Legate NumPy: Accelerated and Distributed Array Computing
NumPy is a popular Python library used for performing array-based numerical computations. The canonical implementation of NumPy used by most programmers runs on a single CPU core and only a few operations are parallelized across cores. This restriction to single-node CPU-only execution limits both the size of data that can be processed and the speed with which problems can be solved. In this paper we introduce Legate, a programming system that transparently accelerates and distributes NumPy programs to machines of any scale and capability typically by changing a single module import statement. Legate achieves this by translating the NumPy application interface into the Legion programming model and leveraging the performance and scalability of the Legion runtime. We demonstrate that Legate can achieve state-of-the-art scalability when running NumPy programs on machines with up to 1280 CPU cores and 256 GPUs, allowing users to prototype on their desktop and immediately scale up to significantly larger machines. Furthermore, we demonstrate that Legate can achieve between one and two orders of magnitude better performance than the popular Python library Dask Array when running comparable programs at scale.
Publication Date
Research Area
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.