
Scaling Implicit Parallelism via
Dynamic Control Replication

Michael Bauer

NVIDIA

Wonchan Lee

NVIDIA

Elliott Slaughter

SLAC National Accelerator

Laboratory

Zhihao Jia

Carnegie Mellon University

Mario Di Renzo

Sapienza University of

Rome

Manolis Papadakis

NVIDIA

Galen Shipman

Los Alamos National

Laboratory

Patrick McCormick

Los Alamos National

Laboratory

Michael Garland

NVIDIA

Alex Aiken

Stanford University

Abstract
We present dynamic control replication, a run-time program

analysis that enables scalable execution of implicitly parallel

programs on large machines through a distributed and effi-

cient dynamic dependence analysis. Dynamic control repli-

cation distributes dependence analysis by executing multiple

copies of an implicitly parallel program while ensuring that

they still collectively behave as a single execution. By dis-

tributing and parallelizing the dependence analysis, dynamic

control replication supports efficient, on-the-fly computation

of dependences for programs with arbitrary control flow at

scale. We describe an asymptotically scalable algorithm for

implementing dynamic control replication that maintains

the sequential semantics of implicitly parallel programs.

An implementation of dynamic control replication in the

Legion runtime delivers the same programmer productivity

as writing in other implicitly parallel programming models,

such as Dask or TensorFlow, while providing better perfor-

mance (11.4X and 14.9X respectively in our experiments), and

scalability to hundreds of nodes. We also show that dynamic

control replication provides good absolute performance and

scaling for HPC applications, competitive in many cases with

explicitly parallel programming systems.

CCS Concepts • Software and its engineering → Run-
time environments; • Computing methodologies → Paral-
lel and distributed programming languages;

Keywords implicit parallelism, scalable dependence analy-

sis, dynamic control replication, Legion, task-based runtime

Publication rights licensed to ACM. ACM acknowledges that this contribu-

tion was authored or co-authored by an employee, contractor or affiliate of

the United States government. As such, the Government retains a nonex-

clusive, royalty-free right to publish or reproduce this article, or to allow

others to do so, for Government purposes only.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8294-6/21/02. . . $15.00

https://doi.org/10.1145/3437801.3441587

1 Introduction
Implicitly parallel programming models, where apparently

sequential programs are automatically parallelized, are in-

creasingly popular as programmers endeavor to solve com-

putationally difficult problems using massively parallel and

distributed machines. Many of these programmers have lim-

ited experience writing explicitly parallel code and instead

choose to leverage high productivity frameworks—such as

TensorFlow [7], PyTorch [38], and Spark [53]—that hide the

details of parallelism and data distribution.

In implicitly parallel programming models, distinguished

functions, often called tasks, are the units of parallelism.

Tasks may consume data produced by other tasks preceding

them in program order. Thus, to discover implicit parallelism,

programming systems must perform a dependence analysis to
discover a legal partial order on task execution. In the worst

case, dependence analysis has a computational complexity

that is quadratic in the number of tasks: each task must be

checked against all its predecessors in the program for depen-

dences. Since the number of tasks to be analyzed is generally

proportional to the size of the target machine, dependence

analysis is expensive at scale, and its apparently sequential

nature can make it difficult to parallelize. Therefore, all ex-

isting systems make tradeoffs limiting the scalability of their

implementation, the precision of their analysis, and/or the

expressivity of their programming model to avoid or reduce

the costs of a fully general dependence analysis.

One such class of systems performs dependence analysis

at compile-time, thereby eliminating run-time overhead. Se-

quoia [20], Deterministic Parallel Java [13], and Regent [43]

are compiler-based systems that statically infer data depen-

dences to transform a program into an explicitly parallel code

that runs across many distributed nodes. However, common

idioms such as data-dependent control flow, or potentially

aliased data structures, can defeat static analysis, resulting in

failed compilation or generated code incapable of scaling to

large node counts. Some systems limit the expressivity of the

programming model to ensure static analysis is successful

https://doi.org/10.1145/3437801.3441587

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Bauer et al.

Static	
Analysis	

Lazy	
Evaluation	

Dynamic	
Control	

Replication	

Compiler	

Control	Node	

Execution	Nodes	

Worker	Nodes	

Execution	Nodes	

while	!done():	
T	

T	

T1	

while	!done():	

while	!done():	

while	!done():	

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

B

A

D

C

F

E

Task	T	{	
		while	!done():	
				A();	B();	
				C();	D();	
				E();	F();		
}	

T2	

Figure 1. Approaches to implicit parallelism: static analysis

and lazy evaluation centralize analysis and distribute parti-

tioned programs to workers for execution. DCR executes a

replicated program, dynamically assigns tasks to shards, and

performs an on-the-fly distributed dependence analysis.

(e.g., Sequoia). The compile-time approach works best for

the subset of programs amenable to precise static analysis.

To avoid the limitations of static analysis, programming

systems such as Spark and TensorFlow use lazy evaluation
to perform dependence analysis at run-time. A single node

executes the program’s control where all tasks are issued,

but tasks are not immediately executed. Instead the control

node performs a dynamic dependence analysis on the set of

launched tasks to build a representation of the program. At

certain points, the system dynamically compiles and opti-

mizes this representation and then distributes it to worker
nodes for execution. The main difficulty is that the control

node can limit scalability, either as a sequential bottleneck

in distributing tasks to worker nodes, or as a limitation on

the size of the program representation that can be stored

in memory. Both Spark and TensorFlow take steps to miti-

gate these risks. To avoid having the centralized controller

become a sequential bottleneck, these systems either mem-

oize repeated executions of code (Spark) or amortize the

cost of dependence analysis by explicitly representing loops

with some (but not arbitrary) control flow (TensorFlow) [52].

Therefore, programs with large repeated loops of execution

can be compiled, optimized, and partitioned for distribution

to worker nodes efficiently. Furthermore, to avoid overflow-

ing memory, these systems limit the expressible dependence

patterns. Consequently, Spark and TensorFlow work well

for programs with minimal dynamic control flow and simple

symmetric dependence patterns.

For programs with complex control flow, arbitrary data

dependences, and/or the need to run arbitrary tasks on any

node, a different approach is needed. The dependence analy-

sis should be distributed to ensure that no node is a bottle-

neck. In particular, there is little difficulty if a task launches a

small, constant number of subtasks; these can be analyzed in

essentially constant time and with small overhead in current

tasking systems. The problem is with tasks that launch a

number of subtasks proportional to the size of the machine,

where the dependence analysis quickly becomes a bottleneck

when scaling up to large clusters.

We introduce dynamic control replication (DCR), a parallel

and distributed run-time dependence analysis for implic-

itly parallel programming models that can scale to large

node counts and support arbitrary control flow, data usage,

and task execution on any node. Figure 1 gives an exam-

ple program consisting of a top-level task with a loop that

launches six subtasks A-F with some dependences between

them, along with an illustration of static, lazy evaluation,

and dynamic control replication approaches to the program’s

execution. In the static approach, to target 𝑛 nodes, the tasks

are partitioned into 𝑛 loops with explicit cross-node synchro-

nization to enforce dependences. The compiled program is

similar to an MPI implementation [45], with each node ex-

plicitly communicating and synchronizing with other nodes.

The lazy approach attempts to achieve a similar effect at

run-time, with all of the dependence analysis carried out by

the control node, and then just-in-time schedules of tasks

sent to each worker. These schedules can be cached on the

workers to avoid repeating the analysis if possible, but in gen-

eral when the program’s behavior changes, the control node

must carry out another lazy gathering of tasks, dependence

analysis, and schedule creation for the workers.

In DCR, illustrated at the bottom of Figure 1, the depen-

dence analysis is itself spread across all the nodes of the

system. The execution of task T is replicated into shards;
each shard Ti executes a copy of T that replicates all of the
control structures of the task T, but only performs the depen-

dence analysis for a subset of the subtasks launched by T. In
the figure, shard T1 handles subtasks A, C, and E for the first

loop iteration, while shard T2 handles subtasks B, D and F.
The shards cooperate to discover and enforce any cross-shard
dependences, in this case the dependences between B and C
and between C and F. The assignment of subtasks of T to

shards Ti is done by the runtime system using a sharding
function 𝑓 . The only requirements of 𝑓 are that it be a func-

tion (each subtask is assigned to one shard) and total (every

subtask is assigned to some shard). For performance, the

sharding function should also balance assignments across

shards. Because the sharding is computed dynamically, the

sharding function can assign different instances of a subtask

to different shards; in Figure 1 the shards of T swap roles on

the second iteration, with T1 handling subtasks B, D and E and
shard T2 handling the rest. Crucial to the scalability of DCR,

is the observation that consecutive independent tasks, such

as A and B, can be aggregated into group tasks that can be

launched and analyzed more efficiently as a single operation.

We formally introduce group tasks in Section 2.

In DCR the execution of a task is replicated, but collectively

the shards behave as a single logical task. By performing

dependence analysis on the fly, DCR can easily react to data-

dependent control flow. Since the dependence analysis is

distributed, each node is only responsible for its subset of

the overall analysis and storing a subset of the program

representation, yielding an inherently scalable approach.

Scaling Implicit Parallelism via
Dynamic Control Replication PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Each subsequent section presents a contribution: We for-

malize parallel dynamic dependence analysis and prove this

algorithm is equivalent to sequential dependence analysis

(Section 2). DCR introduces another new issue: the replicated

portion of the program must behave identically in all copies

and therefore cannot exhibit non-determinism; we show how

to dynamically verify this property of control determinism
(Section 3). We describe our implementation of DCR (Sec-

tion 4) and important optimizations required to achieve good

performance in practice. Our evaluation demonstrates that

DCR delivers the same productivity with better performance

and scalability for widely-used data analysis and machine

learning programs, and provides good absolute performance

and scalability for HPC applications (Section 5).

2 Foundations of Control Replication
Dynamic control replication improves the performance of

run-time dependence analysis by enlisting the parallel re-

sources of a distributed machine. To this end, DCR partitions

the analysis work, enabling one or more shards of a repli-

cated task, running on multiple nodes, to handle a subset of

the full analysis. DCR requires distinguishing where analysis

can be done in parallel, and where coordination between the

shards is required. A key observation is that programs typi-

cally launch tasks in groups of independent tasks (i.e., tasks

with no dependences between them); shards can analyze

tasks in each task group in parallel. A program is modeled as

a sequence of task groups:

𝑝 ∈ Program = TaskGroup∗ 𝑝 = 𝜖 | tg;𝑝
tg ∈ TaskGroup = {Task}
𝑡 ∈ Task

This definition of a program is equivalent to a top-level task

that launches a sequence of task groups that do not launch

further subtasks (e.g., the example in Figure 1). In our imple-

mentation, we allow any task to be replicated with DCR, and

subtasks launched in replicated tasks may launch (optionally

replicated) subtasks of their own, but this simplified model

is sufficient to formalize the key ideas.

We assume that there is a separate dependence analysis,

which we model as an oracle, that determines whether two

tasks are independent (our implementation similarly reuses

the existing pairwise task dependence analysis of the under-

lying runtime system). We write 𝑡1∗𝑡2 to indicate tasks 𝑡1 and
𝑡2 are independent. Tasks in a task group must be pairwise

independent: ∀𝑡1, 𝑡2 ∈ tg.𝑡1 = 𝑡2 ∨ 𝑡1 ∗ 𝑡2. We write 𝑡1 ⇒ 𝑡2 if

task 𝑡2 depends on 𝑡1, i.e., 𝑡2 occurs after 𝑡1 in the program

and ¬(𝑡1 ∗ 𝑡2). The dependence analysis’s output is a task
graph 𝐺 = ⟨𝑇, 𝐷⟩, a DAG of tasks 𝑇 whose directed edges 𝐷

are dependences.

The first step in DCR is to apply a sharding function, which
determines the owner shard for each task (see Section 4). We

assume that a sharding function is already applied to the

tasks in a program to be analyzed, and we write 𝑡𝑘 if task 𝑡

(𝑆,𝐺)
rep
−→ (𝑆,𝐺)

Ta

𝑆 = ⟨𝑠1, . . . , (tg;𝑝𝑖 , 𝑐𝑖 ,∅), . . . , 𝑠𝑛⟩ 𝑑 ′
𝑖
= 𝑐𝑖

⇒
× tg(𝑖) ≠ ∅

𝑆 ′ = (𝑠1, . . . , ⟨tg;𝑝𝑖 , 𝑐𝑖 , 𝑑 ′𝑖 ⟩, . . . , 𝑠𝑛)

(𝑆,𝐺)
rep
−→ (𝑆 ′,𝐺)

Tb

𝑆 = ⟨𝑠1, . . . , (tg;𝑝𝑖 , 𝑐𝑖 , 𝑑𝑖), . . . , 𝑠𝑛⟩
𝑑𝑖 ≠ ∅ ∀(𝑡𝑘 , 𝑡) ∈ 𝑑𝑖 .𝑡

𝑘 ∈ 𝑐𝑘
𝑆 ′ = (𝑠1, . . . , ⟨𝑝𝑖 , 𝑐𝑖 ∪ tg,∅⟩, . . . , 𝑠𝑛)

𝑇 ′ = 𝑇 ∪ tg(𝑖) 𝐷 ′ = 𝐷 ∪ 𝑑𝑖

(𝑆, ⟨𝑇, 𝐷⟩)
rep
−→ (𝑆 ′, ⟨𝑇 ′, 𝐷 ′⟩)

Tc

𝑆 = ⟨𝑠1, . . . , (tg;𝑝𝑖 , 𝑐𝑖 ,∅), . . . , 𝑠𝑛⟩ 𝑐𝑖
⇒
× tg(𝑖) = ∅

𝑆 ′ = (𝑠1, . . . , ⟨𝑝𝑖 , 𝑐𝑖 ∪ tg,∅⟩, . . . , 𝑠𝑛) 𝑇 ′ = 𝑇 ∪ tg(𝑖)

(𝑆, ⟨𝑇, 𝐷⟩)
rep
−→ (𝑆 ′, ⟨𝑇 ′, 𝐷⟩)

Figure 2. Parallel dependence analysis DEPrep

is owned by shard 𝑘 . Each shard 𝑘 analyzes only the subset

tg(𝑘) ≜ {𝑡𝑘 ∈ tg} of a task group tg.
Once the owner shard is determined for each task, a pro-

gram is analyzed by shards in parallel. The analysis state

(𝑆,𝐺) consists of a tuple 𝑆 = ⟨𝑠1, . . . , 𝑠𝑛⟩ of states (one for
each shard), and a global task graph 𝐺 shared by all shards.

Each shard 𝑖’s state 𝑠𝑖 = (𝑝1, 𝑐𝑖 , 𝑑𝑖) consists of a program 𝑝𝑖 ,

a set of tasks that the shard has finished analyzing 𝑐𝑖 , and a

set of outstanding dependences 𝑑𝑖 ,

Figure 2 gives an operational semanticsDEPrep for the par-
allel dependence analysis. Each inference rule corresponds

to a single analysis step, which starts with an initial state

𝑆 = ⟨(𝑝, ∅, ∅), . . . , (𝑝, ∅, ∅)⟩ where the program is replicated

in the shards’ states and finishes when all shards have no

remaining task groups to analyze. In the rules Ta and Tc, we

write 𝑇
⇒
× 𝑇 ′

to denote a set of dependences between tasks

in 𝑇 and those in 𝑇 ′
(obtained by querying the oracle):

𝑇
⇒
× 𝑇 ′ ≜ {(𝑡, 𝑡 ′) | 𝑡 ∈ 𝑇 ∧ 𝑡 ′ ∈ 𝑇 ′ ∧ 𝑡 ⇒ 𝑡 ′}

The analysis of a task group in each shard is done in two steps:

First, a shard 𝑖 identifies dependences for the subset tg(𝑖) of
the task group tg being analyzed and records them locally

in the set 𝑑𝑖 of outstanding dependences (rule Ta). Second,

the outstanding dependences of a task 𝑡 are registered to the

global task graph if all of 𝑡 ’s dependent predecessors have

been analyzed by their owner shards (rule Tb); to check this

condition, each shard 𝑖 maintains a set 𝑐𝑖 of tasks whose

analysis is completed. The rule Tc handles the case where

the tasks being analyzed have no dependences, allowing

those tasks to be registered to the task graph immediately.

In rules Ta and Tc, shard 𝑖 compares tg(𝑖) with 𝑐𝑖 and not

with the tasks in the task graph, as shards can make progress

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Bauer et al.

(𝑃,𝐺)
seq
−→ (𝑃,𝐺)

𝑇 ′ = 𝑇 ∪ tg 𝐷 ′ = 𝐷 ∪𝑇
⇒
× tg

(tg;𝑝, ⟨𝑇, 𝐷⟩)
seq
−→ (𝑝, ⟨𝑇 ′, 𝐷 ′⟩)

Figure 3. Sequential dependence analysis DEPseq

at different rates and therefore the task graph may not yet

contain all the dependent predecessors of tg(𝑖).
The key property of DEPrep is that it produces the same

task graph as a sequential analysis; Figure 3 shows a system

DEPseq that sequentially analyzes dependences.

Theorem 1. For a program 𝑝 , the following holds:

(𝑝, ⟨∅,∅⟩)
seq
−→

★

(𝜖,𝐺𝑠) ∧ (𝑆𝑁𝜄 , ⟨∅,∅⟩)
rep
−→

★

(𝑆𝑁∅ ,𝐺𝑟)
=⇒ 𝐺𝑠 = 𝐺𝑟 ,

where 𝑆𝑁𝜄 =

𝑁︷ ︸︸ ︷
⟨(𝑝,∅,∅), . . . , (𝑝,∅,∅)⟩,

𝑆𝑁∅ = ⟨(𝜖, 𝑝,∅), . . . , (𝜖, 𝑝,∅)⟩
and 𝑅★ denotes the reflexive transitive closure of a relation 𝑅.

Theorem 1 is a direct consequence of a lemma stating

that any consecutive transitions A and B, in two different

shards, can be reordered to B followed by A if the task group

analyzed in A appears later than that analyzed in B in the

original program order. From this lemma, we derive that the

transitions for an analysis of a program using the system

DEPrep can be reordered so that they simulate an analysis of

the same program with the system DEPseq. A detailed proof

of Theorem 1 is included in Appendix A.

For simplicity, we have described dependence analysis

as if it always compares each task with all predecessors. In

practice, we can minimize comparisons because transitive
dependences are redundant: if the system already has depen-

dences 𝑡1 ⇒ 𝑡2 and 𝑡2 ⇒ 𝑡3 in the task graph, then 𝑡1 ⇒ 𝑡3
does not further constrain the scheduling of tasks [11].

3 Control Determinism
Our semantics (Section 2) and our implementation (Section 4)

rely on all shards analyzing task groups in the same order.

Any deterministic program run with the same input in all

shards will satisfy this requirement. In practice, however,

there can be sources of “input” that differ across shards. The

state of the memory allocator, the presence of profile-guided

garbage collectors, address space randomization, the choice

of hash functions in an interpreter, and hardware clocks for

timing are all examples of data sources that may be visible

to the program and different in each shard.

Fortunately, dynamic control replication does not require

all data sources be identical across shards. A program is

control deterministic if all shards make the same the sequence

of API calls into the runtime system. We illustrate three

violations of control determinism we have encountered.

1 import random
2 ...
3 if (random.random () < 0.5):
4 run_algorithm0 ()
5 else:
6 run_algorithm1 ()

Figure 4. Branching on a random number.

1 future = launch_task0 ()
2 if future.is_ready ():
3 value = future.get_value ()
4 run_task1_inline(value)
5 else:
6 launch_task1(precondition=future)

Figure 5. Branching on a timing-dependent value.

1 regions = set()
2 for i in range(num_regions):
3 regions.add(create_region ())
4 for region in regions:
5 launch_task(region)

Figure 6. Iterating a data structure with undefined order.

Figure 4 selects different algorithms to run based on the

result of a random number generator. To ensure shards

produce the same random number sequences, we provide

a pseudo-random number generator backed by a parallel

counter-based generator [40].

Figure 5 branches on a value whose result depends on tim-

ing, in this case an optimization: If the future is unresolved,

rather than block on the future’s value a task is launched

with the resolution of the future as a precondition. The fu-

ture may resolve at different speeds in different shards, and

so some shards may launch a subtask while others do not.

Figure 6 launches one task per set element. In Python, a

set is ordered by hash values of the items. For security, the

hashing is randomized, so shards will launch the same tasks

but likely in different orders. Such situations are easily fixed

by using a data structure with a defined order, such as a list.

We enforce control determinism using a dynamic analysis.

For each runtime API call from a shard of a replicated task

(and only for such calls), we compute a 128-bit hash that cap-

tures the API call and all its actual arguments. An all-reduce

collective (see Section 4.2) checks that the hashes from all

shards are identical, indicating that (assuming no hash con-

flicts) the program is control deterministic to that point in

its execution. The all-reduce is performed asynchronously

to hide its latency and many applications run without per-

formance degradation even with the check enabled if there

is unused communication bandwidth (see Section 5.5). If a

check fails, the runtime system aborts with an error listing

the operation that failed to be control deterministic, which

we have found sufficient for debugging.

For completeness, two additional sources of input that

must be handled by any system implementing dynamic con-

trol replication are files and interactions with garbage col-

lectors. We expect the support for these sources of input to

be implementation specific; we discuss how our implemen-

tation of DCR handles both cases in Section 4.3.

Scaling Implicit Parallelism via
Dynamic Control Replication PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

4 Dynamic Control Replication in Legion
We have implemented dynamic control replication in the

Legion runtime [11]. We work through the execution of the

sequential 1D stencil program in Figure 7 with DCR on a

small machine with two nodes, each with one CPU and two

GPUs. This program is written in Regent [42], a high-level

programming language that compiles down to calls to the

Legion runtime system. To explain how DCRworks with this

program, we need to introduce some Legion terminology to

explain specifically how Legion expresses task groups.

Legion tasks operate on regions, which are tables created

from a set of points called an index space (which in this case

is 1D) that name the table’s rows, and a set of typed fields
naming the table’s columns; see lines 1-3 (which defines two

field names), line 33 (which creates a 1D index space), and

line 35 (which defines a region).

Regions can be partitioned into arbitrary subregions [49,

50]; partitions are used like arrays of subregions (lines 44,

47, and 50). Subregions can be further partitioned, and in

general, programs construct region trees by recursively parti-

tioning a root region. Figure 8 depicts the region tree used

by the stencil program (the partitioning code is omitted from

Figure 7 for space reasons but can be found online [6]). An

important property of region trees is that any region in the

tree is a superset of all the regions in its subtree. Thus, any

set of regions can be over-approximated by a region 𝑟 , or

more generally a partition of 𝑟 , that is their least common

ancestor in the tree. We will make use of this property in our

analysis of the dependences between task groups.
1
In this

example three different partitions of the cells are created,

representing the cells owned by each node, the cells in the

interior of the domain within each owned subregion, and

the owned regions plus ghost cells on either side.

The __demand(__replicable) annotation on line 29 indi-

cates that main is a control deterministic task and therefore

eligible for DCR. Most applications do not require further

changes, except for minor tweaks to interact correctly with

external side effects (see Section 4.3).

Regardless of whether this program is executed with DCR

or not, the Regent compiler transforms inner loops of in-

dependent task launches into group task launches [42]. To

enable each task in a group task launch to have different

arguments, the task calls have the form 𝑡 (𝑝 [𝑓 (𝑖 𝑗)]) where
𝑡 is the task, 𝑖1, . . . , 𝑖𝑛 is an index space, 𝑝 is a partition con-

taining the subregions accessed in the original loop, and 𝑓

is a function that returns the subregion index of 𝑝 for the

𝑖 𝑗 th call of 𝑡 .2 Lines 43-45, 46-48, and 49-51 are converted to

group task launches, which define task groups in the sense

of Section 2. For example, the loop on lines 43-45 is replaced

by the group task launch add_one(owned[id(·)] over the
tiles index space, where id is the identity function. While

1
Note that this property of region trees is used in our implementation of

DCR in Legion and is not a requirement of DCR in general.

2
For region trees with multiple levels of partitioning, a more general form

of this function can choose any subregion in the subtree of 𝑝 [11].

1 fspace Cell {
2 state : double ,
3 flux : double ,
4 }
5

6 task add_one(cells: region(ispace(int1d),Cell))
7 where reads writes(cells.state) do
8 for i in cells do
9 cells[i].state = cells[i].state + 1
10 end
11 end
12

13 task mul_two(cells: region(ispace(int1d),Cell))
14 where reads writes(cells.flux) do
15 for i in cells do
16 cells[i].flux = cells[i].flux * 2
17 end
18 end
19

20 task stencil(owned: region(ispace(int1d),Cell),
21 ghost: region(ispace(int1d),Cell))
22 where reads writes(owned.flux),
23 reads(ghost.state) do
24 for i in owned do
25 owned[i].flux = owned[i].flux +
26 0.5*(ghost[i-1]. state + ghost[i+1]. state)
27 end
28 end
29

30 __demand(__replicable)
31 task main()
32 -- Parse args ncells , ntiles=4, nsteps , init
33 var grid = ispace(int1d , { x = ncells })
34 var tiles = ispace(int1d , { x = ntiles })
35 var cells = region(grid , Cell)
36 -- Create partitions: owned , interior , ghost
37 -- Code omitted for space , see Figure 8
38 fill(cells.{state , flux}, init)
39 for t = 0, nsteps do
40 for i in tiles do
41 add_one(owned[i])
42 end
43 for i in tiles do
44 mul_two(interior[i])
45 end
46 for i in tiles do
47 stencil(interior[i], ghost[i])
48 end
49 end
50 end

Figure 7. A 1-D stencil program written in Regent [42].

cells

… ……
owned interior ghost

cells

Figure 8. A region tree with three partitions to describe

different subsets of cells used by different tasks in the stencil

example. Ranges of sub-regions are depicted visually at top.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Bauer et al.

DCR works correctly for individual tasks and operations

(such as the fill to initialize data on line 40), the scalability

of dependence analysis hinges on the efficiency of analyzing

programs consisting primarily of group launches.

In our Legion implementation we do not attempt to de-

cide automatically when to use DCR; instead we expose this

decision in the Legion mapping interface [11], an API for

application- and machine-specific policies that affect per-

formance. A client of the mapping interface is a mapper.
Our mapping interface extensions enable mappers to specify

which task(s) to dynamically control replicate, the number

of shards, and on which processors shards should execute.

For the example program, the mapper (not shown) requests

one shard of main to execute on a CPU of each node. We note

that there is nothing the prevents the use of DCR from being

automated by heuristics in the runtime system to decide

when to use it; we have simply chosen to expose it through

an API so users can decide when best to deploy DCR.

When a DCR task executes, Legion queries mappers to

select a sharding function for each subtask launch. Sharding

functions are pure functions that map individual tasks or

tasks in a group launch to shards. Each shard is responsible

for the dependence analysis of the tasks assigned to it. A good

sharding function assigns tasks near where they will execute,

while a poor choice may require significant movement of

meta-data by the runtime. In the example, the cyclic sharding
function (ID 0) round-robins tasks across the shards. Because

sharding functions are pure, we can memoize their results,

which reduces their dynamic invocation overhead.

The implementation described here is specific to Legion,

but DCR is not. The essential requirements for any implic-

itly parallel programming system to support DCR are task

groups, a way to indicate a task is control deterministic, and

sharding functions. While our Legion implementation ex-

poses the implementation of sharding functions, allowing

customization for additional performance, this is not essen-

tial; a fixed sharding function could also be implemented

within the runtime system.

4.1 Dependence Analysis
In a straightforward implementation of DCR, each shard

would analyze all subtasks launched by the replicated task,

which would be problematic because the number of subtasks

is often proportional to the number of compute nodes and

dependence analysis costs would scale with node count. To

improve scalability, our implementation uses a hierarchical

analysis that achieves O(log𝑁) overhead in the average case
(where 𝑁 is the number replicated shards), and appears to

execute with O(1) cost if there is sufficient task parallelism.

In our approach, each shard implements the dependence

analysis in Figure 9, which consists of a coarse stage and a

fine stage. The coarse stage analysis discovers dependences
at the granularity of task groups; i.e., for two task groups

𝐺1 and 𝐺2, if there are any tasks 𝑡1 ∈ 𝐺1 and 𝑡2 ∈ 𝐺2 such

1 while (!coarse_queue.empty()):
2 task_or_op = coarse_queue.pop()
3 deps = set()
4 foreach upper bound partition P in task_or_op:
5 foreach dep in find_dependences(task_or_op,P):
6 if requires_shard_fence(dep):
7 deps.add(upgrade_to_shard_fence(dep))
8 else:
9 deps.add(dep)
10 dispatch_to_fine_queue_when_ready(task_or_op,deps)

Tasks	and	other	operations	are	inserted	
into	the	coarse	queue	in	program	order.	
Ideally	most	are	group	tasks	or	group	ops.	

coarse queue

Coarse	Stage	
Algorithm	

1 while (!fine_queue.empty()):
2 task_or_op = fine_queue.pop()
3 local_points = sharding_func(task_or_op,shard_id)
4 foreach point_task_or_op in local_points:
5 events = set()
6 foreach region in point_task_or_op:
7 events.add(make_valid_region(region))
8 launch(point_task_or_op, events)
9 complete_stage1_dependences(task_or_op)

Fine	Stage	Algorithm	

Figure 9. Pseudo-code for the dependence analysis algo-

rithm. Each stage operates independently and continuously

on every shard for the lifetime of a DCR program.

that 𝑡2 depends on 𝑡1, then there will be a coarse-stage de-

pendence between groups 𝐺1 and 𝐺2. Importantly, these

group-level dependences are discovered without enumerat-

ing the individual tasks within a group. Consider a task with

one argument. Conceptually, we construct a single task 𝑡 (𝑟)
that is representative of an entire task group 𝑡𝑔 by taking

𝑟 to be an upper bound in the region tree of all the region

arguments of tasks in 𝑡𝑔. We then query the dependence

oracle for any dependences between the task representative

𝑡 and representatives of other task groups. In Figure 9, since

the call to a task group already provides an upper bound

partition that covers all possible region arguments in the

task group, we use the partition and do not calculate another

upper bound. For a task with multiple arguments, we repeat

this construction for each argument. All shards perform de-

pendence analysis for all task groups in the coarse stage, so

every shard is aware of all dependences between task groups.

A coarse stage dependence from group 𝐺1 to 𝐺2 requires

that the fine stage analysis of all individual tasks in 𝐺1 fin-

ishes before the fine stage analysis of any tasks in 𝐺2. As

coarse stage dependences are satisfied, tasks and operations

proceed to the fine stage where a precise dependence analy-

sis is performed for the tasks owned by the shard.

Coarse stage dependences are trivially satisfied among

tasks owned by the same shard, as shards analyze their tasks

in program order. To handle cross-shard dependences, the

coarse stage promotes dependences to cross-shard fences to
enforce a partial order between the fine stage analyses on dif-

ferent shards (lines 6-7). Cross-shard fences behave similarly

to scoped memory fences on parts of the region tree, pro-

viding ordering of fine stage analysis across shards for tasks

and operations that access the fenced regions/partitions.

Scaling Implicit Parallelism via
Dynamic Control Replication PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

Fill	(0)	
RW	–	cells	–	state,	flux	

add_one	(group:	0-3)	
RW	– owned	–	state	
Sharding	Function:	0	

mul_two	(group:	0-3)	
RW	– interior	–	flux	
Sharding	Function:	0	

stencil	(group:	0-3)	
RW	–	interior	–	flux	
RO	–	ghost	–	state	
Sharding	Function:	0	

add_one	(group):	0-3)	
RW	– owned	–	state	
Sharding	Function:	0	

mul_two	(group:	0-3)	
RW	–	interior	–	flux	
Sharding	Function:	0	

Cross-Shard		
Fence	on		
cells.flux	

Cross-Shard	
Fence	on	
cells.state	

Cross-Shard	
Fence	on	
cells.state	

RW	–	read	write	
RO	–	read	only	

Cross-Shard		
Fence	on		
cells.state	

Figure 10. Coarse stage dependence analysis computed by

every shard for the program in Figure 7.

Any operation can begin the fine stage once all its incom-

ing dependences from the coarse stage analysis have been

satisfied (line 2). The fine stage analyzes individual tasks or

operations (line 4). For each individual task or operation, it

performs any data movement (line 7), gathers event precon-

ditions (lines 5,7), and dispatches execution to the lowest

layer of Legion [48]. On line 3 we use our local shard ID to

evaluate the sharding function for each task or operation to

determine the set of individual tasks or operations owned by

the local shard. Note that both stages of the analysis operate

asynchronously with respect to each other and we exploit

pipeline parallelism to hide the latency of the on-the-fly anal-

ysis; different tasks and operations can be in both stages of

the pipeline simultaneously.

We illustrate how the two-stage algorithm analyzes the

program in Figure 7. Figure 10 shows the result of the depen-

dence analysis for the beginning of the program. After the

fill is issued to both fields of the region, the next operation

analyzed is the add_one group task launch over the domain

0−3. This task uses the state field of the owned partition (see

Figure 8) and therefore depends on the fill so a dependence

is added. Additionally, we insert a cross-shard fence on the

cells region because the fill will be performed on shard 0,

whereas the cyclic sharding function (ID 0) for add_onemaps

individual tasks 1 and 3, that depend on the fill, to shard

1. The second group task launch for mul_two has a similar

dependence on the fill for the flux field and therefore inserts

a fence on the cells region for the flux field.

Next to be analyzed is the stencil task group, which has

dependences on the state field of the previous add_one task

as well as on the flux field of the previous mul_two task. The

coarse analysis requires a cross-shard fence for the first but

not the second dependence. While the sharding functions are

the same, the first dependence is between two different parti-

tions of the same region: owned and ghost. We cannot easily

stencil	(group:	0-3)	
RW	–	interior	–	flux	
RO	–	ghost	–	state	
Sharding	Function:	0	

add_one	(group:	0-3)	
RW	– owned	–	state	
Sharding	Function:	0	

mul_two	(group:	0-3)	
RW	–	interior	–	flux	
Sharding	Function:	1	

Cross-Shard	
Fence	on	
cells.flux	

Cross-Shard	
Fence	on	
cells.state	

RW	–	read	write	
RO	–	read	only	

Figure 11. Changed dependence analysis (in red) from an

alternate selection of sharding function for mul_two.

discern the aliasing relationship between the sub-regions of

these two partitions, so we must conservatively insert the

fence to handle any cross-shard dependences. For the sec-

ond dependence we know all individual tasks on each shard

access the same subregions of the same partition (interior)

on each shard because they have the same sharding func-

tion. Therefore all the individual task dependences will be

shard-local and we can safely elide the cross-shard fence be-

cause the fine stage is guaranteed to analyze individual task

dependences on local shards in program order. If the mapper

picked a different sharding function for mul_two, as in Fig-

ure 11, we would need a cross-shard fence because there may

be dependences between individual tasks owned by different

shards. The tasks from later iterations are analyzed similarly.

Finally, for Legion we implement the dependence oracle

for two task calls 𝑡1 (𝑟1) and 𝑡2 (𝑟2) by checking first whether

regions 𝑟1 and 𝑟2 share any index points—if they are disjoint

then the tasks are independent. If they share points then

we check whether they are accessing at least one field in

common. If the tasks are accessing the same points of at

least one field, we lastly check to see if either task writes its

region argument; if at least one is writing then a dependence

is required. This procedure is the standard dynamic depen-

dence analysis carried out by the Legion runtime [11] with

no modifications required for DCR.

We make three observations. First, the coarse analysis

stage does not require enumerating individual tasks for task

groups. The cost of the coarse stage is independent of the

size of the group launches, which are usually proportional

to the size of the machine. This independence from machine

size makes the coarse stage scalable.

Second, in the common case of data parallel operations, we

can prove that all dependences are shard-local and therefore

the cross-shard fences can be elided, which avoids unneces-

sary synchronization (line 6 of the coarse stage in Figure 9).

Currently, we do this proof symbolically by analyzing the

index space of the group task launches, the regions or parti-

tions that are upper bounds for task groups or operations,

and names of the projection and sharding functions.

Third, when cross-shard fences are required, we insert

these on specific regions or partitions. This design is a mid-

dle ground between full analysis barriers that create all-to-

all dependences between preceding and succeeding tasks,

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Bauer et al.

and direct shard-to-shard dependences that could be com-

puted with an expensive inversion of the functions that de-

termine which subregions are used by individual tasks. Our

cross-shard fences are implemented using a collective (see

Section 4.2) which has cost O(log𝑁) in latency across the

shards. Performing the coarse-grained analysis discovers

coarse task parallelism that can be exploited during the fine-

grained analysis stage to hide the cost of the fences. In prac-

tice, most applications we have observed have sufficient task

parallelism to hide these latencies.

4.2 Collectives
Our DCR implementation uses a set of collective primitives

for performing cooperative work between shards: broadcast

from one shard to all shards, reduce from all shards to one

shard, all-gather from all shards to all other shards, and all-

reduce that produces a single value for all shards. As an

example, our implementation of the cross-shard dependence

fences from Section 4.1 is performedwith an all-gather collec-

tive with no data payload. The collectives are implemented

using standard tree or butterfly communication networks

with O(log𝑁) latency.

4.3 Side Effects
Control replicated programs must interact correctly with

the external world. We have focused on two aspects: file

I/O and support for languages with garbage collectors. To

support file I/O, we provide implementations of Legion’s

attach and detach operations [26] that execute correctly in

dynamically control replicated contexts. Attach operations

allow applications to associate external memory allocations

(e.g., from an MPI program [45]) or files (e.g., HDF5 [46])

with existing regions in a program; detach operations flush

any changes (e.g., write back any file updates to disk) and

remove these associations. With dynamic control replication,

we provide support for sharding attach and detach operations
just like any other kind of operation. Normal files are read

and written by a single owner shard; group variants of attach

and detach provide support for parallel file I/O.

We have also added support for using DCRwith languages

that rely on garbage collectors (GC) such as Lua and Python.

Finalizers [2] that make runtime API calls can violate con-

trol determinism because collections can occur at arbitrary

times in each shard. In practice, we have seen finalizers per-

form detach operations as well as deleting regions and fields

(see Section 5.4). To handle such cases without violating

control determinism, we provide an option to delay detach
operations and deletions of Legion resources. The runtime

periodically polls the shards to see if they have all observed

the same delayed operation. The polling is done with expo-

nential back-off so that it can quickly handle cases when GC

is active, but incurs minimal overhead when GC is absent.

Once the shards concur, the operation is inserted into the

same location in the dependence analysis of each shard.

5 Evaluation
We evaluate DCR against a wide variety of applications

drawn from HPC, data analytics and machine learning, writ-

ten in Legion without DCR, Regent [43], MPI [45], Tensor-

Flow [7], and Dask+NumPy [39]. We show that compared to

other implicit parallel models (TensorFlow, Dask+NumPy)

we achieve much better performance, and that for HPC appli-

cations, our performance is often competitive with explicit

parallel programming models such as MPI. Using DCR with

these applications required marking the top-level task as

replicable and writing sharding functions, all of which were

one or two lines of code (e.g., round-robin or tiled sharding

of tasks). We used either one shard per node or one shard

per GPU in all experiments. To underscore the portability of

our approach, our experiments are run on a diverse collec-

tion of the world’s top supercomputers including Summit

(#2), Sierra (#3), Piz-Daint (#10), and Lassen (#14) [5], among

others, with a mix of heterogeneous processor types.

5.1 Benchmarks
We begin by benchmarking DCR against both Legion with-

out control replication, as well as the implementation of

static control replication in Regent.
3
Recall that static con-

trol replication, when it applies, has no runtime overhead

because it is a compile-time program transformation. Fur-

thermore, because Regent is also built on the Legion runtime,

and its static control replication approach is known to per-

form well [43], this comparison provides a measure of the

end-to-end overheads of our dynamic control replication

implementation. Our first benchmark is an implicitly paral-

lel 2D stencil code [6], similar to Figure 7, that requires the

system to recognize a nearest-neighbors communication pat-

tern in multiple dimensions. For this benchmark, Figure 12

gives both weak and strong scaling results using the GPUs

on Piz-Daint. Without control replication, the overhead of a

centralized controller node dominates once the cost of ana-

lyzing and distributing all tasks eclipses the execution time

of tasks assigned to a single processor. DCR weak scales

nearly as well as static control replication, with only a 2.5%

slowdown at 512 nodes. For strong scaling on the chosen

problem size, static and dynamic control replication scale to

128 and 64 nodes, respectively, before degrading. Unsurpris-

ingly, DCR has higher runtime overheads than static control

replication, but they are within a factor of two.

Our next benchmark is a circuit simulation that iteratively

updates currents on wires and voltages on nodes in a graph

of circuit components. The partitioning of the graph is done

dynamically, so the communication pattern must also be

established at runtime. Figure 13 gives weak and strong scal-

ing results, both of which are significantly better with DCR

3
There are approaches to scaling task-based programs based on using ex-

plicit communication and synchronization in a SPMD-like structure [12].

Our evaluation focuses on programs written purely using implicit tasking.

Scaling Implicit Parallelism via
Dynamic Control Replication PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

1 2 4 8 16 32 64 128 256 512
Nodes

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 p

er
 N

od
e

(�
��
��
� c
el

ls/
s)

No Control Replication
Static Control Replication
Dynamic Control Replication

(a)Weak Scaling

1 2 4 8 16 32 64 128 256 512
Nodes

101

102

Th
ro

ug
hp

ut
 (�

��
��
� c
el

ls/
s)

No Control Replication
Static Control Replication
Dynamic Control Replication

(b) Strong Scaling

Figure 12. Scaling of 2D Stencil Benchmark.

1 2 4 8 16 32 64 128 256 512
Nodes

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 p

er
 N

od
e

(�
��

��
� w

ire
s/

s)

No Control Replication
Static Control Replication
Dynamic Control Replication

(a)Weak Scaling

1 2 4 8 16 32 64 128 256 512
Nodes

101

102

103

Th
ro

ug
hp

ut
 (�

��
��
� w

ire
s/

s)

No Control Replication
Static Control Replication
Dynamic Control Replication

(b) Strong Scaling

Figure 13. Scaling of Circuit Simulation Benchmark.

than without, and we can see that DCR adds no noticeable

overhead at the smaller node counts. DCR slightly under-

performs static control replication in weak scaling to 256

nodes with a maximum slowdown of 2.7%. At 512 nodes,

though, DCR is 7.8% better, as it better analyzes the increas-

ingly complex inter-node communication patterns of the

small-diameter graph partitioned across many nodes.

To compare our performance againstMPI, we implemented

the Pennant mini-application [21] for Lagrangian staggered

grid hydrodynamics on unstructured meshes in Legion. For

comparison, we use an independently developed and opti-

mized version of Pennant written using MPI and CUDA by

an NVIDIA tuning engineer. Figure 14 shows the weak scal-

ing performance of the Legion dynamic control replication

running on GPUs against three configurations of the MPI

version: one run only with CPUs, one with CUDA accelera-

tion, and a thirdwith CUDA andGPUDirect acceleration [37].

These experiments were run on a cluster of NVIDIA DGX-1V

nodes, each with 8 GPUs per node and an Infiniband EDR in-

terconnect. The implementation with DCR outperforms the

MPI+CUDAversion by 2.3X on 256 GPUs becausewe are able

to run one process per node and leverage intelligent shard-

ing functions to maintain data locality and consequently

leverage NVLink interconnect bandwidth for communica-

tion. MPI with GPUDirect recovers NVLink performance and

also benefits inter-node GPU transfers that Legion cannot

match because GASNet [51], Legion’s underlying transport

layer, does not support GPUDirect. The version of Pennant

without DCR scales poorly. The drop in parallel efficiency for

the two fastest implementations is due to a global collective

for computing the next iteration’s time step; this collective

1
(8 GPUs)

2
(16 GPUs)

4
(32 GPUs)

8
(64 GPUs)

16
(128 GPUs)

32
(256 GPUs)

DGX-1V Nodes

0

2

4

6

8

10

12

14

16

18

Th
ro

ug
hp

ut
(It

er
at

io
ns

/s
)

MPI CPU-only
MPI+CUDA
MPI+CUDA+GPUDirect

Legion No Control Replication
Legion Dynamic Control Replication

Figure 14. Weak scaling of Pennant compared to MPI.

1 GPU
(1 node)

3 GPUs
(1 node)

6 GPUs
(1 node)

12 GPUs
(2 nodes)

24 GPUs
(4 nodes)

48 GPUs
(8 nodes)

96 GPUs
(16 nodes)

192 GPUs
(32 nodes)

384 GPUs
(64 nodes)

768 GPUs
(128 nodes)

Number of GPUs

0

10

20

30

40

Pe
r-

Ep
oc

h
Tr

ai
ni

ng
 T

im
e

(m
in

ut
es

) TensorFlow
FlexFlow (No Control Replication)
FlexFlow (Dynamic Control Replication)

Figure 15. Training of ResNet-50 compared to TensorFlow.

blocks all downstream work and incurs additional latency

with increased processor counts. Overall, Legion with DCR

is only 14% slower than MPI+CUDA+GPUDirect.

Finally, we perform a scale-out experiment training the

popular ResNet-50 [22] convolutional neural network on

Summitwith the ImageNet dataset [18].We use FlexFlow (see

Section 5.3) for training on top of Legion with DCR, and com-

pare with TensorFlow [7] (r1.14) running with Horovod [41].

We train ResNet-50 to the same accuracy using the same par-

allelization strategy (data-parallelism) and a per-GPU batch

size of 64 for both systems. Figure 15 shows the per-epoch

training time of ResNet-50 as we increase the number of

GPUs. The performance of training with DCR on Legion is

nearly identical to the performance of using TensorFlow out

to 128 nodes with 768 GPUs with DCR, but stops scaling at

48 GPUs without DCR.

5.2 Regent with Dynamic Control Replication
DCR complements the static program analyses and trans-

formations in the Regent programming language in ways

particularly suited to writing complex task-based systems.

Regent has always supported the program transformation

for converting sequential task launches into the group task

launches needed to make the dependence analysis for dy-

namic control replication efficient [42] (recall Section 4).

However, Regent’s auto-parallelizer, which synthesizes both

partitions and group task launches from sequential code [30],

often results in programs that cannot be handled by static

control replication (SCR)—including the two applications

discussed in this subsection.

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Bauer et al.

4
(1)

8
(2)

16
(4)

32
(8)

64
(16)

128
(32)

256
(64)

512
(128)

1024
(256)

GPUs (Nodes)

6

8

10

12
T

hr
ou

gh
pu

t
(1

06
C

el
ls

/s
)

Soleil-X with Dynamic Control Replication

Figure 16. Throughput of Soleil-X on Sierra.

36
(1)

72
(2)

144
(4)

288
(8)

576
(16)

1152
(32)

2304
(64)

4608
(128)

9216
(256)

Cores (Nodes)

0.8

0.9

1.0

Pa
ra

lle
l E

ffi
cie

nc
y

HTR with Dynamic Control Replication

(a) Quartz (36 cores/node)

4
(1)

8
(2)

16
(4)

32
(8)

64
(16)

128
(32)

256
(64)

512
(128)

GPUs (Nodes)

0.8

0.9

1.0

Pa
ra

lle
l E

ffi
cie

nc
y

HTR with Dynamic Control Replication

(b) Lassen (4 GPUs/node)

Figure 17. Weak scaling of the HTR solver.

Soleil-X is a multi-physics solver that models three sepa-

rate but coupled physical phenomena: fluid flow, Lagrangian

particle dynamics, and thermal radiation transport [47]. Dif-

ferent solvers and partitions of data are used for modeling

each of the three physical processes. At various points in

the simulation information is shared between each of the

different physical representations, necessitating complex de-

pendence patterns and control flow. Soleil-X is implemented

entirely in Regent and uses Regent’s auto-parallelizer to

aid developer productivity. Soleil-X requires a number of

partitions (to capture independent work in wavefront com-

putations) that cannot be fixed statically, but SCR requires

a statically known number of partitions; this led us to use

DCR. Figure 16 shows weak scaling of Soleil-X running with

all three physics modules on Sierra. On 1024 GPUs, Soleil-

X achieves a weak-scaling parallel efficiency of 82% using

DCR; the full 3D communication pattern is only reached at

32 nodes, which explains the drop in efficiency at that point.

Another complex and very different Regent code is the

Hypersonic Task-Based Research (HTR) solver [19]. The

HTR solver performs multi-physics simulations of hyper-

sonic flows at high enthalpies and Mach numbers, such as

those that occur upon the reentry of spacecraft into the at-

mosphere. HTR has complex control flow for which SCR’s

analysis is too conservative and thus requires the dynamic

dependence analysis of DCR. Figure 17 shows weak scaling

performance of the HTR running on Quartz and Lassen. Us-

ing DCR, HTR achieves parallel efficiencies of 86% on 9216

cores on Quartz and 94% on 512 GPUs on Lassen.

5.3 FlexFlow
FlexFlow is a framework for training deep neural networks

that exploits hybrid data and model parallel approaches on

different layers of the network [27]. FlexFlow performs a

1 GPU
(1 node)

3 GPUs
(1 node)

6 GPUs
(1 node)

12 GPUs
(2 nodes)

24 GPUs
(4 nodes)

48 GPUs
(8 nodes)

96 GPUs
(16 nodes)

192 GPUs
(32 nodes)

384 GPUs
(64 nodes)

768 GPUs
(128 nodes)

Number of GPUs

0

10

20

30

40

Pe
r-

Ep
oc

h
Tr

ai
ni

ng
 T

im
e

(h
ou

rs
)

TensorFlow
FlexFlow (Dynamic Control Replication)

Figure 18. Training CANDLE Multi-Layer Perceptron on

Summit with DCR (FlexFlow) and TensorFlow.

search to discover the fastest parallel strategy for a network,

where each layer can have its own strategy. Parallelizing

the many layers of a network in different ways leads to

extremely complex partitioning and dependence patterns,

which FlexFlow delegates to Legion to implement. For multi-

node runs, FlexFlow relies on DCR for achieving scalability.

To underscore the need for DCR, we use FlexFlow with

DCR to train the largest (pilot1) network from the CAN-

DLE initiative [3] using the Uno dataset [4]. CANDLE is a

collection of deep learning models for precision medicine.

The network we train takes drug and cell features as inputs

and predicts the response between a drug and cell pair. Ten-

sorFlow uses data parallelism, keeping a replica of the model

weights on each GPU, and performs collective reductions

across GPUs using Horovod [41]. However, the large number

of weights (768M) makes scaling with data parallelism diffi-

cult, because the communication cost to synchronize model

weight gradients across GPUs dominates performance.

Unlike Section 5.1, FlexFlow does not take a data-parallel

approach. Instead, FlexFlow’s search discovers a hybrid data-

and model-parallel approach with a more sophisticated de-

pendence pattern that reduces communication costs by 20X.

Figure 18 shows the training performance comparison be-

tween TensorFlow and FlexFlow on CANDLE on Summit.

The more complicated dependence pattern of the hybrid ap-

proach, supported by DCR, allows FlexFlow to scale to 768

GPUs over 128 nodes and to improve per-epoch training

time by 14.9X over TensorFlow. We note that FlexFlow pro-

vides an interface with the same API calls as PyTorch and

TensorFlow, enabling equivalent programmer productivity

but with higher performance.

5.4 Legate NumPy
Legate NumPy is a drop-in replacement for Python’s NumPy

package [36] that allows unmodified NumPy programs to be

run at scale [10]. Legate NumPy performs a dynamic transla-

tion of NumPy programs to the Legion programming model:

NumPy ndarray types are backed by individual fields in Le-

gion regions, and NumPy API calls are performed by launch-

ing one or more tasks to perform computations. Legate

Scaling Implicit Parallelism via
Dynamic Control Replication PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

1
(20/1)

2
(40/2)

4
(80/4)

8
(160/8)

16
(320/16)

32
(640/32)

64
(1280/64)

128
(2560/128)

256
(5120/256)

Sockets (Cores/GPUs)

10−1

100

101

102

Th
ro

ug
hp

ut
(It

er
at

io
ns

/s
)

Legate Dynamic Control Replication CPU
Legate Dynamic Control Replication GPU

Dask Centralized CPU

Figure 19. Logistic Regression in Legate NumPy.

1
(20/1)

2
(40/2)

4
(80/4)

8
(160/8)

16
(320/16)

32
(640/32)

64
(1280/64)

128
(2560/128)

256
(5120/256)

Sockets (Cores/GPUs)

100

101

102

103

Th
ro

ug
hp

ut
(It

er
at

io
ns

/s
)

Legate Dynamic Control Replication CPU
Legate Dynamic Control Replication GPU

Dask Centralized CPU

Figure 20. Preconditioned CG Solver in Legate NumPy.

NumPy also decides on-the-fly how to partition arrays and

when to convert NumPy API calls into group task launches.

When running on multiple nodes, Legate NumPy leverages

DCR to replicate the execution of the NumPy program in

the top-level task, which avoids the sequential bottleneck in

other distributed Python systems [35, 39, 53].

To illustrate the benefits that DCR provides Legate NumPy,

we show how it aids scaling compared to the dask.array li-

brary built on top of the Python-based Dask runtime [39].

The Dask runtime executes programs on one node and dis-

tributes tasks toworker nodes. Like Legate NumPy, dask.array

translates API calls into task launches, and provides a nearly

drop-in replacement for NumPy with the exception that

users must choose how to partition arrays. For our experi-

ments, we use a brute-force tuning algorithm to find the best

partitioning of arrays for Dask; Legate needs no such tuning

as it automatically selects chunk sizes for users implicitly.

Figures 19 and 20 show the weak scaling performance of

Legate NumPy and Dask array programs for logistic regres-

sion and a preconditioned conjugate gradient (CG) solver

respectively running on a cluster of NVIDIA DGX-1V nodes

with 8 GPUs per node and an Infiniband network. Legate

NumPy programs are run with CPU-only execution (red),

as well as GPU execution (green). Dask array programs run

only on the CPU. The two programs are identical except for

the chunk sizes on array creations in the Dask programs.

1 2 4 8 16 32 64 128
Nodes

100

M
in

im
um

E
ff

ec
tiv

e
Ta

sk
G

ra
nu

la
ri

ty
(m

s)

No Trace/No Safe
No Trace/Safe
Trace/No Safe
Trace/Safe

Figure 21. METG(50%) overhead of control determinism

checks, both with and without tracing (lower is better).

DCR scales better than Dask’s centralized approach, even

where Dask’s single-node performance is better. Using DCR

with CPU-only execution, Legate NumPy is 11.4X faster than

Dask at 32 nodes (1280 cores) on logistic regression and 2.7X

faster running the preconditioned CG solver. The drop in

performance for Legate NumPy at higher node counts is due

to application communication unrelated to DCR.

5.5 Overhead of Control Determinism Checks
To measure the overhead of the dynamic checks for control

determinism (Section 3), we leverage the stencil benchmark

from the Task Bench suite [44]. Task Bench uses the met-

ric minimum effective task granularity to determine when

an application achieves 50% efficiency compared to runtime

overheads, abbreviated METG(50%). This metric is better

than using strong or weak scaling as it specifically mea-

sures the impact of runtime system overhead. Intuitively, the

higher the overheads of the runtime system, the higher the

METG(50%) will be to reflect how long tasks need to run

for the system to perform efficiently. By itself, the stencil

benchmark has no task parallelism to hide overhead, but

by running four independent copies simultaneously, we can

simulate an application with a modicum of task parallelism.

Figure 21 plots the METG(50%) of the stencil benchmark

for two configurations running with tracing and without,

eachwith the control determinism checks both enabled (Safe)

and disabled (No Safe). Tracing memoizes aspects of the de-

pendence analysis [31], making other overheads, such as the

determinism checks, more noticeable. In both cases, we see

that METG(50%) increases with node count; this is expected

as longer-running tasks are required to hide longer commu-

nication latencies. Furthermore, we also notice that control

determinism checks have negligible impact on METG(50%).

6 Related Work
A number of task-based systems use dynamic dependence

analysis, including OmpSs [15], OpenMP 4.0 [1], PaRSEC

(with dynamic task discovery) [25], and StarPU [8]. Of these,

only PaRSEC and StarPU support distributed memory exe-

cution. PaRSEC and StarPU do not support dynamic control

replication, but do permit users to manually prune the set

of tasks that must be analyzed on each node. PaRSEC and

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Bauer et al.

StarPU programs execute in a single-program multiple-data

(SPMD) fashion where each task is explicitly assigned to a

given node to execute. Users may prune any tasks that are

not direct dependences or dependents of the tasks executed

on the local node. In the absence of such pruning, every node

must analyze the tasks on every other node. PaRSEC and

StarPU provide a restricted data model in which every region

resides on a specific owner node—this restriction simplifies

the programming model and also enables a mechanical (if

not fully automatic) method to prune the tasks to be exe-

cuted, based on dynamically checking the ownership of each

region. However, due to the cost of these dynamic checks,

application and/or domain-specific knowledge may still be

required to achieve optimal scalability.

DCR automatically exploits SPMD-style parallelism in

task-based programs, which is distinct from the recursive

divide-and-conquer style of parallelism that task-based sys-

tems also naturally support. It is possible that optimizations

for divide-and-conquer parallelism [23] could be combined

with DCR. There is also a literature on the parallel construc-

tion of task graphs in a shared memory setting (e.g., [24, 32]).

As mentioned in Section 1, many systems use a compile-

time approach to extract implicit parallelism [13, 14, 20]. The

closest to DCR is static control replication in Regent [43].

Static control replication is a compile-time analysis that

transforms programs into explicitly parallel programs. Our

dynamic analysis avoids the limitations that static analysis

imposes on control flow and partitions of regions.

Also discussed in Section 1, TensorFlow [7], PyTorch [38],

and Spark [53] provide implicit parallelism using lazy eval-

uation. These programming systems run a program on a

single control node and then distribute bulk work to re-

mote nodes efficiently. For programs that can be easily par-

titioned to require minimal inter-node communication and

synchronization (e.g., trivially parallel tasks), this approach

can achieve competitive performance. However the use of a

centralized controller can limit scalability. Some approaches

have explored mitigating this bottleneck by replaying the

dependence analysis for repeated sequences of tasks [33].

However, for more general programs, DCR makes it easier

to express, distribute, and scale a program.

There is a large collection of explicitly parallel program-

ming models and systems for distributed memory architec-

tures [16, 17, 29, 45, 51]. These systems are very diverse,

but generally provide a path to performance by exposing

low-level mechanisms for synchronization, data movement,

and computation and avoid runtime system overheads asso-

ciated with implicit parallelism such as dependence analy-

sis. Explicit approaches place the burden of performing the

equivalent of dependence analysis on the programmer: The

programmer must choreograph computation and data to en-

sure correctness. In another class of system the programmer

constructs dependence graphs explicitly [28, 34, 35, 39, 48].

Our experience is that manually constructing both correct

and optimized dependence graphs is difficult: correctness

bugs occur when dependences are missed, and performance

bugs occur when unnecessary dependences are specified. For

complex applications, such as those presented in Section 5,

building, and especially maintaining, dependences by hand

would be challenging in explicitly parallel systems.

Control determinism is related to structural correctness in

SPMDprograms [9]. Both require that replicated control code

must behave the same on all shards. Structural equivalence

is a stronger condition, as it captures the core of a static

analysis for checking explicitly parallel SPMD programs for

incorrect synchronization patterns.

7 Conclusion
We have presented dynamic control replication, a novel exe-

cution technique and run-time program analysis for comput-

ing dependences on-the-fly for implicitly parallel programs

run on large scale machines. We described an asymptoti-

cally scalable algorithm for implementing dynamic control

replication and detailed its implementation in the Legion

runtime. Using our implementation, we have demonstrated

that dynamic control replication is competitive with exist-

ing programming systems on common benchmarks, and can

also provide better performance on challenging programs

that are not easily handled by existing implicitly parallel pro-

gramming systems. Most importantly, we have shown that

dynamic control replication can be leveraged to productively

construct large scale programming systems for a wide range

of problems, ranging from high performance computing to

machine learning and deep learning. We believe that scaling

implicit parallelism with dynamic control replication will

be crucial for delivering high performance to a large class

of users that require massive parallelism to tackle computa-

tionally difficult problems, but lack the expertise needed for

programming large-scale machines.

Acknowledgments
The idea for dynamic control replication originated in conver-

sations with Sean Treichler. This material is based uponwork

supported by the U.S. Department of Energy, Office of Sci-

ence, Office of ASCR, under the guidance of Dr. Laura Biven,

under the contract number DE-AC02-76SF00515 and the Ex-

ascale Computing Project (17-SC-20-SC), a collaborative ef-

fort of the U.S. Department of Energy Office of Science and

the National Nuclear Security Administration, under prime

contract DE-AC05-00OR22725, and UT Battelle subawards

4000151974 and 89233218CNA000001. Los Alamos National

Laboratory provided support under Department of Energy

award DENA0002373-1. Lawrence Livermore National Lab-

oratory supported experiments on Lassen and Sierra, Oak

Ridge National Laboratory supported experiments on Sum-

mit, and the Swiss National Supercomputing Centre (CSCS)

supported experiments on Piz Daint under project ID d80.

Scaling Implicit Parallelism via
Dynamic Control Replication PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

References
[1] 2013. OpenMP Application Program Interface. http://www.openmp.

org/wp-content/uploads/OpenMP4.0.0.pdf.
[2] 2013. Safe Object Finalization in Python. https://www.python.org/

dev/peps/pep-0442/.
[3] 2019. CANDLE: Exascale Deep Learning and Simulation Enabled

Precision Medicine for Cancer. https://candle.cels.anl.gov/.
[4] 2019. Uno: Predicting Tumor Dose Response across Multiple Data

Sources. https://github.com/ECP-CANDLE/Benchmarks/tree/master/
Pilot1/Uno.

[5] 2020. June 2020 Top 500 Supercomputers. https://www.top500.org/
lists/top500/2020/06/.

[6] 2020. Regent Stencil Example. https://gitlab.com/StanfordLegion/
legion/-/blob/master/language/examples/stencil.rg.

[7] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, AndyDavis, Jeffrey Dean,Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey

Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-

aoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems. https://www.tensorflow.org/ Software
available from tensorflow.org.

[8] Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Fur-

mento, Florent Pruvost, Marc Sergent, and Samuel Thibault. 2016.

Achieving High Performance on Supercomputers with a Sequential Task-
based Programming Model. Technical Report. Inria.

[9] Alex Aiken and David Gay. 1998. Barrier Inference. In Proceedings of
the Symposium on Principles of Programming Languages. 342–354.

[10] Michael Bauer and Michael Garland. 2019. Legate NumPy: Accelerated

and Distributed Array Computing. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Denver, Colorado) (SC ’19). ACM, New York, NY, USA, Article

23, 23 pages. https://doi.org/10.1145/3295500.3356175
[11] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. 2012. Legion: Ex-

pressing Locality and Independence with Logical Regions. In Super-
computing (SC).

[12] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2014.

Structure slicing: Extending logical regions with fields. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. 845–856.

[13] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve,

Stephen Heumann, Rakesh Komuravelli, Jeffrey Overbey, Patrick Sim-

mons, Hyojin Sung, and Mohsen Vakilian. 2009. A Type and Effect

System for Deterministic Parallel Java. In Proceedings of the 24th ACM
SIGPLAN Conference on Object Oriented Programming Systems Lan-
guages and Applications (Orlando, Florida, USA) (OOPSLA ’09). ACM,

New York, NY, USA, 97–116. https://doi.org/10.1145/1640089.1640097
[14] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu

Faverge, Thomas Hérault, and Jack J. Dongarra. 2013. PaRSEC: Ex-

ploiting Heterogeneity to Enhance Scalability. Computing in Science &
Engineering 15, 6 (2013), 36–45.

[15] Javier Bueno, Xavier Martorell, Rosa M. Badia, Eduard Ayguadé, and

Jesús Labarta. 2013. Implementing OmpSs Support for Regions of

Data in Architectures with Multiple Address Spaces. In Proceedings
of the 27th International ACM Conference on International Conference
on Supercomputing (Eugene, Oregon, USA) (ICS ’13). ACM, New York,

NY, USA, 359–368. https://doi.org/10.1145/2464996.2465017
[16] B.L. Chamberlain, D. Callahan, and H.P. Zima. 2007. Parallel Pro-

grammability and the Chapel Language. Int. J. High Perform.
Comput. Appl. 21, 3 (Aug. 2007), 291–312. https://doi.org/10.1177/

1094342007078442
[17] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-

awa, Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek

Sarkar. 2005. X10: An Object-oriented Approach to Non-uniform

Cluster Computing. In Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and
Applications (San Diego, CA, USA) (OOPSLA ’05). ACM, New York, NY,

USA, 519–538. https://doi.org/10.1145/1094811.1094852
[18] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.

2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition. IEEE, 248–255.

[19] Mario Di Renzo, Lin Fu, and Javier Urzay. 2020. HTR solver: An open-

source exascale-oriented task-based multi-GPU high-order code for

hypersonic aerothermodynamics. Computer Physics Communications
255 (2020), 107262. https://doi.org/10.1016/j.cpc.2020.107262 (In Press).

[20] Kayvon Fatahalian, Timothy J. Knight, Mike Houston, Mattan Erez,

Daniel Reiter Horn, Larkhoon Leem, Ji Young Park, Manman Ren, Alex

Aiken, William J. Dally, and Pat Hanrahan. 2006. Sequoia: Program-

ming the Memory Hierarchy. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing.

[21] Charles Ferenbaugh. 2016. The PENNANT Mini-App. https://github.
com/lanl/PENNANT/blob/master/doc/pennantdoc.pdf.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[23] Nikhil Hegde, Qifan Chang, and Milind Kulkarni. 2019. D2P: From

recursive formulations to distributed-memory codes. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. 1–22.

[24] Stephen T Heumann, Alexandros Tzannes, and Vikram S Adve. 2015.

Scalable task scheduling and synchronization using hierarchical ef-

fects. In 2015 International Conference on Parallel Architecture and
Compilation (PACT). IEEE, 125–137.

[25] Reazul Hoque, Thomas Herault, George Bosilca, and Jack Dongarra.

2017. Dynamic Task Discovery in PaRSEC: A Data-flow Task-based

Runtime. In Proceedings of the 8th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems (Denver, Colorado) (ScalA
’17). ACM, New York, NY, USA, Article 6, 8 pages. https://doi.org/10.
1145/3148226.3148233

[26] Z. Jia, S. Treichler, G. Shipman, M. Bauer, N. Watkins, C. Maltzahn,

P. McCormick, and A. Aiken. 2017. Integrating External Resources

with a Task-Based Programming Model. In 2017 IEEE 24th International
Conference on High Performance Computing (HiPC). 307–316. https:
//doi.org/10.1109/HiPC.2017.00043

[27] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond Data and

Model Parallelism for Deep Neural Networks. In SysML 2018.
[28] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio,

and Dietmar Fey. 2014. HPX: A Task Based Programming Model in a

Global Address Space. In Proceedings of the 8th International Conference
on Partitioned Global Address Space Programming Models (Eugene,
OR, USA) (PGAS ’14). ACM, New York, NY, USA, Article 6, 11 pages.

https://doi.org/10.1145/2676870.2676883
[29] L.V. Kalé and S. Krishnan. 1993. CHARM++: A Portable Concurrent

Object Oriented System Based on C++. In Proceedings of OOPSLA’93,
A. Paepcke (Ed.). ACM Press, 91–108.

[30] Wonchan Lee, Manolis Papadakis, Elliott Slaughter, and Alex Aiken.

2019. A Constraint-based Approach to Automatic Data Partitioning

for Distributed Memory Execution. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Denver, Colorado) (SC ’19). ACM, New York, NY, USA, Article

45, 24 pages. https://doi.org/10.1145/3295500.3356199
[31] Wonchan Lee, Elliott Slaughter, Michael Bauer, Sean Treichler, Todd

Warszawski, Michael Garland, and Alex Aiken. 2018. Dynamic Trac-

ing: Memoization of Task Graphs for Dynamic Task-based Runtimes.

http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.python.org/dev/peps/pep-0442/
https://www.python.org/dev/peps/pep-0442/
https://candle.cels.anl.gov/
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://github.com/ECP-CANDLE/Benchmarks/tree/master/Pilot1/Uno
https://www.top500.org/lists/top500/2020/06/
https://www.top500.org/lists/top500/2020/06/
https://gitlab.com/StanfordLegion/legion/-/blob/master/language/examples/stencil.rg
https://gitlab.com/StanfordLegion/legion/-/blob/master/language/examples/stencil.rg
https://www.tensorflow.org/
https://doi.org/10.1145/3295500.3356175
https://doi.org/10.1145/1640089.1640097
https://doi.org/10.1145/2464996.2465017
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1016/j.cpc.2020.107262
https://github.com/lanl/PENNANT/blob/master/doc/pennantdoc.pdf
https://github.com/lanl/PENNANT/blob/master/doc/pennantdoc.pdf
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1109/HiPC.2017.00043
https://doi.org/10.1109/HiPC.2017.00043
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/3295500.3356199

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Bauer et al.

In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis (Dallas, Texas) (SC
’18). IEEE Press, Piscataway, NJ, USA, Article 34, 13 pages. http:
//dl.acm.org/citation.cfm?id=3291656.3291702

[32] Jonathan Lifflander and Sriram Krishnamoorthy. 2017. Cache locality

optimization for recursive programs. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. 1–16.

[33] Omid Mashayekhi, Hang Qu, Chinmayee Shah, and Philip Levis. 2017.

Execution Templates: Caching Control Plane Decisions for Strong

Scaling of Data Analytics. In USENIX Annual Technical Conference
(USENIX ATC).

[34] T. G. Mattson, R. Cledat, V. Cavé, V. Sarkar, Z. Budimlić, S. Chatterjee,

J. Fryman, I. Ganev, R. Knauerhase, Min Lee, B. Meister, B. Nicker-

son, N. Pepperling, B. Seshasayee, S. Tasirlar, J. Teller, and N. Vrvilo.

2016. The Open Community Runtime: A runtime system for extreme

scale computing. In 2016 IEEE High Performance Extreme Computing
Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.2016.7761580

[35] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov,

Richard Liaw, Eric Liang, William Paul, Michael I. Jordan, and Ion

Stoica. 2017. Ray: A Distributed Framework for Emerging AI Ap-

plications. CoRR abs/1712.05889 (2017). arXiv:1712.05889 http:
//arxiv.org/abs/1712.05889

[36] NumPy 2019. NumPy v1.16 Manual. https://docs.scipy.org/doc/
numpy/.

[37] NVIDIA 2019. GPUDirect. https://developer.nvidia.com/gpudirect.
[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward

Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

and Adam Lerer. 2017. Automatic Differentiation in PyTorch. In NIPS
Autodiff Workshop.

[39] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked

algorithms and Task Scheduling. In Proceedings of the 14th Python in
Science Conference, Kathryn Huff and James Bergstra (Eds.). 130 – 136.

[40] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011.

Parallel Random Numbers: As Easy As 1, 2, 3. In Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis (Seattle, Washington) (SC ’11). ACM, New York,

NY, USA, Article 16, 12 pages. https://doi.org/10.1145/2063384.2063405
[41] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy

distributed deep learning in TensorFlow. CoRR abs/1802.05799 (2018).

http://arxiv.org/abs/1802.05799
[42] Elliott Slaughter, Wonchan Lee, Sean Treichler, Michael Bauer, and

Alex Aiken. 2015. Regent: A High-productivity Programming Lan-

guage for HPC with Logical Regions. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Austin, Texas) (SC ’15). ACM, New York, NY, USA, Article

81, 12 pages. https://doi.org/10.1145/2807591.2807629
[43] Elliott Slaughter, Wonchan Lee, Sean Treichler, Wen Zhang, Michael

Bauer, Galen Shipman, Patrick McCormick, and Alex Aiken. 2017.

Control Replication: Compiling Implicit Parallelism to Efficient SPMD

with Logical Regions. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’17). ACM, New York, NY, USA, Article 14,

12 pages. https://doi.org/10.1145/3126908.3126949
[44] E. Slaughter, W. Wu, Y. Fu, L. Brandenburg, N. Garcia, E. Marx, K.S.

Morris, Q. Cao, G. Bosilca, S. Mirchandaney, W. Lee, S. Treichler, P.

McCormick, and A. Aiken. 2020. Task Bench: A Parameterized Bench-

mark for Evaluating Parallel Runtime Performance. In Proceedings of
the International Conference on Supercomputing.

[45] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. 1998.

MPI-The Complete Reference. MIT Press.

[46] The HDF Group. 1997-2020. Hierarchical Data Format, version 5.

http://www.hdfgroup.org/HDF5/.

[47] Hilario Torres, Manolis Papadakis, Lluis Jofre, Wonchan Lee, Alex

Aiken, and Gianluca Iaccarino. 2019. Soleil-X: Turbulence, Particles,

and Radiation in the Regent Programming Language. In Proceedings of
PAW@SC 2019: Parallel Applications Workshop, Held in conjunction with
SC19: The International Conference for High Performance Computing,
Networking, Storage and Analysis, Denver, Colorado, USA, November
16-22, 2019. ACM.

[48] S. Treichler, M. Bauer, and Aiken A. 2014. Realm: An Event-Based

Low-Level Runtime for Distributed Memory Architectures. In Parallel
Architectures and Compilation Techniques (PACT).

[49] S. Treichler, M. Bauer, and A. Aiken. 2013. Language Support for Dy-

namic, Hierarchical Data Partitioning. In Object Oriented Programming,
Systems, Languages, and Applications (OOPSLA).

[50] S. Treichler, M. Bauer, Sharma R., Slaughter E., and A. Aiken. 2016.

Dependent Partitioning. In Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA).

[51] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik

Datta, Jason Duell, Susan L. Graham, Paul Hargrove, Paul Hilfinger,

Parry Husbands, Costin Iancu, Amir Kamil, Rajesh Nishtala, Jimmy Su,

Michael Welcome, and TongWen. 2007. Productivity and Performance

Using Partitioned Global Address Space Languages. In Proceedings
of the 2007 International Workshop on Parallel Symbolic Computation
(London, Ontario, Canada) (PASCO ’07). ACM, New York, NY, USA,

24–32. https://doi.org/10.1145/1278177.1278183
[52] Yuan Yu, Martin Abadi, Paul Barham, Eugene Brevdo, Mike Burrows,

Andy Davis, Jeff Dean, Sanjay Ghemawat, Tim Harley, Peter Hawkins,

Michael Isard, Manjunath Kudlur, Rajat Monga, Derek Murray, and

Xiaoqiang Zheng. 2018. Dynamic Control Flow in Large-Scale Machine

Learning. In Proceedings of EuroSys 2018. https://arxiv.org/pdf/1805.
01772.pdf

[53] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant Ab-

straction for In-memory Cluster Computing. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation
(San Jose, CA) (NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2.

http://dl.acm.org/citation.cfm?id=2228298.2228301

http://dl.acm.org/citation.cfm?id=3291656.3291702
http://dl.acm.org/citation.cfm?id=3291656.3291702
https://doi.org/10.1109/HPEC.2016.7761580
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
https://docs.scipy.org/doc/numpy/
https://docs.scipy.org/doc/numpy/
https://developer.nvidia.com/gpudirect
https://doi.org/10.1145/2063384.2063405
http://arxiv.org/abs/1802.05799
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1145/3126908.3126949
http://www.hdfgroup.org/HDF5/
https://doi.org/10.1145/1278177.1278183
https://arxiv.org/pdf/1805.01772.pdf
https://arxiv.org/pdf/1805.01772.pdf
http://dl.acm.org/citation.cfm?id=2228298.2228301

Scaling Implicit Parallelism via
Dynamic Control Replication PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea

A Formalization of Dynamic Control
Replication

This appendix gives the remaining details of the proof of The-

orem 1. As preliminaries we define consistency of analysis

states (Definitions 2 and 3) that are maintained by transitions

both in DEPseq and DEPrep (Lemmas 1 and 2). We also es-

tablish an equivalence between a single transition in DEPseq
and multiple transitions in DEPrep (Lemma 4).

For simplicity, we extend each analysis state in DEPseq
with a prefix 𝑐 of task groups that have been analyzed so far.

With the extension, the system DEPseq is defined as follows:

𝑇 ′ = 𝑇 ∪ tg 𝐷 ′ = 𝐷 ∪𝑇
⇒
× tg

(tg; 𝑝, 𝑐, ⟨𝑇, 𝐷⟩)
seq
−→ (𝑝, 𝑐; tg, ⟨𝑇 ′, 𝐷 ′⟩)

We also treat a set 𝑐𝑖 of completed tasks in the state of each

shard 𝑖 as a sequence of task groups whenever necessary.

In the rest of this appendix, we write 𝑅★ for the reflexive

transitive closure of a relation 𝑅.

Definition 1. A task graph ⟨𝑇, 𝐷⟩ is valid iff

∀𝑡, 𝑡 ′.(𝑡 ∈ 𝑇 ∧ 𝑡 ′ ∈ 𝑇 ∧ 𝑡 ⇒ 𝑡 ′) ⇐⇒ (𝑡, 𝑡 ′) ∈ 𝐷

Definition 2. An analysis state in DEPseq

(𝑝 ′, 𝑐, ⟨𝑇, 𝐷⟩)

is consistent for a program 𝑝 iff
1. ⟨𝑇, 𝐷⟩ is valid
2. 𝑐;𝑝 ′ = 𝑝 ∧𝑇 = 𝑐

Lemma 1. If an analysis state (𝑝 ′, 𝑐,𝐺) is consistent for a pro-
gram 𝑝 , then there exists another consistent state (𝑝 ′′, 𝑐 ′,𝐺 ′)
such that

(𝑝 ′, 𝑐,𝐺)
seq
−→ (𝑝 ′′, 𝑐 ′,𝐺 ′)

Proof. The proof follows from the definition of the transition

relation

seq
−→. □

Definition 3. An analysis state in DEPrep

(⟨(𝑝1, 𝑐1, 𝑑1), . . . , (𝑝𝑛, 𝑐𝑛, 𝑑𝑛)⟩, ⟨𝑇, 𝐷⟩)

is consistent for a program 𝑝 iff
1. ⟨𝑇, 𝐷⟩ is valid
2. 𝑇 =

⋃
𝑖 {tg(𝑖) | tg ∈ 𝑐𝑖 }

3. for all 𝑖 ,

𝑐𝑖 ;𝑝𝑖 = 𝑝 ∧ (𝑑𝑖 = ∅ ∨ 𝑝𝑖 = 𝑡𝑔𝑖 ; 𝑝
′
𝑖 ∧ 𝑑𝑖 = 𝑐𝑖

⇒
× 𝑡𝑔𝑖 (𝑖))

Lemma 2. If an analysis state (𝑆,𝐺) is consistent for a pro-
gram 𝑝 , then there exists another consistent state (𝑆 ′,𝐺 ′) such
that

(𝑆,𝐺)
rep
−→ (𝑆 ′,𝐺 ′)

Proof. The proof follows from the definition of the transition

relation

rep
−→. □

Definition 4.

dist(𝑠) ≜ |𝑐 | where 𝑠 = (𝑝, 𝑐, 𝑑)

Lemma 3.
(⟨ . . . , 𝑠𝑖 , . . . , 𝑠 𝑗 , . . .⟩,𝐺)
rep
−→ (⟨ . . . , 𝑠 ′𝑖 , . . . , 𝑠 𝑗 , . . .⟩,𝐺 ′)
rep
−→ (⟨ . . . , 𝑠 ′𝑖 , . . . , 𝑠 ′𝑗 , . . .⟩,𝐺 ′′)
∧ dist(𝑠𝑖) ≥ dist(𝑠 𝑗)
=⇒
∃𝐺 ′′′.(⟨ . . . , 𝑠𝑖 , . . . , 𝑠 𝑗 , . . .⟩,𝐺)
rep
−→ (⟨ . . . , 𝑠𝑖 , . . . , 𝑠 ′𝑗 , . . .⟩,𝐺 ′′′)
rep
−→ (⟨ . . . , 𝑠 ′𝑖 , . . . , 𝑠 ′𝑗 , . . .⟩,𝐺 ′′)

where all analysis states are consistent for a program.

Proof. The proof proceeds by case analysis on the transition

relation

rep
−→.

When one of the transitions uses the rule Ta, the proof is

trivial as Ta does not change the task graph.

We now prove the lemma when both transitions use the

rule Tc. Let 𝑠𝑖 and 𝑠 𝑗 be (tg𝑖 ;𝑝𝑖 , 𝑐𝑖 ,∅) and (tg 𝑗 ; 𝑝 𝑗 , 𝑐 𝑗 ,∅), re-
spectively, and suppose 𝐺 = ⟨𝑇, 𝐷⟩. From the definition

of Tc, we have 𝐺 ′′ = ⟨𝑇 ∪ tg𝑖 (𝑖) ∪ tg 𝑗 (𝑗), 𝐷⟩ and 𝐺 ′′′ =

⟨𝑇 ∪ tg 𝑗 (𝑗), 𝐷⟩, satisfying the consequent of the lemma.

We now consider cases where the second transition uses

the rule Tb. Let 𝑠𝑖 and 𝑠 𝑗 be (tg𝑖 ; 𝑝𝑖 , 𝑐𝑖 , 𝑑𝑖) and (𝑝 𝑗 , 𝑐 𝑗 , 𝑑 𝑗),
respectively. Whether the first transition uses the rule Tb

or the rule Tc, we have 𝑠 ′𝑖 = (𝑝𝑖 , 𝑐𝑖 ∪ tg𝑖 ,∅). To be able to

reorder two transitions as in the consequent, it must be true

that for all 𝑡𝑖 such that (𝑡𝑖 , 𝑡) ∈ 𝑑 𝑗 we have 𝑡
𝑖 ∉ tg𝑖 (𝑖), where

𝑠 𝑗 = (tg 𝑗 ;𝑝 𝑗 , 𝑐 𝑗 , 𝑑 𝑗). From the consistency of the analysis

state, every 𝑡𝑖 is included in 𝑐 𝑗 . Because dist(𝑠𝑖) ≥ dist(𝑠 𝑗),
the set 𝑐𝑖 of completed tasks in 𝑠𝑖 is a superset of the set 𝑐 𝑗
of completed tasks in 𝑠 𝑗 . Therefore, 𝑡

𝑖
cannot appear in tg𝑖

and must exist in 𝑐𝑖 , which proves the lemma.

The remaining case is where the first transition uses Tb

and the second transition uses Tc. Let 𝑠𝑖 and 𝑠 𝑗 be (tg𝑖 ; 𝑝𝑖 , 𝑐𝑖 , 𝑑𝑖)
and (tg 𝑗 ;𝑝 𝑗 , 𝑐 𝑗 , 𝑑 𝑗), respectively. Similar to the previous case,

we must show that for all 𝑡 𝑗 such that (𝑡 𝑗 , 𝑡) ∈ 𝑑𝑖 we have

𝑡 𝑗 ∈ 𝑐 𝑗 ∪ tg 𝑗 , which is trivial because we already have 𝑡 𝑗 ∈ 𝑐 𝑗

for all 𝑡 𝑗 from the premise of Tb. Therefore, the lemma

holds. □

Lemma 4. For a program 𝑝 = 𝑐; tg;𝑝 ′ the following equiva-
lence holds:

(tg;𝑝 ′, 𝑐,𝐺)
seq
−→ (𝑝 ′, 𝑐; tg,𝐺 ′)

⇐⇒
(⟨(tg;𝑝 ′, 𝑐,∅), . . . , (tg;𝑝 ′, 𝑐,∅)⟩,𝐺)
rep
−→

★

(⟨(𝑝 ′, 𝑐 ∪ tg,∅), . . . , (𝑝 ′, 𝑐 ∪ tg,∅)⟩,𝐺 ′)
where all analysis states are consistent for 𝑝 .

Proof. We first prove the implication from the LHS to the

RHS. Let 𝐺 be ⟨𝑇, 𝐷⟩. From the definition of

seq
−→, we have

PPoPP ’21, February 27-March 3, 2021, Virtual Event, Republic of Korea Bauer et al.

𝐺 ′ = ⟨𝑇 ′, 𝐷 ′⟩ where 𝑇 ′ = 𝑇 ∪ tg and 𝐷 ′ = 𝐷 ∪𝑇
⇒
× tg. The

sets 𝑇 ′
and 𝐷 ′

can be expanded as follows:

𝑇 ′ = 𝑇 ∪ tg(1) ∪ . . . ∪ tg(𝑁)
𝐷 ′ = 𝐷 ∪𝑇

⇒
× tg(1) ∪ . . . ∪𝑇

⇒
× tg(𝑁)

= 𝐷 ∪ 𝑐
⇒
× tg(1) ∪ . . . ∪ 𝑐

⇒
× tg(𝑁)

(∵ the consistency of the analysis state)
where tg =

⋃
1≤𝑖≤𝑁 tg(𝑖). (We assume the number of shards

is𝑁 .) Then, we canmake transitions with

rep
−→ from the initial

state on the RHS for each subset tg(𝑖) by applying either the

rule Tc or the rule Ta followed by the ruleTb, depending on

whether the set 𝑇
⇒
× tg(𝑖) of dependences is empty or not;

The rule Tb is always applicable because all shards have 𝑐 as

their sets of completed tasks, on which the dependences of

tasks in tg(𝑖) are identified. Therefore, the consequent (the
RHS) holds.

We now prove the implication from the RHS to the LHS.

Each shard 𝑖 can apply either the rule Tc or the rule Ta

followed by the rule Tb to consume the outstanding task

group tg in its transitions. In either case, a graph𝐺 = ⟨𝑇, 𝐷⟩
before the transitions in shard 𝑖 becomes

𝐺𝑖 = ⟨𝑇 ∪ tg(𝑖), 𝐷 ∪ 𝑐
⇒
× tg(𝑖)⟩

after those transitions. Therefore, once all 𝑁 shards make

their transitions, the final graph 𝐺 ′
becomes the following:

𝐺 ′ = ⟨𝑇 ∪⋃
1≤𝑖≤𝑁 tg(𝑖), 𝐷 ∪⋃

1≤𝑖≤𝑁 𝑐
⇒
× tg(𝑖)⟩

= ⟨𝑇 ∪ tg, 𝐷 ∪ 𝑐
⇒
× tg⟩

= ⟨𝑇 ∪ tg, 𝐷 ∪𝑇
⇒
× tg⟩

(∵ the consistency of the analysis state)
Therefore, the consequent (the LHS) holds. □

Lemma 5.

(𝑝, 𝑐,𝐺)
seq
−→

★

(𝑝 ′, 𝑐 ′,𝐺 ′)
⇐⇒ (𝑝; 𝑝 ′′, 𝑐,𝐺)

seq
−→

★

(𝑝 ′
;𝑝 ′′, 𝑐 ′,𝐺 ′)

Proof. The proof proceeds by the induction on
seq
−→

★

and then

follows from the definition of

seq
−→, which only examines the

prefix 𝑝 of the program in the analysis state. □

Lemma 6.
(⟨(𝑝1, 𝑐1, 𝑑1), . . . , (𝑝𝑛, 𝑐𝑛, 𝑑𝑛)⟩,𝐺)
rep
−→

★

(⟨(𝑝 ′
1
, 𝑐 ′

1
, 𝑑 ′

1
), . . . , (𝑝 ′

𝑛, 𝑐
′
𝑛, 𝑑

′
𝑛)⟩,𝐺 ′)

⇐⇒
(⟨(𝑝1;𝑝 ′, 𝑐1, 𝑑1), . . . , (𝑝𝑛 ; 𝑝 ′, 𝑐𝑛, 𝑑𝑛)⟩,𝐺)
rep
−→

★

(⟨(𝑝 ′
1
;𝑝 ′, 𝑐 ′

1
, 𝑑 ′

1
), . . . , (𝑝 ′

𝑛 ;𝑝
′, 𝑐 ′𝑛, 𝑑

′
𝑛)⟩,𝐺 ′)

Proof. The proof proceeds by the induction on
rep
−→

★

and then

follows from the definition of

rep
−→, which only examines the

prefix 𝑝𝑖 of the program in each shard state. □

Theorem 1. For a program 𝑝 , the following holds:

(𝑝, 𝜖, ⟨∅,∅⟩)
seq
−→

★

(𝜖, 𝑝,𝐺𝑠) ∧ (𝑆𝑁𝜄 , ⟨∅,∅⟩)
rep
−→

★

(𝑆𝑁∅ ,𝐺𝑟)
=⇒ 𝐺𝑠 = 𝐺𝑟 ,

where 𝑆𝑁𝜄 =

𝑁︷ ︸︸ ︷
⟨(𝑝,∅,∅), . . . , (𝑝,∅,∅)⟩ and

𝑆𝑁∅ = ⟨(𝜖, 𝑝,∅), . . . , (𝜖, 𝑝,∅)⟩
Proof. The proof proceeds by induction on the length of

the program 𝑝 . Suppose the theorem holds for a program 𝑝 .

Consider the transitions in DEPseq and DEPrep for a program
𝑝; tg. With DEPseq the last transition must be as follows:

(𝑝; tg, 𝜖, ⟨∅,∅⟩)
seq
−→

★

(tg, 𝑝,𝐺 ′
𝑠)

seq
−→ (𝜖, 𝑝; tg,𝐺𝑠).

From Lemma 3, the transitions in DEPrep that consume the

last task graph tg can be reordered as follows:

(⟨(𝑝; tg,∅,∅), . . . , (𝑝; tg,∅,∅)⟩, ⟨∅,∅⟩)
rep
−→

★

(⟨(tg, 𝑝,∅), . . . , (tg, 𝑝,∅)⟩,𝐺 ′
𝑟)

rep
−→

★

(⟨(𝜖, 𝑝 ∪ tg,∅), . . . , (𝜖, 𝑝 ∪ tg,∅)⟩,𝐺𝑟)
From Lemmas 5 and 6 we have

(𝑝, 𝜖, ⟨∅,∅⟩)
seq
−→

★

(𝜖, 𝑝,𝐺 ′
𝑠)

and

(⟨(𝑝,∅,∅), . . . , (𝑝,∅,∅)⟩, ⟨∅,∅⟩)
rep
−→

★

(⟨(𝜖, 𝑝,∅), . . . , (𝜖, 𝑝,∅)⟩,𝐺 ′
𝑟)

Then, we can derive 𝐺 ′
𝑠 = 𝐺 ′

𝑟 from the induction hypothesis

and the following after substitution:

(tg, 𝑝,𝐺 ′
𝑠)

seq
−→ (𝜖, 𝑝; tg,𝐺𝑠).

and

(⟨(tg, 𝑝,∅), . . . , (tg, 𝑝,∅)⟩,𝐺 ′
𝑠)

rep
−→

★

(⟨(𝜖, 𝑝 ∪ tg,∅), . . . , (𝜖, 𝑝 ∪ tg,∅)⟩,𝐺𝑟)
Finally, from Lemma 4 we conclude 𝐺𝑠 = 𝐺𝑟 . □

	Abstract
	1 Introduction
	2 Foundations of Control Replication
	3 Control Determinism
	4 Dynamic Control Replication in Legion
	4.1 Dependence Analysis
	4.2 Collectives
	4.3 Side Effects

	5 Evaluation
	5.1 Benchmarks
	5.2 Regent with Dynamic Control Replication
	5.3 FlexFlow
	5.4 Legate NumPy
	5.5 Overhead of Control Determinism Checks

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Formalization of Dynamic Control Replication

