Energy-efficient Mechanisms for Managing Thread Context in Throughput Processors
Modern graphics processing units (GPUs) use a large number of hardware threads to hide both function unit and memory access latency. Extreme multithreading requires a complicated thread scheduler as well as a large register file, which is expensive to access both in terms of energy and latency. We present two complementary techniques for reducing energy on massively-threaded processors such as GPUs. First, we examine register file caching to replace accesses to the large main register file with accesses to a smaller structure containing the immediate register working set of active threads. Second, we investigate a two-level thread scheduler that maintains a small set of active threads to hide ALU and local memory access latency and a larger set of pending threads to hide main memory latency. Combined with register file caching, a two-level thread scheduler provides a further reduction in energy by limiting the allocation of temporary register cache resources to only the currently active subset of threads. We show that on average, across a variety of real world graphics and compute workloads, a 6-entry per-thread register file cache reduces the number of reads and writes to the main register file by 50% and 59% respectively. We further show that the active thread count can be reduced by a factor of 4 with minimal impact on performance, resulting in a 36% reduction of register file energy.
Publication Date
Research Area
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.