Fast and Accurate Point Cloud Registration using Trees of Gaussian Mixtures

Point cloud registration sits at the core of many important and challenging 3D perception problems including autonomous navigation, SLAM, object/scene recognition, and augmented reality. In this paper, we present a new registration algorithm that is able to achieve state-of-the-art speed and accuracy through its use of a hierarchical Gaussian Mixture Model (GMM) representation. Our method constructs a top-down multi-scale representation of point cloud data by recursively running many small-scale data likelihood segmentations in parallel on a GPU.

Learning Rigidity in Dynamic Scenes with a Moving Camera for 3D Motion Field Estimation

Estimation of 3D motion in a dynamic scene from a temporal pair of images is a core task in many scene understanding problems. In real world applications, a dynamic scene is commonly captured by a moving camera (i.e., panning, tilting or hand-held), increasing the task complexity because the scene is observed from different view points. The main challenge is the disambiguation of the camera motion from scene motion, which becomes more difficult as the amount of rigidity observed decreases, even with successful estimation of 2D image correspondences.

Making Convolutional Networks Recurrent for Visual Sequence Learning

Recurrent neural networks (RNNs) have emerged as a powerful model for a broad range of machine learning problems that involve sequential data. While an abundance of work exists to understand and improve RNNs in the con- text of language and audio signals such as language modeling and speech recognition, relatively little attention has been paid to analyze or modify RNNs for visual sequences, which by nature have distinct properties. In this paper, we aim to bridge this gap and present the first large-scale exploration of RNNs for visual sequence learning.

Adaptive Temporal Antialiasing

We introduce a pragmatic algorithm for real-time adaptive supersampling in games. It extends temporal antialiasing of rasterized images with adaptive ray tracing, and conforms to the constraints of a commercial game engine and today's GPU ray tracing APIs. The algorithm removes blurring and ghosting artifacts associated with standard temporal antialiasing and achieves quality approaching 8X supersampling of geometry, shading, and materials while staying within the 33ms frame budget required of most games.

PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes

Estimating the 6D pose of known objects is important for robots to interact with the real world. The problem is challenging due to the variety of objects as well as the complexity of a scene caused by clutter and occlusions between objects. In this work, we introduce PoseCNN, a new Convolutional Neural Network for 6D object pose estimation. PoseCNN estimates the 3D translation of an object by localizing its center in the image and predicting its distance from the camera. The 3D rotation of the object is estimated by regressing to a quaternion representation.

Pages

Subscribe to Research RSS