Interactive Fluid-Particle Simulation using Translating Eulerian Grids

We describe an interactive system featuring fluid-driven animation that responds to moving objects. Our system includes a GPU accelerated Eulerian fluid solver that is suited for real-time use because it is unconditionally stable, takes constant calculation time per frame, and provides good visual fidelity. We dynamically translate the fluid simulation domain to track a user-controlled object. The fluid motion is visualized via its effects on particles which respond to the calculated fluid velocity field, but which are not constrained to stay within the bounds of the simulation domain. As particles leave the simulation domain, they seamlessly transition to purely particle-based motion, obscuring the point at which the fluid simulation ends. We additionally describe a hardware-accelerated volume rendering system that treats the particles as participating media and can render effects such as smoke, dust, or mist. Taken together, these components can be used to add fluid-driven effects to an interactive system without enforcing constraints on user motion, and without visual artifacts resulting from the finite extents of Eulerian fluid simulation methods.


Jonathan Cohen (NVIDIA)
Sarah Tariq (NVIDIA)
Simon Green (NVIDIA)

Publication Date