A Novel Shard-Based Approach for Asynchronous Many-Task Models for In Situ Analysis
We present the current status of our work towards a scalable, asynchronous many-task, in situ statistical analysis engine using the Legion runtime system, expanding upon earlier work, that was limited to a prototype implementation with a proxy mini-application as a surrogate for a full-scale scientific simulation code. In contrast, we have more recently integrated our in situ analysis engines with S3D, a full-size scientific application, and conducted numerical tests therewith on the largest computational platform currently available for DOE science applications. The goal of this article is thus to describe the SPMD-Legion methodology we devised in this context, and compare the data aggregation technique deployed herein to the approach taken within our previous work.
Publication Date
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.