Task-Based Tensor Computations on Modern GPUs

Publication image

Domain-specific, fixed-function units are becoming increasingly common in modern processors. As the computational demands of applications evolve, the capabilities and programming interfaces of these fixed-function units continue to change. NVIDIA’s Hopper GPU architecture contains multiple fixed-function units per compute unit, including an asynchronous data movement unit (TMA) and an asynchronous matrix multiplication unit (Tensor Core). Efficiently utilizing these units requires a fundamentally different programming style than previous architectures; programmers must now develop warp-specialized kernels that orchestrate producer-consumer pipelines between the asynchronous units. To manage the complexity of programming these new architectures, we introduce Cypress, a task-based programming model with sequential semantics. Cypress programs are a set of designated functions called tasks that operate on tensors and are free of communication and synchronization. Cypress programs are bound to the target machine through a mapping specification that describes where tasks should run and in which memories tensors should be materialized. We present a compiler architecture that lowers Cypress programs into CUDA programs that perform competitively with expert-written codes. Cypress achieves 0.88x-1.06x the performance of cuBLAS on GEMM, and between 0.80x-0.98x the performance of the currently best-known Flash Attention implementation while eliminating all aspects of explicit data movement and asynchronous computation from application code.

Authors

Rohan Yadav (Stanford University)
Alex Aiken (Stanford University)

Publication Date

Uploaded Files