Buffets: An Efficient and Composable Storage Idiom for Explicit Decoupled Data Orchestration
Accelerators spend significant area and effort on custom onchip buffering. Unfortunately, these solutions are strongly tied to particular designs, hampering re-usability across other accelerators or domains.We present buffets, an efficient and composable storage idiom for the needs of accelerators that is independent of any particular design. Buffets have several distinguishing characteristics, including efficient decoupled fills and accesses with fine-grained synchronization, hierarchical composition, and efficient multi-casting. We implement buffets in RTL and show that they only add 2% control overhead over an 8KB RAM. When compared with DMA-managed double-buffered scratchpads and caches across a range of workloads, buffets improve energy-delay-product by 1.53x and 5.39x, respectively.
Publication Date
Research Area
External Links
Uploaded Files
Award
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.