Learning Light Transport the Reinforced Way

We show that the equations of reinforcement learning and light transport simulation are related integral equations. Based on this correspondence, a scheme to learn importance while sampling path space is derived. The new approach is demonstrated in a consistent light transport simulation algorithm that uses reinforcement learning to progressively learn where light comes from. As using this information for importance sampling includes information about visibility, too, the number of light transport paths with non-zero contribution is dramatically increased, resulting in much less noisy images within a fixed time budget.

Authors

Ken Dahm (NVIDIA)

Publication Date