FoVA-Depth: Field-of-View Agnostic Depth Estimation for Cross-Dataset Generalization

University of Maryland NVIDIA
3DV 2024 (Oral)
Teaser Image

We can train stereo depth estimation models on the widely available pinhole datasets that allow for zero-shot generalization to images captured in larger FoVs, e.g., fisheye and 360° panorama images.


Wide field-of-view (FoV) cameras efficiently capture large portions of the scene, which makes them attractive in multiple domains, such as automotive and robotics. For such applications, estimating depth from multiple images is a critical task, and therefore, a large amount of ground truth (GT) data is available. Unfortunately, most of the GT data is for pinhole cameras, making it impossible to properly train depth estimation models for large-FoV cameras. We propose the first method to train a stereo depth estimation model on the widely available pinhole data, and to generalize it to data captured with larger FoVs. Our intuition is simple: We warp the training data to a canonical, large-FoV representation and augment it to allow a single network to reason about diverse types of distortions that otherwise would prevent generalization. We show strong generalization ability of our approach on both indoor and outdoor datasets, which was not possible with previous methods.



  title     = {{FoVA-Depth}: {F}ield-of-View Agnostic Depth Estimation for Cross-Dataset Generalization},
  author    = {Lichy, Daniel and Su, Hang and Badki, Abhishek and Kautz, Jan and Gallo, Orazio},
  booktitle = {International Conference on 3D Vision (3DV)},
  year      = {2024}