Noise2Noise: Learning image restoration without clean data

Abstract

We apply basic statistical reasoning to signal reconstruction by machine learning — learning to map corrupted observations to clean signals — with a simple and powerful conclusion: under certain common circumstances, it is possible to learn to restore signals without ever observing clean ones, at performance close or equal to training using clean exemplars. We show applications in photographic noise removal, denoising of synthetic Monte Carlo images, and reconstruction of MRI scans from undersampled inputs, all based on only observing corrupted data.

Type
Publication
International Conference on Machine Learning (ICML), 2018

Related