Mixed-primary Factorization for Dual-frame Computational Displays
Increasing resolution and dynamic range of digital color displays is challenging with designs confined by cost and power specifications. This necessitates modern displays to trade-off spatial and temporal resolution for color reproduction capability. In this work we explore the idea of joint hardware and algorithm design to balance such trade-offs. We introduce a system that uses content-adaptive and compressive factorizations to reproduce colors. Each target frame is factorized into two products of high-resolution monochromatic and low-resolution color images, which then get integrated through temporal or spatial multiplexing. As our framework minimizes the error in colorimetric space, the perceived color rendition is high, and thanks to GPU acceleration, the results are generated in real-time. We evaluate our system with a LCD prototype that uses LED backlight array and temporal multiplexing to reproduce color images. Our approach enables high effective resolution and dynamic range without increasing power consumption. We also demonstrate low-cost extensions to hyperspectral and light-field imaging, which are possible due to compressive nature of our system.
Publication Date
Published in
Research Area
External Links
Uploaded Files
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.