SpecTrack: Learned Multi-Rotation Tracking via Speckle Imaging

Precision pose detection is increasingly demanded in fields such as personal fabrication, Virtual Reality (VR), and robotics due to its critical role in ensuring accurate positioning information. However, conventional vision-based systems used in these systems often struggle with achieving high precision and accuracy, particularly when dealing with complex environments or fast-moving objects. To address these limitations, we investigate Laser Speckle Imaging (LSI), an emerging optical tracking method that offers promising potential for improving pose estimation accuracy. Specifically, our proposed LSI-Based Tracking leverages the captures from a lensless camera and a retro-reflector marker with a coded aperture to achieve multi-axis rotational pose estimation with high precision. Our extensive trials using our in-house built testbed have shown that SpecTrack achieves an accuracy of 0.31∘ (std=0.43∘) , significantly outperforming state-of-the-art approaches and improving accuracy up to 200%.

Authors

Ziyang Chen (University College London)
Doğa Doğan (Adobe Research)
Kaan Akşit (University College London)

Publication Date

Uploaded Files

paper723.74 KB
poster4 MB

Award

Honorable Mention