A Formal Analysis of the NVIDIA PTX Memory Consistency Model.
This paper presents the first formal analysis of the official memory consistency model for the NVIDIA PTX virtual ISA. Like other GPU memory models, the PTX memory model is weakly ordered but provides scoped synchronization primitives that enable GPU program threads to communicate through memory. However, unlike some competing GPU memory models, PTX does not require data race freedom, and this results in PTX using a fundamentally different (and more complicated) set of rules in its memory model. As such, PTX has a clear need for a rigorous and reliable memory model testing and analysis infrastructure.
We break our formal analysis of the PTX memory model into multiple steps that collectively demonstrate its rigor and validity. First, we adapt the English language specification from the public PTX documentation into a formal axiomatic model. Second, we derive an up-to-date presentation of an OpenCL-like scoped C++ model and develop a mapping from the synchronization primitives of that scoped C++ model onto PTX. Third, we use the Alloy relational modeling tool to empirically test the correctness of the mapping. Finally, we compile the model and mapping into Coq and build a full machine-checked proof that the mapping is sound for programs of any size. Our analysis demonstrates that in spite of issues in previous generations, the new NVIDIA PTX memory model is suitable as a sound compilation target for GPU programming languages such as CUDA.
Publication Date
Research Area
External Links
Uploaded Files
Award
Copyright
Copyright by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org. The definitive version of this paper can be found at ACM's Digital Library http://www.acm.org/dl/.