all threads
Output: TP : Set of threads to profile

1 TP = {}
2 for all threads T do
3 if conditional branches in loop then
4 // Apply H-Intra-Loop heuristics to remove

iterations with nonunique memory accesses
5 CFsim = Remove redundant(CFT)
6 else
7 CFsim = CFT

8 // Profile thread if its simplified execution path is
new

9 if CFsim not in TP then
10 TP .insert(T)
11 end

1) Selection based on thread execution path (H-Intra-Path):
We first profile the execution path of each thread and group the
threads that have identical execution paths. We then choose a
single thread from each group to be part of intra-dep threads.
The intuition is that threads that have identical execution
paths have the same static dependencies between loads and
stores. This is because only control-flow divergence can cause
divergence in the memory dependencies.

Table I shows the number of threads invoked in each kernel
of the benchmark applications (Section V-A has more details),
and the number of intra-dep threads as the result of the
grouping. As can be seen, most of the kernels have only a
small number of intra-dep threads. The two exceptions are
pathfinder and NW, as they have conditional branches inside

loops, and hence loops execute different number of times for
different threads, which results in different control-flow paths.

Kernel Total
threads

After H-
Intra-Path

After H-
Intra-Loop

After
H-Inter

NW K1 48 46 25 48
NW K2 16 16 13 16

Pathfinder 592,640 563,606 15 3840
BFS K1 32,768 781 8 -
BFS K2 32,768 2 2 -
Gaussian 3,840 4 4 -
HotSpot 473,344 250 234 35,328

Particlefilter 9,216 38 7 -
LUD K1 64 16 16 64
LUD K2 192 2 2 64
LUD K3 3,584 1 1 256

CudaBenchMarking 8,192,000 1 1 -
SRAD K1 32,768 144 144 16,384
SRAD K2 32,768 16 16 4,096

Circuit 4,156,416 18 18 2,592
Lulesh 66,816 2 2 -
Blur 236,544 7 7 -

TABLE I: Thread group details for the studied kernels

2) Selection based on loop patterns (H-Intra-Loop): To fur-
ther reduce the number of intra-dep threads, we pick threads
that have unique loop patterns. We use a code example from
the Pathfinder benchmark to explain this heuristic. Figure 4a
shows a kernel that has three conditional branches inside a
loop. Pathfinder has a high number of intra-dep threads, as
different threads take different branches in each iteration, and
hence have different number of iterations resulting in diverging
execution paths.

We profile the execution paths inside each loop iteration
and list a subset of them in Figure 4b. Numbers in the figure
represent the comparison instruction, while T and F represent
the branch direction taken. We find that many iterations
contain repeated branch patterns, which results in the same
memory dependency from the profiling. As seen from the
figure, the first three iterations in Thread 1 and Thread 3 are
identical. Therefore, we only need to profile one of them to
obtain the inter-thread dependencies. Similarly, the order of the
repeated patterns within a thread does not matter, as it would
yield similar dependencies. For example, Thread 3 and Thread
4 follow the same branch patterns but in different orders of
iterations, yet yield the same memory dependency. Therefore,
we only need to profile one of the two threads.

Table I also shows the number of intra-dep threads after ap-
plying the above loop selection heuristic. As seen, Pathfinder,
and BFS K1 see a significant reduction in the number of

(a) Code snippet of pathfinder (b) Control flow traces of threads.

Fig. 4: Conditional branches inside a loop in the Pathfinder.

(a) (b)

Fig. 5: Profiling inter-thread memory dependencies. (Values in
squares represent memory addresses.)

threads, but not the other kernels as the threads do not have
conditional branches with divergent control-flow within loops.

B. Profiling for Inter-Thread Memory Dependencies (H-Inter)

Intra-thread memory dependencies can be established based
on the thread selection method in the previous section. How-
ever, inter-thread dependencies may still exist between threads
with differing control-flows and we need to model these. As
before, we propose a heuristic to reduce the number of loads
and stores that must be profiled to capture the inter-thread
dependencies. Our heuristic is to first select the thread blocks
that each of intra-dep threads belongs to, and then profile the
shared memory accesses in each thread block. This is based on
the observation there is often a high ratio of threads to thread
blocks, as well-designed GPU kernels have little control-flow
divergence within each thread block to avoid stalls. Hence, we
find that selecting thread blocks based on representative thread
groups exhibiting the same execution paths (i.e., thread blocks
containing intra-dep threads) captures most of the unique
shared memory access patterns (Table II).

Figure 5 shows the executions of two kernels as examples.
Each row represents a possible execution of an instruction,
while each column indicates a thread. For simplicity, we only
show instructions accessing shared memory. The value inside
each square is the memory address that the instruction uses.
Having the same address means that the load and the store
have an inter-thread dependency, which we need to identify.

In Figure 5a, there are 3 thread blocks (TBs) as shown.
Each TB contains two threads. T1, T2, T5 and T6 have the
same execution path, whereas T3 and T4 follow a different

execution path. Note that the control-flow paths of threads are
identical within each thread block in this example. T1 and
T3 are selected as intra-dep threads based on their execution
paths (Section IV-A). According to our heuristic, we profile all
the shared memory accesses in the thread blocks that T1 and
T3 belong to. In other words, we profile the shared memory
in T1, T2, T3, and T4. This way, we establish 2 inter-thread
memory dependencies, namely (Index 5 and Index 9), and
(Index 7 and Index 9), based on the addresses. Since the ratio
of control-flow similarity across thread blocks is high (100%),
our heuristic identifies all the inter-thread dependencies.

The example in Figure 5b also has 6 threads in 3 thread
blocks. Threads in TB1 follow the same execution path, as
do the threads in TB3. However, threads in TB2 (i.e., T3,
T4) follow different paths. In this case, the ratio of the
similarity of control-flow of threads inside thread blocks is
only 66.67% ((100%+0%+100%)/3). Since threads T1 and T4
are selected as intra-dep threads, all the threads in TB1 and
TB2 are considered for profiling, and the inter-thread memory
dependencies (Index 5 and Index 9), and (Index 5 and Index
11) are identified. However, since the control-flow of T4 is
different from T3 in TB2, the selection of T4 does not include
the profiling of the threads in TB3, thereby missing another
inter-thread dependency (Index 7 and Index 11) in T5 and T6.

Therefore, our heuristic achieves high coverage only when
the control-flow similarity ratio is high in a thread block. So we
ask the question what are the ratios of control-flow similarity
in thread blocks in GPU programs? Table II shows the results,
for the kernels that have inter-thread memory dependencies.
On average, about 75% of the threads in a thread block exhibit
control-flow similarity, with the highest being 100% in LUD
K3, and the lowest being 0% in LUD K1. Therefore, our
proposed heuristic (H-inter) is able to identify most of the
inter-thread memory dependencies in practice. The threads that
we profile to get inter-thread memory dependencies in a kernel
are called inter-dep threads.

Kernel CF Similarity Kernel CF Similarity
NW K1 54.16% NW K2 25%
HotSpot 98.31% LUD K1 0%
LUD K2 70.32% LUD K3 100%
Circuit 99.35% Pathfinder 96.61%

SRAD K1 98.28% SRAD K2 99.6%

TABLE II: Average Control-flow(CF) similarity percentage of
threads in a thread block

Table I shows the number of threads chosen for profiling
inter-thread memory dependency. On average, we only select
~40% of the total threads as inter-dep threads. It can be
seen that kernels that have lower number of total threads do
not show much reduction (0% for NW K1, NW K2), while
kernels that have a large number of threads show a much
higher reduction in the number of threads chosen (~99.3%
for Circuit). Note that only load and store instructions to
shared memory are profiled for these threads. The algorithm
for choosing inter-dep threads is in Algorithm 2.

We construct the memory dependency graph for a given
GPU kernel applying the above heuristic. We then follow the

Algorithm 2: Selecting inter-dep threads.
Input : TP : Threads from H-Intra
Output: TPS: Threads to profile

1 TPS = {}
2 TBP = {}
3 for all threads T in TP do
4 tb = find threadblock(T)

5 if tb not in TBP then
6 TBP .insert(tb)
7 // Profile all threads of this thread block
8 TPS .insert(all threads(tb))
9 end

method of TRIDENT to weight the edges of the graph based
on the dynamic instruction count of each static load and store,
and then trace error propagation using the graph. Note that fm
does not need the memory addresses (i.e. memory execution
trace) any more for extracting the dependency; instead, it reads
it directly from the memory dependency graph that we created
for this purpose, and aggregates the propagation probabilities
based on the edge weights (Section II-D3).

C. Value-Based Masking (H-Value):

As mentioned, it is very important to have a high accuracy in
modeling error propagation in GPU threads due to the potential
of aggregating small errors into large ones. We identify 2
sources of inaccuracies in TRIDENT and propose the H-Value
heuristic to mitigate them - this leads to an average accuracy
improvement of approximately 1.9% across our benchmarks.

The sources of inaccuracy are as follows.
1) Multiplication by zero: If a target operand of an instruc-

tion is multiplied by zero, the result will be always a zero
regardless of errors present in the target operand. TRIDENT
does not consider this effect and hence will overestimate
the error propagation. We find that there is a non-negligible
amount of multiplication-by-zero in GPU kernels (i.e., as high
as 56.6% in Lulesh, and on average 11.2%). To account for
this, we profile the operands of multiplication instructions, and
calculate the frequency of zero operands of mul instructions.
We then weight the propagation and masking probabilities in
the relevant instruction tuple (Section II-D1) accordingly.

2) Lucky stores: Recall that if a branch is modified by an
error, the store instructions dominated by the corrupted branch
will be not be executed correctly (Section II-D2). In this case,
TRIDENT assumes that the error always propagates to the store
instructions. However, if a store instruction was supposed to
overwrite the value in memory, errors will not propagate to
it even though the instruction is skipped due to a corrupted
branch. We call such store instructions lucky stores, similar to
lucky loads found in prior studies on CPUs [7], [21].

Identifying all the lucky stores requires recording every
operand of store instructions in the memory execution trace,
which can be extremely time-consuming. We observe that
“zero” values are dominant in the operands of output stores

of GPU kernels as most initializations of kernel memory use
zeros. Therefore, we record only the frequencies of output
stores that have a zero operand at runtime (average of 7.6%
(maximum of 40%) for the kernels used in this paper), and
weight the propagation probabilities in fc accordingly.

D. Analysis workflow

Based on the above heuristics, the analysis workflow of
GPU-TRIDENT consists of following steps:

1) H-Value is applied to get the fs and fc sub-models based
on the dynamic data profiled from the threads.

2) H-Intra is used to select a sub-set of threads to get
the intra-thread memory dependencies, whose memory
access instructions are then profiled.

3) H-Inter is used to select a sub-set of threads to get
the inter-thread memory dependencies, whose memory
access instructions are then profiled.

4) fm model is created from the memory dependency
graph, based on the profiled memory access instructions.

5) The sub-models (fc,fs and fm) are used to get the SDC
probability of individual instructions and the kernel.

V. EVALUATION

In this section, we first describe the experimental setup in
evaluating GPU-TRIDENT, and then the experimental results.

A. Experimental Setup

1) Workflow and implementation of GPU-TRIDENT:
GPU-TRIDENT is implemented as a set of LLVM compiler
passes that are integrated into NVIDIA’s NVCC compiler [27].
We have made GPU-TRIDENT publicly available2. Although
NVCC is based on LLVM, it does not expose its IR repre-
sentation to external tools. We, therefore, attach a dynamic
library [24] to insert the LLVM passes of GPU-TRIDENT in
the toolchain (as done in prior work [20]).

Note that the heuristics and algorithms proposed in this
paper are not limited to the CUDA platform, but can apply to
any generic GPU architecture as they have similar structures.
Moreover, any source language that can be compiled to the
LLVM IR can be used with the GPU-TRIDENT infrastructure.

GPU-TRIDENT needs the application code (with kernel
under test annotated), and an input required to execute it. The
programmer also needs to annotate the static store instructions
that are used by the kernel for transferring data to the host,
and designate them as output instructions. Note that FI also re-
quires this annotation, as this is used to identify which memory
has to be checked for determining SDCs. In our experience, it
took only a few minutes to identify these instructions for all
the benchmarks. This annotation can potentially be automated
for both techniques, but is outside the scope of this work.

Using these inputs, GPU-TRIDENT profiles the program
(using LLVM), and estimates the SDC probability of indi-
vidual instructions and the complete kernel without FIs.

2https://github.com/DependableSystemsLab/GPU-Trident

2) FI method: Recall that GPU-TRIDENT aims to predict
SDC probabilities, which are usually measured using FI.
Therefore, we use FI as the baseline to establish our ground
truth when evaluating GPU-TRIDENT. We use an open-source
injector, LLFI-GPU [20] to perform FIs. LLFI-GPU aids com-
parison with GPU-TRIDENT, as both are implemented using
LLVM. Therefore, we can map GPU-TRIDENT predictions
to the FI result of individual instructions, and examine the
accuracy of GPU-TRIDENT on a per-instruction basis.

Because we consider faults in the computational elements
of the GPU (Section II-A), we inject faults into the destination
registers of executed instructions. Only one fault is injected per
program execution. In each FI trial, the application is executed
from the beginning, and we uniformly choose an instruction
at random from the set of executed instructions in the kernel.
We then flip a single bit in its destination register, and execute
the program to completion. This method has been shown to
be accurate for estimating SDC probabilities [4].

To determine if an SDC occurred, the entire array in device
memory that is written by the kernel (to transfer data to the
host code) is compared to its contents in a fault free execu-
tion (i.e., golden run). This is because GPU-TRIDENT only
analyzes error propagation within the GPU kernel, and hence
cannot use the application output, which includes masking by
the CPU portions of the program. It is possible to combine
GPU-TRIDENT with other CPU error propagation models
(e.g., TRIDENT) to obtain an end-to-end resilience estimate.

3) Benchmarks: We choose a total of 17 kernels from
12 applications belonging to different domains, 8 of which
are from the Rodinia benchmark suite [6], and 4 are open
source HPC applications [3], [17], [1], [2]. These are listed
in Table III, and range in size from 16 to 511 static LLVM
IR instructions and range from 16 to 8,192,000 in terms
of total threads launched. The choice of benchmarks was
governed by whether they can be compiled with the LLVM-
based infrastructure of LLFI-GPU and GPU-TRIDENT, and
whether FI can be completed in a reasonable amount of time.
We removed all sources of randomness in the benchmarks
(e.g., changed random numbers to constant values), to get
reproducible results for the experiments.

We use the smaller inputs that come with each benchmark.
We have also tested GPU-TRIDENT with bigger inputs for
a subset of the same kernels, and find that the results closely
match those with FI (though they take much longer). However,
to keep the time for the detailed FI experiments manageable,
we choose to use the smaller inputs. Prior work [15], [20],
[26], [35], [36] has also used similar input sizes.

Table III also shows the times TRIDENT and GPU-
TRIDENT take for each of the kernels (as mentioned earlier,
TRIDENT times are estimates). We consider the time taken for
both systems to obtain the overall SDC probability and per-
instruction SDC probability. As can be seen, GPU-TRIDENT
takes less than about 10 minutes for all the kernels. In contrast,
TRIDENT takes days or even months to analyze the kernels.

B. Accuracy
We evaluate the accuracy of GPU-TRIDENT in predicting

SDC probabilities of the kernel, and individual instructions.
1) Overall SDC probability: We use GPU-TRIDENT to

predict the SDC probability of a given kernel (and input), and
then measure its SDC probability (under the same input) using
random FI. We perform 5000 FI experiments per kernel - the
error bars for the SDC measurements range from ±0.53% to
±1.82% at the 99% confidence level.

Figure 6 shows the result of our experiments. As can be
seen, GPU-TRIDENT provides reasonably accurate predic-
tions. On average, the SDC probability predicted by GPU-
TRIDENT is 35.67%, in comparison to 33.73% measured by
FI. The average difference (mean absolute error) between
FI and GPU-TRIDENT is 5.7% (in comparison, TRIDENT
had an average difference of 4.75% [21] for CPU programs).
This number is inflated by the results of Lulesh, BFS K1
and Pathfinder, which have a difference of ~24%, ~15% and
~16% respectively (the difference is 2.97% if we remove these
kernels). We explain the reasons in Section VI.

We also calculate the Pearson correlation coefficient be-
tween the FI results and GPU-TRIDENT predictions for all
the kernels. The correlation coefficient is 0.88, showing high
agreement between them. In fact, the correlation coefficient
increases to 0.99, if we ignore the 3 outliers described earlier.

Finally, we use a paired t-test to examine if the predictions
are statistically different from the FI measurements, in line
with TRIDENT’s method [21]. We first checked that the
differences between the predictions and FI measurements are
approximately normally distributed, as required by the t-test.
In the t-test, our null-hypothesis is that there is no statistically
significant difference between the results from FIs and the
predicted SDC probabilities by GPU-TRIDENT for the 17
kernels. We find that the t-test yields a p-value of 0.36, which
is much greater than the customary threshold of 0.05 [34], and
hence we fail to reject the null hypothesis.

2) Instruction SDC probability: We also evaluate the pre-
diction accuracy of per-instruction SDC probabilities for each
kernel. We use GPU-TRIDENT to predict the SDC probabili-
ties of all static instructions, and then compare the predicted
values with the FI results. In FI, we inject 100 random faults
in each static instruction of the kernel (a random dynamic
instance of the instruction is chosen for FI in each run).

As before, we calculate the Pearson correlation coefficient
between the SDC contribution by each static instruction found
using FI and by GPU-TRIDENT for all kernels. The average
correlation coefficient was 0.83, excluding the outliers men-
tioned in Section V-B1 and Gaussian. Gaussian has a low
coefficient which is reflected in the predicted SDC percent-
age being more than double the measured SDC percentage,
although the percentage difference is ~5%. The correlation
analysis shows that the per-instruction SDC probability ob-
tained by GPU-TRIDENT has high agreement with FI results.

We again check if the distribution of the differences between
the prediction and the FI measurement are approximately
normally distributed. The normality does not hold for SRAD

Benchmark Suite LLVM
Insts.

Kernel ID Uses shared
memory

Total
threads

Time with TRI-
DENT (in days)

Time with GPU-
TRIDENT (in minutes)

Needleman-
Wunsch

Rodinia 248 NW K1 Yes 48 0.48 4.77

249 NW K2 Yes 16 0.16 4.76
Pathfinder Rodinia 132 Pathfinder Yes 592,640 3,908 6.56
BFS Rodinia 47 BFS K1 No 32,768 80 1.41

20 BFS K2 No 32,768 36 0.93
Gaussian Rodinia 59 Gaussian No 3,840 8.6 1.21
HotSpot Rodinia 259 HotSpot Yes 473,344 5,026 5.14
Particlefilter Rodinia 39 Particlefilter Yes 9,216 18 1.46
LU Decomposi-
tion

Rodinia 142 LUD K1 Yes 64 0.28 2.58

238 LUD K2 Yes 192 1.2 3.27
78 LUD K3 Yes 3,584 8.9 1.66

SRAD Rodinia 511 SRAD K1 Yes 32,768 927 10.5
193 SRAD K2 Yes 32,768 187 2.84

Lulesh OS
HPC [17]

29 Lulesh No 66,816 56 2.77

Circuit OS HPC [3] 167 Circuit Yes 4,156,416 20,532 4.96
Perf Benchmark OS HPC [2] 16 Perf BM No 8,192,000 6463 7.43
HPCCUDA OS HPC [1] 397 HPCCUDA No 236,544 670 4.45

TABLE III: Benchmarks used: 8 are from the Rodinia suite, and the other 4 are open source HPC applications (OS HPC).

Fig. 6: The SDC probability of GPU kernels predicted by FI and GPU-TRIDENT. Error bars are shown for the FI estimates
at the 99% confidence level - they range from ±0.53% to ±1.82% depending on the benchmark.

K1, SRAD K2, Circuit and Particlefilter, and so we exclude
them from this experiment (however, the predicted SDC prob-
abilities for these kernels are close to the FI results (Figure 6)).
We perform paired t-test experiments in the remaining 13
kernels. The number of paired data in the t-test for each
kernel is the number of static instructions in it. As before,
our null hypothesis is that there is no difference between the
FI measurement and the predicted SDC probability of each
(static) instruction by GPU-TRIDENT. The p-values are higher
than 0.05 in 11 out of the 13 kernels (all except Lulesh and
NW K1), and hence we cannot reject the null hypothesis.

C. Scalability

In this section, we assess the scalability of GPU-TRIDENT
with respect to FI. We evaluate the scalability both in terms
of the overall SDC probabilities of kernels as well as those
of individual instructions. As mentioned earlier, our accuracy
experiment considered 5, 000 trials and obtained error bars
at the 99% confidence interval. However, if one is prepared
to accept lower confidence intervals or looser error bars, it
is possible to decrease the number of FI experiments (i.e.,
samples). To evaluate the scalability of GPU-TRIDENT with
respect to FI, we compare the time taken by GPU-TRIDENT
and FI when using 500 to 5, 000 samples. This is in line with
the number of samples used in other studies [8], [15], [20].

As mentioned earlier (Section II-D), executing GPU-
TRIDENT can be divided into two phases. (1) Profiling phase,
which requires multiple executions of the program to collect
data, and the (2) inference phase, which uses the information
obtained from the profiling phase to calculate the SDC proba-
bilities for static instructions, and requires no program execu-
tions. We implement the inference phase of GPU-TRIDENT
in (1) single threaded mode, and (2) multi-threaded mode.
However, we do not parallelize the profiling phase, to keep it
consistent with FI, which is not parallelized either. Note that
parallelizing the profiling phase is non-trivial as it requires
either multiple GPUs or the ability to run multiple applications
simultaneously on a single GPU.

1) Kernel SDC probability: Figure 7a shows the average
time taken by FI and both implementations of GPU-TRIDENT
to predict the SDC probability of CUDA kernels. Due to space
constraints, we show the average time across all the kernels.
It can be seen that the differences between the times taken
by GPU-TRIDENT and FI increase sharply as the number of
samples is increased. For example, for 500 samples, GPU-
TRIDENT is 2.2 and 5.7 times faster than FI (for single and
multi-threaded implementations respectively). This increases
to 12.7 and 33.4 times for 3, 000 samples, and 21.1 and 55.6
times for 5, 000 samples. This is because FI has negligible
fixed cost at startup, but every FI trial requires a complete

(a) Overall SDC Probability

(b) Instruction SDC Probability

Fig. 7: Computation Effort to Predict SDC Probability

program execution, and so the time required for FI experiments
increases linearly with the number of FI samples. In contrast,
GPU-TRIDENT has an initial fixed cost for building the model.
Once the model is built, the cost of calculating the SDC
probability of individual instructions is negligible, as it only
involves a table lookup. This results in predominantly flat lines
for GPU-TRIDENT in Figure 7a. It can be seen that multi-
threaded GPU-TRIDENT is on average around 2.5X faster (on
an 8-core CPU) than its single threaded counterpart.

2) Instruction SDC probability: Figure 7b compares the
average time taken by GPU-TRIDENT and FI, for getting
instruction wise SDC probability, for different numbers of
static instructions in the kernel, and with different numbers of
faults injected (100, 500 and 1,000) per instruction. The time
shown in the figure is projected based on the per instruction
times recorded for kernels that we use in our evaluation.
Number of samples per instructions are appended as suffixes in
the Figure 7b. For example, FI-100 means that 100 faults are
injected into each static instruction. Because GPU-TRIDENT
does not need to sample individual instructions, the time taken
by it remains constant; therefore it has only one curve for each
implementation. It can be seen that as the number of instruc-
tions in a kernel increases, the difference between the time
taken by FI and GPU-TRIDENT also increases. For example,
at 50 instructions, FI-100 takes around 4 hours more than
GPU-TRIDENT (averaged for both implementations). This
difference increases to around 84 hours for 1,000 instructions
(more than 20X increase).

Figure 8 shows the wall-clock time taken by both imple-

mentations of GPU-TRIDENT and FI (100 faults injected per
instruction), for obtaining instruction wise SDC probability,
for each kernel. There is a wide variation in times taken by
GPU-TRIDENT and FI for different kernels. For example,
BFS K2 takes 0.16 hours, while Circuit takes 63.75 hours
for FI, so we use a logarithmic scale in figure on the y-axis.
From the figure, we can see that on average, single-threaded
GPU-TRIDENT is faster than FI by more than one order of
magnitude (~38X), while multi-threaded GPU-TRIDENT is
faster than FI by about two orders of magnitude on average.
Further, higher the complexity of the application, greater the
improvement, e.g., Circuit and Lulesh in Figure 8.

VI. REASONS FOR INACCURACY OF GPU-TRIDENT

In this section, we discuss the sources for inaccuracies in
GPU-TRIDENT. There are 4 sources of inaccuracies.
1. Validity of faulty store addresses: GPU-TRIDENT assumes
that if a wrong memory location is accessed, it will either
result in a crash if the memory location is invalid, or an SDC
if the memory location is valid. However, in some cases, the
accessed wrong memory location is valid, but is out of the
scope of the kernel. This results in a benign outcome.

On the other hand, because FI records the kernel’s output
in the host code, it has the knowledge about the memory that
should be written by the kernel in order to lead to an SDC
- therefore, it can obtain the exact SDC probability. This is
one of the major reasons for SDC overestimation by GPU-
TRIDENT for both Luelsh and Pathfinder. This inaccuracy can
be mitigated by incorporating the information about the ratio
of the memory used by the kernel that causes an SDC into
GPU-TRIDENT. For example, in the case of Lulesh, if we
integrate the information about the ratio of total memory used
by FI to detect SDC (0.5 - we obtained this via analysis
of the host code) into GPU-TRIDENT, the absolute error in
prediction is reduced from 24% to just 0.31%.
2. Conservativeness in determining memory corruption: In
Section IV-C2, we discuss the phenomenon of lucky stores and
introduce a heuristic to identify lucky output store instructions.
However, lucky stores can also occur in the intermediate stores
of the kernel, e.g., when a store to local or shared memory
dominated by a faulty branch is missed or incorrectly executed,
but the value written happens to be the same as the correct
value. GPU-TRIDENT assumes that any fault propagating to
a store instruction results in an erroneous memory value, and
hence over-estimates the SDC probability. This is another
reason for the inaccuracy in Pathfinder (in addition to the first).

Similarly, GPU-TRIDENT assumes that a fault in the ad-
dress operand of a load instruction will propagate to the
instruction’s output. However, if the incorrect memory location
has the same contents as the fault-free memory (i.e., lucky
load [7]), it will result in a benign outcome. This is the
major reason for inaccuracy for BFS K1 (especially in the
earlier kernel invocations), where most of the device memory
allocated initially contains zeroes. Therefore, when a load
instruction reads from an incorrect memory address, it is likely
to load a zero, which is the same value it would obtain in a

Fig. 8: Performance comparison of FI and GPU-TRIDENT

fault-free run. Using FI, we find that around 15% of load
instructions in BFS K1 are affected by this issue, resulting in
over-estimation of SDC probability by GPU-TRIDENT.
3. Heuristics about error propagation: The original TRI-
DENT considers only three instruction types for logical mask-
ing, namely comparisons, logical and cast operations. GPU-
TRIDENT also includes multiply instructions based on dy-
namic profiling (Section IV-C1). However, other instructions
can also mask errors. For example, the fdiv instruction can
mask errors while averaging the corrupted bits in the mantissa.
This will also result in GPU-TRIDENT over-estimating SDCs.
4. H-Inter Heuristic: A kernel which has control-flow di-
vergence between threads in a thread block (Figure 5b) can
result in GPU-TRIDENT missing some inter-thread memory
dependencies in the memory dependency graph, which can
result in inaccuracies (both under- and over-estimates).

VII. USE CASE: SELECTIVE INSTRUCTION DUPLICATION

In this section, we use GPU-TRIDENT to guide selective
instruction duplication, which is a standard protection tech-
nique to detect SDCs [8], [16], [18], [30]. Selective instruction
duplication duplicates selected instructions and compares their
outputs at runtime to detect any differences as errors [8], [18],
[21]. Typically, it is assumed that the maximum performance
overhead for the protection is fixed to a budget value.

Then the question becomes: Which static instructions should
be duplicated to reduce the overall program SDC, given a
performance overhead budget?.

The predominant way to answer this question for GPU ap-
plications today is through FI, which is very time consuming,
as it requires per instruction SDC probabilities. In contrast,
we study the usefulness of GPU-TRIDENT in replacing FI
to answer this question, by accurately predicting the SDC
probability of individual instructions.

To study this, we model the problem as a classical 0-1
knapsack problem [23], where the performance overhead of
duplicating instructions is the sack capacity, and the SDC
reduction by duplicating the instructions is the profit. We use
a standard dynamic programming algorithm for the 0-1 knap-
sack problem, similar to previous work [21]. For simplicity,
we consider instruction SDC probabilities to be independent
of each other, which is a conservative assumption that has also
been made by previous work [21]. We use GPU-TRIDENT to

estimate the SDC probability of each instruction, and use the
dynamic instruction count as a proxy of the instruction’s per-
formance overhead (measuring the exact overhead is tedious).

We consider two protection overhead levels, which corre-
spond to one-third and two-thirds performance overhead of
duplicating all the instructions in a given GPU kernel. We use
FI to measure the SDC probability of the protected kernel.

Figure 9 shows the SDC probabilities of kernels after
applying selective duplication. Without protection, the average
SDC probability across benchmarks is 33.73%. With one-third
protection overhead, the average SDC probability is reduced to
14.2%, which is a reduction of about 58%. With a two-thirds
protection overhead, the average SDC probability is further
reduced to 5.27%, which is a reduction of about 85%.

Figure 10 shows the average SDC coverage, for all bench-
marks, provided by instruction duplication, when it is guided
by FI and GPU-TRIDENT at different overhead levels. We can
see that the protection curve of GPU-TRIDENT closely follows
that of FI throughout the range. The maximum difference
between these two curves is about 13.34% which translates
to an absolute difference of only 4.4% in terms of SDC
percentages. Thus, GPU-TRIDENT is an accurate and efficient
replacement for FI in guiding selective instruction duplication.

VIII. RELATED WORK

Modeling error propagation: Error propagation models
are widely employed to estimate the resilience of CPU
programs. Shoestring [8] uses compile-time analysis and
symptom-based error detection techniques to model error
propagation and identify vulnerable instructions. Sridharan et
al. [33] introduce an analytical model, program vulnerability
factor (PVF), to capture the masking properties of the program.
However, it does not mode control-flow divergence or memory
dependencies, and their accuracy suffers as a result. Further, it
is not targeted towards GPUs. Guo et al. [10] identify naturally
resilient code patterns in HPC applications, but do not quantify
resilience of the over-all program.

GPU error resilience: Yim et al. [37] developed one of the
first FI tools for GPU applications to explore efficient error
detectors in GPU programs. Li et al. [20] design LLFI-GPU,
which operates at the LLVM IR level, and use it to investigate
error propagation in GPU kernels. Unfortunately, FI requires
significant time and resources in evaluating GPU applications.

Fig. 9: SDC Probabilities of selective instruction duplication.

Fig. 10: Protection curves obtained by FI and GPU-TRIDENT.

Tan et al. [35] propose an analytical framework to estimate
the vulnerability of GPU microarchitectures. However, their
technique does not consider the characteristics of the GPU
program as it is microarchitecture dependent. Further, they do
not distinguish between crashes and SDCs in their analysis.
Wei et al. [36] study the approximation properties of soft errors
and use them to guide approximate instruction duplication.
However, this requires thousands of fault injections and inti-
mate knowledge of the application’s domain and functionality.

Pruning of FI space: Pruning FI space based on similar
execution patterns has been proposed to speed up FI. Hari
et al. [12], [13] propose techniques to prune the FI space in
CPU applications based on similar error propagation patterns
in programs, reducing time taken in FIs.

There are two techniques for pruning the FI space of
GPU programs that share the same high-level goal as GPU-
TRIDENT, i.e. to estimate the resilience of GPU programs
with either limited or no FI. Nie et al. [26] propose a method
to prune the FI space of GPU programs. While useful, their
method still requires hundreds of FI trials (and a few thousands
of trials in a handful of cases) per kernel invocation, to
obtain SDC estimates for programs. Running FI experiments
on GPUs is resource intensive as a GPU program has a huge
FI space among millions of threads. Further, unlike in CPUs,
the process of FI in GPU is difficult to parallelize as only
one GPU process is allowed per GPU card. Finally, these
heuristics are specific for pruning of FI sites, and so they
cannot be used in modeling error propagation, which is our
goal. Kalra et al. [15] propose a machine learning technique
to estimate the resilience of GPU programs. However, their
technique relies on a large amount of representative FI corpus
in the training phase, which are used to learn the characteristics

of SDCs. These are difficult to obtain in practice. Moreover,
both techniques only predict the vulnerability of the overall
program, and not that of individual instructions - this is needed
for selective protection approaches.

IX. CONCLUSION

This paper introduces GPU-TRIDENT to model soft error
propagation in GPU kernels without performing expensive
Fault Injections (FI). Because of the typically large number
of threads in a GPU kernel, it is challenging to model error
propagation accurately and scalably. To address this challenge,
we propose three heuristics to prune the error propagation
space, and improve the accuracy of GPU-TRIDENT based on
the similarities among the threads in a typical GPU kernel,
and on GPU-specific behaviors.

We implemented GPU-TRIDENT as LLVM compiler
passes, and evaluated it on 17 GPU Kernels. We found that
the accuracy of GPU-TRIDENT is comparable to FI both for
the kernel as a whole, and for individual instructions, for most
applications. Further, GPU-TRIDENT scales much better than
FI with the number of samples, and is nearly 2 orders of
magnitude faster. Finally, GPU-TRIDENT can guide selective
instruction duplication techniques with comparable accuracy
as FI, thus demonstrating its usefulness.

As future work, we will improve the accuracy of GPU-
TRIDENT based on the inaccuracies identified in Section VI.
We will also use GPU-TRIDENT to guide other selective
protection techniques than instruction duplication. Finally, we
plan to extend GPU-TRIDENT to other GPU families and
programming models than CUDA.

ACKNOWLEDGEMENTS

This work was supported in part by a Strategic Project
Grant and Discovery Grant from the Natural Sciences and
Engineering Research Council of Canada (NSERC), as well
as a Four Year Fellowship (FYF) from UBC. We also thank
the reviewers of SC 2020 for their insightful comments.

REFERENCES

[1] A program of blurring picture by multi-threads in CUDA. https://github.
com/caofengnian/HPCCUDA. [Online; accessed March 2020].

[2] Benchmarks for CPU, GPU, Memory, Disk Performance. https://github.
com/sswarnak77/Performance-Benchmarking. [Online; accessed March
2020].

[3] Parallel circuit solver. https://github.com/glaswep/hpc. [Online; accessed
Apr. 2016].

[4] C. Chang, S. Lym, N. Kelly, M. B. Sullivan, and M. Erez. Evaluating and
accelerating high-fidelity error injection for hpc. In SC18: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 577–589, 2018.

[5] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech. Demystifying soft error assessment strategies on arm cpus:
Microarchitectural fault injection vs. neutron beam experiments. In
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pages 26–38, 2019.

[6] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A benchmark suite
for heterogeneous computing. In International Symposium on Workload
Characterization (IISWC 2009), pages 44–54. IEEE, 2009.

[7] Jeffrey J Cook and Craig Zilles. A characterization of instruction-level
error derating and its implications for error detection. In International
Conference on Dependable Systems and Networks(DSN), pages 482–
491. IEEE, 2008.

[8] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.
Shoestring: Probabilistic soft error reliability on the cheap. In Archi-
tectural Support for Programming Languages and Operating Systems,
pages 385–396, 2010.

[9] L. Guo and D. Li. Moard: Modeling application resilience to transient
faults on data objects. In 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 878–889, 2019.

[10] L. Guo, D. Li, I. Laguna, and M. Schulz. Fliptracker: Understanding
natural error resilience in hpc applications. In SC18: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 94–107, 2018.

[11] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer.
Sassifi: An architecture-level fault injection tool for gpu application
resilience evaluation. In 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 249–
258, 2017.

[12] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep
Ramachandran. Relyzer: Exploiting application-level fault equivalence
to analyze application resiliency to transient faults. In Architectural
Support for Programming Languages and Operating Systems, pages
123–134, 2012.

[13] Siva Kumar Sastry Hari, Radha Venkatagiri, Sarita V Adve, and He-
lia Naeimi. Ganges: Gang error simulation for hardware resiliency
evaluation. In ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA), pages 61–72. IEEE, 2014.

[14] Mark Harris. Unified memory for CUDA beginners. NVIDIA Blog,
2016. [Online; accessed 18-Jan-2018].

[15] Charu Kalra, Fritz Previlon, Xiangyu Li, Norman Rubin, and David
Kaeli. Prism: Predicting resilience of gpu applications using statistical
methods. In International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC), 2018. ACM, 2018.

[16] Charu Kalra, Fritz Previlon, Norm Rubin, and David Kaeli. Armorall:
Compiler-based resilience targeting gpu applications. ACM Trans.
Archit. Code Optim., 17(2), May 2020.

[17] I Karlin. Lulesh programming model and performance ports overview.
https://computing.llnl.gov/projects/co-design/lulesh ports1.pdf. [Ac-
cessed Apr. 2016].

[18] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson.
Ipas: Intelligent protection against silent output corruption in scientific
applications. In 2016 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pages 227–238, 2016.

[19] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium
on Code Generation and Optimization, page 75. IEEE, 2004.

[20] Guanpeng Li, Karthik Pattabiraman, Chen-Yang Cher, and Pradip Bose.
Understanding error propagation in GPGPU applications. In Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis, pages 240–251. IEEE, 2016.

[21] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari, Michael
Sullivan, and Timothy Tsai. Modeling soft-error propagation in pro-
grams. In Proceedings of the International Conference on Dependable
Systems and Networks (DSN), 2018.

[22] Abdulrahman Mahmoud, Siva Kumar Sastry Hari, Michael B. Sullivan,
Timothy Tsai, and Stephen W. Keckler. Optimizing software-directed
instruction replication for gpu error detection. In Proceedings of the

International Conference for High Performance Computing, Networking,
Storage, and Analysis, SC 18. IEEE Press, 2018.

[23] George B Mathews. On the partition of numbers. Proceedings of the
London Mathematical Society, 1(1):486–490, 1896.

[24] Dmitry Mikushin. Enabling on-the-fly manipulations with llvm ir code
of cuda sources. https://github.com/apc-llc/nvcc-llvm-ir. [Accessed Nov.
2018].

[25] Ming Zhang and N. R. Shanbhag. A CMOS design style for logic circuit
hardening. In 2005 IEEE International Reliability Physics Symposium,
2005. Proceedings. 43rd Annual., pages 223–229, April 2005.

[26] Bin Nie, Lishan Yang, Adwait Jog, and Evgenia Smirni. Fault site
pruning for practical reliability analysis of gpgpu applications. In
International Symposium on Microarchitecture (MICRO), 2018, pages
749–761. IEEE, 2018.

[27] NVIDIA. Nvcc. https://developer.nvidia.com/cuda-llvm-compiler.
[28] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. Control-flow

checking by software signatures. Transactions on Reliability, 51(1):111–
122, 2002.

[29] Lucas Palazzi, Guanpeng Li, Bo Fang, and Karthik Pattabiraman. A tale
of two injectors: End-to-end comparison of ir-level and assembly-level
fault injection. pages 151–162, 10 2019.

[30] Vijay Janapa Reddi, Meeta S Gupta, Michael D Smith, Gu-yeon Wei,
David Brooks, and Simone Campanoni. Software-assisted hardware
reliability: abstracting circuit-level challenges to the software stack. In
Design Automation Conference, pages 788–793. IEEE, 2009.

[31] B. Sangchoolie, K. Pattabiraman, and J. Karlsson. One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip
errors. In 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 97–108, 2017.

[32] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve,
Saurabh Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello,
Bill Carlson, et al. Addressing failures in exascale computing. Institute
for Computing in Science (ICiS). More infor, 4:11, 2012.

[33] Vilas Sridharan and David R Kaeli. Eliminating microarchitectural
dependency from architectural vulnerability. In 15th International
Symposium on High Performance Computer Architecture.

[34] Student. The probable error of a mean. Biometrika, pages 1–25, 1908.
[35] Jingweijia Tan, Nilanjan Goswami, Tao Li, and Xin Fu. Analyzing

soft-error vulnerability on gpgpu micro architecture. In IEEE Interna-
tional Symposium on Workload Characterization (IISWC), 2011 IEEE
International Symposium on, pages 226–235. IEEE, 2011.

[36] Shang Gao Lina Li Ruyu Zhang Jingweijia Tan Xiaohui Wei, Heng-
shan Yue. G-seap: Analyzing and characterizing soft-error aware
approximation in gpgpus. In Future Generation Computer Systems
(2020), 2020.

[37] Keun Soo Yim, Cuong Pham, Mushfiq Saleheen, Zbigniew Kalbarczyk,
and Ravishankar Iyer. Hauberk:lightweight silent data corruption error
detector for gpgpu. In International Parallel & Distributed Processing
Symposium (IPDPS), 2011, page 287. IEEE, 2011.

