Accelerating Dependent Cache Misses with an Enhanced Memory Controller
On-chip contention increases memory access latency for multicore processors. We identify that this additional latency has a substantial effect on performance for an important class of latency-critical memory operations: those that result in a cache miss and are dependent on data from a prior cache miss. We observe that the number of instructions between the first cache miss and its dependent cache miss is usually small. To minimize dependent cache miss latency, we propose adding just enough functionality to dynamically identify these instructions at the core and migrate them to the memory controller for execution as soon as source data arrives from DRAM. This migration allows memory requests issued by our new Enhanced Memory Controller (EMC) to experience a 20% lower latency than if issued by the core. On a set of memory intensive quad-core workloads, the EMC results in a 13% improvement in system performance and a 5% reduction in energy consumption over a system with a Global History Buffer prefetcher, the highest performing prefetcher in our evaluation.
Publication Date
Research Area
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.